
	
	 [image: tcmd15]
	

Overview

[image: logo2]

TAKE COMMAND 15.0

Welcome to our help! We have designed this help file to accompany our products Take Command and TCC/LE. (For a description of TCC/LE, see TCC and TCC/LE).

Take Command is designed for Windows XP, Windows 2003, Windows Vista, Server 2008, Windows 7, Windows 8, and Server 2012, and is available in 32-bit and 64-bit versions. Take Command combines the best features of the GUI and character-mode interfaces. You can have multiple console applications open in tabbed windows, with a Windows Explorer-like interface available for those times when you need a visual look at your folders.

Take Command is composed of three elements which work closely together:

Take Command Environment - A rich development and operations environment that allows you to:

●Run multiple console and GUI applications simultaneously in tabbed windows, including our own Take Command Console (TCC), CMD, PowerShell and bash. Take Command will display output much faster (up to 10x!) than running the application in a standard Windows console window.
●Cut and paste text
●Drag and drop files into tab windows from an Explorer-like environment, other applications, or the desktop
●Create and edit command scripts
●Debug batch scripts

Take Command Console (TCC) - A command processor compatible with CMD (the default command processor in Windows XP / 2003 / Vista / 2008 / 7 / 8 / 2012) but substantially enhanced with thousands of additional features. TCC provides the ability to:

●Interactively run commands, such as DIR, COPY, etc
●Interactively run batch script files, such as .CMD, .BAT or .BTM scripts
●Run batch scripts as background processes based on timed schedules or operational triggers, such as changes in the system environment

Take Command Language - A mature scripting language based on and compatible with CMD, but massively enhanced. It includes:

●190+ internal commands
●310+ functions
●230+ variables
●Hundreds of additional options for CMD compatible commands
●Additional underlying capabilities, such as the ability to access FTP and HTTP sites as if they were local disk drives

The following image shows how the pieces fit together. The overall environment surrounds a set of consoles, each with its own tabbed window. Each console can run commands in the Take Command language (or other languages, such as PowerShell or bash, in additional tab windows).

[image: tcmd15]

	JP Software Inc.

P.O. Box 328, Chestertown, MD 21620, USA

phone: (800) 595-8197

web:http://jpsoft.com/

What's New - Version 15

Feature List:

Updated the TextPipe engine to 9.3.1.

Updated the Scintilla editor (used by the IDE and Command Input window) to 3.2.5.

Updated the installer.

Updated the registration & licensing modules. Registration can now only be done from within Take Command (Help menu), not TCC.

Take Command, TCC, and the IDE (batch debugger) have been optimized to load faster.

The Take Command help is now also available in ePUB format at http://jpsoft.com/downloads/v15/TakeCommand.epub. You can choose either the PDF or ePUB format for reading on your portable devices.

TCC is now supported in the Windows PE environment. (There are a few commands that won't work because of missing Windows APIs, and Take Command won't work because there is no GUI.)

Take Command now doesn't update the Folder & List Views at startup if they are disabled or set to AutoHide. (This will speed up the load time substantially if you have network drives which are mapped but unavailable.)

The password fields in TCMD.INI are now encrypted when they are saved. (The encryption is strong, but if somebody wants to debug TCC.EXE and monitor the API calls, they'll eventually be able to figure out the unencrypted strings. But they'll have to work for it.)

The Command Input window now uses the same font and point size as the tab windows.

Take Command now disables updates when renaming folders in the Folder View.

Take Command now disables updates when renaming files or directories in the List View.

Take Command now disables updates when editing descriptions in the List View.

The Take Command Folder View now supports Ctrl-C or Ctrl-Insert to copy the current selection to the clipboard.

The Take Command List View now supports Ctrl-C or Ctrl-Insert to copy the current selection(s) to the clipboard.

Take Command now supports copying descriptions in DESCRIPT.ION when copying / dragging / dropping files in the Folder & List View windows.

Added a global hotkey (default Ctrl-Shift-Z) to toggle Take Command to and from the system tray.

Updated the Internet support dll's for TCC.

Updated the zip / tar support dll's for TCC.

Added support for the new OpenAFS 1.7.x redirector when retrieving the volume information (for example, in FREE, %@DISKFREE, etc.).

The TCC command line editor has Undo and Redo support. You can remap the keys with the "Undo" and "Redo" key mapping entries in TCMD.INI.

Undo - Alt-Z

Redo - Alt-Y

Batch Editor / Debugger:

When a file has been modified, the tab title will be updated with a leading *. When the file is saved, the * will be removed.

INI Directives:

	AutoProxy=YES|no 	Enable / disable automatic HTTP proxy detection

	AutoFirewall=YES|no	Enable / disable automatic firewall detection

	TrayHotKey=Z	The hotkey to toggle Take Command to and from the system tray. The specified alphabetic key is combined with Ctrl + Shift, so the default hotkey is Ctrl-Shift-Z.

	Copyright=YES|no	Display the TCC copyright message at startup. This is the same as the TCC /Q startup option, and only applies to registered copies.

	EverythingSearch=yes|NO	If YES, CDD will use "Everything Search" (http://www.voidtools.com) instead of JPSTREE.IDX for fuzzy directory matching. See CDD for details.

	FilesCaseSensitive=yes|NO	If YES, filename comparisons will be case sensitive (like Linux, and unlike Windows).

	Redo=Alt-Y	Key mapping directive to redo last edit (see Undo and Redo above).

	Undo=Alt-Z	Key mapping directive to undo last edit (see Undo and Redo above).

The password fields in TCMD.INI for the Internet settings are encrypted.

Internal Variables:

%_do_loop - Incremented each time through a DO loop.

%_tclistview - Returns the selected items in the List View window as an include list.

%_virtualbox - Returns 1 if TCC is running in a VirtualBox VM.

Variable Functions:

%@DISKFREE - Now supports the OpenAFS 1.7.x redirector to retrieve disk space usage.

%@DISKTOTAL - Now supports the OpenAFS 1.7.x redirector to retrieve disk space usage.

%@DISKUSED - Now supports the OpenAFS 1.7.x redirector to retrieve disk space usage.

%@FORMAT - If the second argument (string) doesn't exist, @FORMAT now treats it as an empty string and pads the output accordingly.

%@LINES - Now also sets two environment variables:

_LINES_MAXLEN - The length of the longest line

_LINES_MAXLOC - The line number (base 0) of the longest line.

%@MACADDRESS - Returns the MAC address of the network interface at the specified address.

%@SELECT - Added optional start line and key mask fields. The start line will highlight the specified line number (the first line is 1).

The selected line number will be returned in the SELECT_LINE environment variable (the first line is 1).

If you specify a key mask, the searching is disabled, and TCC will check input keystrokes for a match against the key mask. If a match is found, @SELECT will return the current line and set the _SELECT_KEY environment variable to the input key value. The key mask is in the same format as INKEY /K.

The format is:

@SELECT[filename,top,left,bottom,right,title[,sorted[,startline,[keymask]]]]

%@TIME - Added (not very useful, not recommended, and then only for the USA) support for am/pm time. For example:

%@TIME[1:39:15pm]

%@TALNUM[string] - Returns the number of alphanumeric (a-z, A-Z, and 0-9) characters in the string

%@TALPHA[string] - Returns the number of alphabetic characters (a-z, A-Z) in the string

%@TASCII[string] - Returns the number of 7-bit ASCII characters (0x00 - 0x7F) in the string

%@TCNTRL[string] - Returns the number of ASCII control characters (0x00 - 0x1F and 0x7F) in the string

%@TLOWER[string] - Returns the number of lower case alphabetic characters in the string

%@TUPPER[string] - Returns the number of upper case alphabetic characters in the string

%@TDIGIT[string] - Returns the number of decimal digits (0-9) in the string

%@TPRINT[string] - Returns the number of printable characters in the string

%@TPUNCT[string] - Returns the number of punctuation characters (printable characters which are not alphanumeric or space) in the string

%@TSPACE[string] - Returns the number of white space characters (0x09 - 0x0D or 0x20) in the string

%@TXDIGIT[string] - Returns the number of hexadecimal digits (0 - 9, A - F) in the string

Plugins:

Plugins can now access array variables directly through the ArrayVariables array. See TakeCmd.h in the SDK for details.

Updated Commands:

CD

If the TCMD.INI directive "EverythingSearch" is set, CD will use "Everything Search" (http://www.voidtools.com) instead of JPSTREE.IDX for fuzzy directory searches. Everything Search is slightly faster, but will only work on local NTFS drives. Setting EverythingSearch is the equivalent of setting FuzzyCD=3 (*name*), unless you're using regular expressions.

CDD

If the TCMD.INI directive "EverythingSearch" is set, CDD will use "Everything Search" (http://www.voidtools.com) instead of JPSTREE.IDX for fuzzy directory searches. Everything Search is slightly faster, but will only work on local NTFS drives. Setting EverythingSearch is the equivalent of setting FuzzyCD=3 (*name*), unless you're using regular expressions.

COPY

If you specify the /C, /CF, /R, /U, or /UF options, COPY will append a ! to the copy specifier if the target exists and is being overwritten. For example:

[d:\] copy file1 file2

file1 =>! file2

If the EverythingSearch option is set, COPY won't try to update JPSTREE.IDX for local NTFS drives.

The /N option no longer creates empty subdirectories when used with /S.

DEL

If the EverythingSearch option is set, DEL won't try to update JPSTREE.IDX for local NTFS drives.

FREE

Now supports the OpenAFS 1.7.x redirector to retrieve disk space usage.

IF

If the "DupBugs" TCMD.INI directive (OPTION / Startup / "Duplicate CMD.EXE bugs") has been set, the IF behavior is different when in a command group in a batch file. If there are multiple command lines in the command group, a failed IF will now only ignore the remainder of the commands on that line. The commands on the subsequent lines will still be executed.

IFTP

/EP - Use Extended Passive mode. (Works with FTP and FTPS, but not SFTP.)

/IPv6 - By default, IFTP expects an IPv4 address for the local and remote host, and will create an IPv4 socket. The /IPv6 option tells IFTP to use IPv6 instead. (Works with FTP, FTPS, and SFTP connections.)

/PR="nnn" - When using active mode, IFTP uses any available port to listen to incoming connections from the server. You can override this behavior by setting /PR (PortRange) to a value containing the range of ports the class will be listening to. The range is provided as start-end, for instance: "1024-" stands for anything higher than 1024, "1024-2048" stands for ports between 1024 and 2048 inclusive, "4000-4010, 50000-50010" stands for ports between 4000 and 4010 or between 50000 and 50010. (Works with FTP and FTPS, but not SFTP.)

/Z[n] - Use Zlib compression. You can optionally set the compression level (0-9; the default is 7). Zlib compression must be enabled on the server, and will only work with FTP and FTPS connections (not SFTP).

JABBER

/F"filename" - Send a file to the specified target.

MD

If the EverythingSearch option is set, MD won't try to update JPSTREE.IDX.

MOVE

If you specify the /C, /CF, /R, /U, or /UF options, MOVE will append a ! to the move specifier if the target exists and is being overwritten. For example:

[d:\] move file1 file2

file1 ->! file2

/G - Will now display the % moved even if Windows is doing a rename (which may be a copy & delete internally).

If the EverythingSearch option is set, MOVE won't try to update JPSTREE.IDX for local NTFS drives.

OPTION

OPTION now allows you to set "Auto SSL" for SMTP (i.e., SENDMAIL and SENDHTML).

OSD

OSD now lets you control up to 10 simultaneous OSD displays. (OSD allows you to create any number of windows, but you can only close the ones you've labeled from 0-9.) There are two new switches:

/C=n - Close the OSD window n (0-9). /C=n must be the only argument to OSD.

/ID=n - Open the OSD window n (0-9). /ID must be the first argument to OSD.

If you don't specify an /ID, OSD will default to window 0.

PLUGIN

PLUGIN now accepts multiple plugin name arguments. (The new syntax should still support commands using the old syntax.) The syntax is:

PLUGIN [/B /C /F /I /K /L /P /U /V] plugin ...

PRINT

PRINT now accepts piped & redirected input to send to the printer. If there is no filename, PRINT will read from STDIN, create a temporary file, and send it to the printer.

PROMPT

~ - New metacharacter (substitute for P). If the environment variable HOME (or HOMEDRIVE + HOMEPATH) exists, TCC will compare the variable to the beginning of the current path. If they match, TCC will substitute ~ for the variable part. (If they don't match, ~ is treated like a P.)

For example:

[c:\] set home=c:\users\myself

[c:\] set prompt=[$~]

[c:\] cd \users\myself\downloads

[~\downloads]

RD

If the EverythingSearch option is set, RD won't try to update JPSTREE.IDX for local NTFS drives.

REN

If the EverythingSearch option is set, REN won't try to update JPSTREE.IDX for local NTFS drives.

SENDHTML

/= (Command dialog) - Added the BCC: option.

/SMTP=server - Overrides the default SMTP server to use to send mail.

/USER=address - Overrides the default email account to use to send mail.

The OPTION command now allows you to set "Auto SSL" for SENDHTML.

SENDMAIL

/= (Command dialog) - Added the BCC: option.

/SMTP=server - Overrides the default SMTP server to use to send mail.

/USER=address - Overrides the default email account to use to send mail.

The OPTION command now allows you to set "Auto SSL" for SENDMAIL.

SYNC

If the EverythingSearch option is set, SYNC won't try to update JPSTREE.IDX for local NTFS drives.

TAR

/TEST - Test the integrity of the TAR file (header and contents). Any errors will be displayed on STDERR.

TPIPE

TPIPE is using a new version of the text pipe engine. There will be a number of additional TPIPE options in v15.

Grep filters now allow Unicode patterns (when UTF-8 support mode is enabled).

Split filter now allows Unicode filenames, and Unicode file break patterns.

Removed the (completely useless) Quick Help from TPIPE. A "TPIPE /?" now invokes the online help for TPIPE.

/BUFFERSIZE - Sets the buffer size for the preceding search/replace filter. (The default is 4096.)

/buffersize=n

/EDITDISTANCE - Sets the edit distance threshold for the preceding search/replace filter. (The default is 2.)

/editdistance=n

/DATABASE - Adds a database-type filter.

/database=Mode,GenerateHeader,Timeout,Connection,InsertTable,FieldDelimiter,Qualifier

Mode

0 Delimited output

1 Fixed width

2 XML

3 Insert script

GenerateHeader - Generates header information when True.

Timeout - SQL command timeout in seconds.

ConnectionStr - The database connection string.

InsertTable - The name of the insert table.

FieldDelimiter - The string to use between columns.

Qualifier - The string to use around string column values.

/SELECTION - Added additional options for restriction filter types. (Restriction filters require sub filters to have any effect.)

/selection=Type,Locate,Param1,Param2,MoveTo,nDelimiter,CustomDelimiter,HasHeader[,ProcessIndividually]

The new Type options are:

	1	Restrict lines

	2	Restrict columns

	3	Restrict to bytes

	4	Restrict to delimited fields (CSV, Tab, Pipe etc.)

The new ProcessIndividually option specifies whether to apply sub filters to each CSV or Tab field individually (1), or to the fields as one string value (0). The default is false.

/MATHS - Adds a maths type filter. The syntax is:

/maths=operation,operand

operation - the operation to perform

	0	+

	1	-

	2	*

	3	div (the remainder is ignored)

	4	mod (the remainder after division)

	5	xor

	6	and

	7	or

	8	not

	9	shift left (0 inserted)

	10	shift right (0 inserted)

	11	rotate left

	12	rotate right

operand - the operand to use

/PERL - Sets the Perl matching options for the immediately preceding search/replace filter.

/perl=BufferSize,Greedy,AllowComments,DotMatchesNewLines

BufferSize - The maximum buffer size to use for matches. Any match must fit into this buffer, so if you want to match larger pieces of text, increase the size of this buffer to suit. Default is 4096.

Greedy - If the pattern finds the longest match (greedy) or the shortest match. Default is false.

AllowComments - Allow comments in the Perl pattern. Default is false.

DotMatchesNewLines - Allow the '.' operator to match all characters, including new lines. Default is true.

/REPLACELIST - Add a search and replace list, using search and replace pairs from the specified file.

/replacelist=Type,MatchCase,WholeWord,CaseReplace,PromptOnReplace,FirstOnly,SkipPromptIdentical,Simultaneous,LongestFirst,Filename

Type:

0 Replace

1 Pattern (old style)

2 Sounds like

3 Edit distance

4 Perl pattern

5 Brief pattern

6 Word pattern

MatchCase - Matches case when set to 1, ignores case when set to 0

WholeWord - Matches whole words only when set to 1

CaseReplace - Replaces with matching case when set to 1

PromptOnReplace - Prompts before replacing when set to 1

FirstOnly - If 1, only replace the first occurrence

SkipPromptIdentical - If 1, don't bother prompting if the replacement text is identical to the original.

Simultaneous - If 1, all search strings are scanned for simultaneously instead of consecutively. (This is useful if the search strings and results strings overlap.)

LongestFirst - If 1, searches for long phrases (most specific) before short phrases (least specific) - this is generally used for translations.

Filename - The file to load search/replace pairs from. If the file extension is .XLS or .XLSX, the file is assumed to be Excel format, if the extension is .TAB the file is assumed to have tab-delimited values, and any other extension (including .CSV) is assumed to have Comma-Separated Values.

The filename can contain environment variables enclosed in % signs e.g. %TEMP%\myfile.txt. TPIPE corrects any doubled backslashes.

/SCRIPT - Adds an ActiveX script filter. The syntax is:

/script=language,timeout,code

language: The language of the script

timeout: The command timeout in seconds

script: The code

/STARTSUBFILTERS - The following filters are created as sub filters, until the closing /ENDSUBFILTERS. Sub filters allow a restricted part of the entire text to be operated on by a group of filters without effecting the entire text. For example, a "Restrict to delimited fields" (CSV, Tab, Pipe, etc.) filter can pick out a range of CSV fields, and then a search/replace filter can operate JUST on the text restricted.

/ENDSUBFILTERS - End the sub filters defined by the preceding /STARTSUBFILTERS.

UNTAR

/TEST - Test the integrity of the TAR file (header and contents). Any errors will be displayed on STDERR.

UNZIP

/TEST - Test the integrity of the ZIP file (header and contents). Any errors will be displayed on STDERR.

VIEW

VIEW now has the ability to view CSV files as tables. CSV files are typically used to represent tabular data, where each line in the file represents a row of a table. Each line contains the text of each column in the row, separated by a comma (although other characters can be used - e.g., a TAB).

By default, VIEW will automatically recognize CSV files and will display them as a table - where all the columns have the same width (much like a spreadsheet). Although unlike a spreadsheet, the column widths in V are fixed (determined by the longest entry in the column) and cannot be resized. You can press the arrow button next to the new CSV Mode button in the toolbar to customize the CSV behavior. Press the CSV Mode button to toggle between CSV mode and standard text mode.

ZIP

/TEST - Test the integrity of the ZIP file (header and contents). Any errors will be displayed on STDERR.

New Commands:

ASSOCIATE

Combines the ASSOC and FTYPE command. ASSOCIATE will display, delete, or create associations. The syntax is:

ASSOCIATE [/D /F /P /R filename /U] [.ext [program]]

/D - Delete the association for the specified .ext

/F - Force an overwrite of an existing association

/P - Pause after each page (only useful when running ASSOCIATE with no arguments)

/R - Read associations from a file. The lines in the file must be in the format .ext=program

/U - Add the file association in HKCU instead of HKCR

DATEMONITOR

Monitor the current date and time, and execute the specified command when they match the saved time. If you don't specify any arguments, DATEMONITOR will display the current dates & times it is monitoring, and the associated commands.

DATEMONITOR [/C] yyyy-mm-dd hh:mm n command

	/C	Clear any existing date monitors

	n	Number of repetitions (or FOREVER)

	command	Command to execute when the date matches the current time

The date must be in ISO (yyyy-mm-dd) format, and the time in 24-hour format.

DATEMONITOR sets two environment variables when the condition is triggered:

_datemonitor The current date in yyyy-mm-dd format

_timemonitor The current time in hh:mm (24-hour) format

ECHOX

Echo a line to STDOUT without performing any variable expansion or redirection. The syntax is:

ECHOX text

ECHOXERR

Echo a line to STDERR without performing any variable expansion or redirection. The syntax is:

ECHOXERR text

EVERYTHING

Search for files and/or directories on local NTFS drives using "Everything Search" (http://www.voidtools.com). EVERYTHING by default does a wildcard search equivalent to "*filename*", and outputs the full pathname of all matching files and/or directories. The syntax is:

EVERYTHING [/C /D /F /M=n /P /R /W] filename [...]

	/C	Filename matching is case sensitive

	/D	Only search for directories

	/F	Only search for files

	/M=n	Only return a maximum of n files / directories. (Note that /M determines the total number of matches prior to any additional filtering. If you use /D or /F you will end up with the total minus the number of directories or files you excluded.)

	/P	Match path names

	/R	filename is a regular expression (EVERYTHING will automatically set the regular expression flag if the filename begins with ::)

	/W	Match whole word

You need to install Everything Search and index your local NTFS drives before using EVERYTHING.

SCREENMONITOR

Executes the specified command when a screen saver is active. If you don't specify any arguments, SCREENMONITOR will display the current screen saver monitor command (if any). Once the condition has been set, it will not be set again until the screen saver becomes inactive and then active again.

SCREENMONITOR [/C] n command

	/C	Clear any existing screen saver monitors

	n	Number of repetitions (or FOREVER)

	command	Command to execute when the screen saver becomes active

What's New - Version 14

Feature List:

Take Command now supports a splitter window (on the horizontal scrollbar). You must enable "Splitter Windows" in the Take Command configuration dialog (Tabs window), and restart TCMD to see the splitter. (Note that it is technically impossible to display splitter console windows, so TCMD is using a lot of hand-waving, smoke, and mirrors.) The splitter window (on the right side) will not automatically scroll to the end when new output is displayed, or when you enter new commands. This allows you to scroll back in the screen buffer to review previous commands and output, and to select text from previous pages.

Take Command will check to see if your maximum allowable console window size (as set by Windows) is smaller than your Take Command tab window; if so Take Command will reduce the console font size until the console window size matches the tab window. (Requires Windows Vista or later.)

The Internet code has been substantially rewritten and ported to a new major update of the IPWorks dll's.

Updated the IDE editor to a new version of Scintilla (3.2).

The conditional tests (DO, IF, IFF, etc.) now accept ! as a synonym for NOT.

Alt-F9 will restore the original filename mask when doing filename completion. This will only work provided you haven't terminated the completion loop; i.e., by pressing anything other than tab, F8, F9, F10, or F12.

Alt-F6 will no longer open the Folder View and List View windows if they're disabled; it will toggle between the Command Input window and the active tab window.

Added a "Register for all users" option (checkbox on the register page). This option will only be enabled if you are running an elevated administrator session.

There will not be a TCC/LE 14.0.

Batch Editor / Debugger:

You can select a rectangular area by holding down the Alt key while clicking the left mouse button and dragging the mouse.

INI Directives:

CompleteAllFiles=yes|NO - Normally, TCC will only complete directories and executable files (as defined by PATHEXT) when you press Tab or F9 at the beginning of a command line. If CompleteAllFiles is set to YES, TCC will complete any matching filename. Note that if you also have CompletePaths set, you'll probably have several hundred (or thousand!) matches for any filename you enter.

SplitterWindows=NO|yes - If YES, Take Command will display a horizontal scrollbar with a splitter in each tab window.

Internal Variables:

_SERIALPORTS - Returns a space-delimited list of all of the available serial ports (COM1 - COMn).

Variable Functions:

@FILES[/H filename] - Don't count "." or ".."

@REREPLACE[source_re, target_re, source] - Regular expression back reference replacement.

source_re - Regular expression to apply to the source

target_re - Regular expression for back reference

source - Source string

@SERIALPORTCLOSE[n] - Close the serial port. "n" is the handle returned by @SERIALPORTOPEN.

@SERIALPORTFLUSH[n] - Flush the contents of the serial port buffer. "n" is the handle returned by @SERIALPORTOPEN.

@SERIALPORTOPEN[COMn[, baud[, parity[, bits[, flow]]]]] - Open a serial port for read & write. The parameters are:

COMn - The COM port to open (COM1 - COM9)

baud - The baud rate (110 - 256000)

parity - The parity scheme to use. This can be one of the following values:

no

odd

even

mark

space

bits - The number of bits in the bytes to transmit & receive

flow - The type of flow control to use. This can be one of the following values:

no

CtsRts

CtsDtr

DsrRts

DsrDtr

XonXoff

@SERIALPORTOPEN returns a handle to the serial port, which must be passed to the other serial port functions.

@SERIALPORTREAD[n] - Reads a string from the serial port. "n" is the handle returned by @SERIALPORTOPEN.

@SERIALPORTWRITE[n, text] - Writes a string to the serial port. "n" is the handle returned by @SERIALPORTOPEN.

@SMCLOSE[n] - Close a shared memory handle.

n - The shared memory handle returned by @SMOPEN

@SMOPEN[size, name] - Open a handle to shared memory

size - The size of shared memory (in bytes)

name - The name of the shared memory. The name can have a "Global\" or "Local\" prefix to create the object in the global or session namespace.

@SMPEEK[handle,offset,size] - Read a value from shared memory.

handle - a handle from @SMOPEN

offset - the byte offset in the buffer (decimal or hex)

size - the size of the value to read (in bytes):

 1 - character

 2 - short

 4 - int

 8 - int64

@SMPOKE[handle,offset,size,value] : Write a value to shared memory

handle - a handle from @SMOPEN

offset - the byte offset in the buffer (decimal or hex)

size - the size of the value (in bytes):

1 - character

2 - short

4 - int

8 - int64

value - the value to poke

@SMREAD[n, offset, type, length] - Read a string from shared memory

n - The shared memory handle returned by @SMOPEN

offset - The offset (in bytes) from the beginning of the shared memory buffer.

type - Either a to read the string as ASCII or u to write it as Unicode.

length - The length of the string (in characters) to read.

@SMWRITE[n, offset, type, string] - Write a string to shared memory

n - The shared memory handle returned by @SMOPEN

offset - The offset (in bytes) from the beginning of the shared memory buffer.

type - Either a to write the string as ASCII or u to write it as Unicode.

string - The string to write.

@TRIMALL[string] - Remove leading and trailing spaces and tabs, and extra internal spaces and tabs.

Updated Commands:

ATTRIB

/L - Set or display the attributes of the symbolic link versus the target of the symbolic link.

COPY

If you don't specify any arguments, COPY will display the command dialog.

Added support for regular expression back references in the target name. If you are using back references, you must use a regular expression in the source name. The syntax is:

copy ::filename ::target

See the help for details about back references.

DEL

If you don't specify any arguments, DEL will display the command dialog.

DESCRIBE

If you don't specify any arguments, DESCRIBE will display the command dialog.

ESET

/C - copy the value from another variable / alias / function. The syntax is:

eset /c var1 var2

where "var1" is the variable whose value you want to copy, and "var2" is the variable (new or existing) that you want to update.

GLOBAL

If you don't specify any arguments, GLOBAL will display the command dialog.

JABBER

If you don't specify any arguments, JABBER will display the command dialog.

MD

If you don't specify any arguments, MD will display the command dialog.

MKLINK

If you don't specify any arguments, MKLINK will display the command dialog.

MKLNK

If you don't specify any arguments, MKLNK will display the command dialog.

MOVE

If you don't specify any arguments, MOVE will display the command dialog.

Added support for regular expression back references in the target name. If you are using back references, you must use a regular expression in the source name. The syntax is:

move ::source ::target

See the help for details about back references.

PDIR

Now supports multiple nested *'s in a @ function specification.

PLAYSOUND

If you don't specify any arguments, PLAYSOUND will display the command dialog.

RD

If you don't specify any arguments, RD will display the command dialog.

REN

If you don't specify any arguments, REN will display the command dialog.

Added support for regular expression back references in the target name. If you are using back references, you must use a regular expression in the source name. The syntax is:

ren ::source ::target

See the help for details about back references.

SELECT

If you don't specify any arguments, SELECT will display the command dialog.

SENDHTML

If you don't specify any arguments, SENDHTML will display the command dialog.

SENDMAIL

If you don't specify any arguments, SENDMAIL will display the command dialog.

SET

/RO var=value - set a read-only variable. Once you've set the variable, you cannot change it (or unset it). Only environment variables can be read-only (not registry variables or array variables).

SETARRAY

/R filename arrayname - read a file into a (1-dimensional) array. (SETARRAY will determine the required size of the array.)

START

/Desktop=desktopname - specify the desktop where you want to start the application.

/NODE n - Start the program using the specified NUMA node (n is a decimal integer).

/TABNA - start a new Take Command tab window, but keep the current tab active.

SYNC

If you don't specify any arguments, SYNC will display the command dialog.

TAR

If you don't specify any arguments, TAR will display the command dialog.

TIMER

Accepts an optional command to run. This is the equivalent of "timer on & command & timer off". The syntax is:

timer command [args]

TOUCH

If you don't specify any arguments, TOUCH will display the command dialog.

UNTAR

If you don't specify any arguments, UNTAR will display the command dialog.

UNZIP

If you don't specify any arguments, UNZIP will display the command dialog.

ZIP

If you don't specify any arguments, ZIP will display the command dialog.

New Commands:

DEBUGMONITOR

Monitors the OutputDebugString API call from any process. The syntax is:

DEBUGMONITOR [/C]

DEBUGMONITOR n command

DEBUGMONITOR will set the environment variable "_outputdebugstring" to the string specified in the OutputDebugString call.

DESKTOP

Create a new desktop or switch to an existing desktop. The syntax is:

DESKTOP /C [/N] newdesktopname - create and optionally switch to a new desktop

DESKTOP desktopname - switch to an existing desktop

If you don't specify any arguments, DESKTOP will display the existing desktops.

RESOLUTION

Change the resolution (and optionally the color depth and refresh frequency) of the specified display. The syntax is:

RESOLUTION [displayname] width height [depth [frequency]]

If you don't specify any arguments, RESOLUTION will display the display devices and monitors.

TPIPE

Text filtering and substitution. You can specify multiple filters, which are processed in the order they appear on the command line. Do not insert any unquoted whitespace in the arguments to an option! Row and column positions start at 1.

The syntax is:

TPIPE [/input=filename] [/output=filename] [/filter=filename] [/unicode=input,output] [/save=filename] [/simple=n[u]] [/eol=input,output,length] [/line=start,increment,skipblank,dontnumberblank,format] [/insert=position,type,string] [/head=Exclude,LinesOrBytes,Count] [/tail=Exclude,LinesOrBytes,Count] [/number=type,value] [/string=type,string] [/file=type,filename] [/dup=RemoveDuplicateLines,IgnoreCase,StartColumn,Length,IncludeOne] [/comment=text] [/log=LogFileName] [/run=InputFileName,OutputFileName,"CommandLine"] [/merge=type,filename] [/split=type,SplitSize,SplitChar,SplitCharPos,SplitCharCount,SplitLines,SplitFilename] [/grep=Type,IncludeLineNumbers,IncludeFilename,IgnoreCase,CountMatches,UTF8,PatternType,Pattern] [/replace=Type,MatchCase,WholeWord,CaseReplace,PromptOnReplace,Extract,FirstOnly,SkipPromptIdentical,Action,SearchStr,ReplaceStr] [/xml=Type,IncludeText,IncludeQuotes,MatchCase,BufferSize,Tag,Attribute,EndTag]

/input=filename

Filename to read. This can be either a disk file, include file (@filename), or CLIP:. If it is not specified, TPIPE will read from standard input.

/output=filename

Filename to write. This can be either a disk file or CLIP:. If it is not specified, TPIPE will write to standard output.

/merge=type,filename

Adds a merge type filter (merge into single output filename). The arguments are:

type:

0 Merge into filename

1 Retain lines found in filename

2 Remove lines found in filename

3 Link filter filename

filename - the filename to use

/filter=filename

Name of filter file to load (see /save=filename)

/save=filename

Saves the filter settings defined on the command line to the specified filename, and returns without executing any filters.

/unicode=input,output

Convert the file to or from Unicode. input is the encoding for the input file; output is the encoding for the output file. The possible values are:

UTF-16LE

UTF-16BE

UTF-32LE

UTF-32BE

UTF-8

ANSI

ASCII

CPnnn, where nnn is the Windows code page.

TPIPE handles files internally as UTF-8, so if you want to process a Windows UTF-16LE file, you'll need to convert it to UTF-8 first, then apply the desired filters, and convert it back to UTF-16LE.

/simple=n[u]

Adds a simple filter type. n is the type of filter to add, and for those filters that support it, u indicates that the filter will be dealing with Unicode data.

1 Convert ASCII to EBCDIC

2 Convert EBCDIC to ASCII

3 Convert ANSI to OEM

4 Convert OEM to ANSI

5 Convert to UPPERCASE

6 Convert to lowercase

7 Convert to Title Case

8 Convert to Sentence Case

9 Convert to tOGGLE cASE

10 Remove blank lines

11 Remove blanks from End of Line

12 Remove blanks from Start of Line

13 Remove binary characters

14 Remove ANSI codes

15 Convert IBM drawing characters

16 Remove HTML and SGML

17 Remove backspaces

18 Resolve backspaces

19 Remove multiple whitespace

20 UUEncode

21 Hex Encode

22 Hex Decode

23 MIME Encode (Base 64)

24 MIME Decode (Base 64)

25 MIME Encode (Quoted printable)

26 MIME Decode (Quoted printable)

27 UUDecode

28 Extract email addresses

29 Unscramble (ROT13)

30 Hex dump

32 XXEncode

33 XXDecode

34 Reverse line order

35 Remove email headers

36 Decimal dump

37 HTTP Encode

38 HTTP Decode

39 Randomize lines

40 Create word list

41 Reverse each line

42 Convert to RanDOm case

43 Extract URLs

44 ANSI to Unicode

45 Unicode to ANSI

46 Display debug window

47 Word concordance

48 Delete all

49 Restrict to each line in turn

50 Convert CSV to Tab-delimited

51 Convert CSV to XML')

52 Convert Tab-delimited to CSV

53 Convert Tab-delimited to XML

54 Convert CSV (with column headers) to XML

55 Convert Tab-delimited (with column headers) to XML

56 Convert CSV (with column headers) to Tab-delimited

57 Convert Tab-delimited (with column headers) to CSV

58 Restrict to file name

59 Convert Word documents to text

60 Swap UTF-16 word order

61 Swap UTF-32 word order

62 Remove BOM (Byte Order Mark)

63 Make Big Endian

64 Make Little Endian

65 Compress to Packed Decimal

66 Compress to Zoned Decimal

67 Expand Binary Number to EBCDIC

68 Expand Binary Number to ASCII

69 NFC - Canonical Decomposition, followed by Canonical Composition

70 NFD - Canonical Decomposition

71 NFKD - Compatibility Decomposition

72 NFKC - Compatibility Decomposition, followed by Canonical Composition

73 Decompose

74 Compose

75 Convert numeric HTML Entities to text

76 Convert PDF documents to text

77 Restrict to ANSI files

78 Restrict to Unicode UTF16 files

79 Restrict to Unicode UTF32 files

80 Convert Excel spreadsheets to text

/eol=input,output,length

Add an EOL (end of line) conversion filter. The arguments are:

input:

0 - Unix (LF)

1 - Mac (CR)

2 - Windows (CR/LF)

3 - Auto

4 - Fixed (use the length parameter to specify the length)

output:

0 - Unix

1 - Mac

2 - Windows

3 - None

length - The line length to use if input=4

/line=StartNumber,Increment,SkipBlank,DontNumberBlank,NumberFormat

Adds a Line Number filter. The arguments are:

StartNumber - the starting line number

Increment - the amount to add for each new line number

SkipBlankIncrement - don't increase the line number for blank lines

DontNumberBlank - don't put a line number on blank lines

NumberFormat - The format to use for the line number. The format syntax is:

[-][width][.precision]d

An optional left justification indicator, ["-"]

An optional width specifier, [width] (an integer). If the width of the number is less than the width specifier, it will be padded with spaces.

An optional precision specifier [precision] (an integer). If the width of the number is less than the precision, it will be left padded with 0's.

The conversion type character:

d - decimal

/insert=position,type,string

Add an insert type filter. The arguments are:

type:

0 - Insert column

1 - Insert bytes

position - the position to insert the string

string - the string to insert

/head=Exclude,LinesOrBytes,Count

Add a head type filter (includes or excludes text at the beginning of the file). The arguments are:

Exclude - if 0, include the text; if 1, exclude it

LinesOrBytes - if 0, measure in lines; if 1, measure in bytes

Count - the number of lines or bytes to include or exclude

/tail=Exclude,LinesOrBytes,Count

Add a tail type filter (includes or excludes text at the end of the file). The arguments are:

Exclude - if 0, include the text; if 1, exclude it

LinesOrBytes - if 0, measure in lines; if 1, measure in bytes

Count - the number of lines or bytes to include or exclude

/dup=Type,IgnoreCase,StartColumn,Length,IncludeOne

Remove or show duplicate lines. The arguments are:

Type:

0 - Remove duplicate lines

1 - Show duplicate lines

IgnoreCase - if 1, ignore case during comparisons

StartColumn - The starting column for comparisons

Length - The Length of the comparison

IncludeOne - Include lines with a count of 1

/string=type,MatchCase,string

Add a string-type filter. The arguments are:

type:

0 Add left margin

1 Add header

2 Add footer

3 Add right margin

4 Remove lines

5 Retain lines

6 Remove lines matching perl pattern

7 Retain lines matching perl pattern

8 Add text side by side

9 Add repeating text side by side

10 Not Used

11 Not Used

12 XSLT transform

13 Restrict to lines from list

14 Restrict to lines NOT in list

15 Restrict to lines matching perl pattern

16 Restrict to lines NOT matching perl pattern

matchCase - case sensitive or not (where appropriate)

string - the string to use

/file=type,MatchCase,filename

Add a file-type filter. The arguments are:

type:

17 Restrict to filenames matching perl pattern

18 Restrict to filenames NOT matching perl pattern

MatchCase - If 1, do a case sensitive match (where appropriate)

filename - the filename to use

/number=type,value

Add a number-type filter. The arguments are:

type:

0 Convert Tabs to Spaces

1 Convert Spaces to Tabs

2 Word wrap (value column width)

3 Pad to width of value

4 Center in width of value

5 Right justify in width of value

6 Restrict CSV field to value

7 Restrict tab-delimited field to value

8 Truncate to width value

9 Force to width value

10 Repeat file value times

11 Restrict to blocks of length

12 Expand packed decimal (with implied decimals)

13 Expand zoned decimal (with implied decimals)

14 Expand unsigned (even-length) packed decimal

15 Expand unsigned (odd-length) packed decimal

Value - the numeric value to use

/comment=text

Add a comment to a filter file.

Text - Comment to add

/log=Filename

Log the TPIPE actions.

Filename - Name of log file

/run=InputFileName,OutputFileName,"CommandLine"

Adds a Run External Program filter. The arguments are:

InputFilename - the filename that TextPipe should read from after the External Program writes to it.

OutputFilename - the filename that TextPipe should write to for the External Program to read in.

CommandLine - the command line of the program to run. Should include double quotes around the entire command line.

/split=type,SplitSize,SplitChar,SplitCharPos,SplitCharCount,SplitLines,SplitFilename

Adds a split type filter. The arguments are:

type:

0 Split at a given size

1 Split at a given character

2 Split at a given number of lines

splitSize - the size file to split at

splitChar - the character to split at

splitCharPos -

0 Split before the character (it goes into the next file)

1 Split after the character (it remains in the first file)

2 Split on top of the character (remove it)

SplitCharCount - the number of times to see SplitChar before splitting

SplitLines - (optional) split after a given number of lines, default 60

SplitFilename - (optional) the name to give to each output split file. /split will append a "%3.3d" format specifier to the name; i.e. an input file "foo.txt" will generate output files named "foo.txt.000", "foo.txt.001", etc. If you don't specify a SplitFilename, /split will use the input filename as the base.

/grep=Type,IncludeLineNumbers,IncludeFilename,IgnoreCase,CountMatches,PatternType,UTF8,IgnoreEmpty,Pattern

Adds a Grep type line based filter. The arguments are:

Type:

0 Restrict lines matching

1 Restrict lines NOT matching

2 Extract matches

3 Extract matching lines (grep)

4 Extract non-matching lines (inverse grep)

5 Remove matching lines

6 Remove non-matching lines

IncludeLineNumbers - 1 to include the line number where the pattern was found

IncludeFilename - 1 to include the filename where the pattern was found

IgnoreCase - 1 to ignore case when matching the pattern

CountMatches - 1 to only output a count of the number of matches

PatternType

0 Perl pattern

1 Egrep pattern

2 Brief pattern

3 MS Word pattern

UTF8 - 1 to allow matching Unicode UTF8 characters

IgnoreEmpty - 1 to ignore empty matches

Pattern - the (regular expression) pattern to match

/replace=Type,MatchCase,WholeWord,CaseReplace,PromptOnReplace,Extract,FirstOnly,SkipPromptIdentical,Action,SearchStr,ReplaceStr

Adds a search and replace (find and replace) filter. The arguments are:

Type:

0 Replace

1 Pattern (old style)

2 Sounds like

3 Edit distance

4 Perl pattern

5 Brief pattern

6 Word pattern

MatchCase - Matches case when set to 1, ignores case when set to 0

WholeWord - Matches whole words only when set to 1

CaseReplace - Replaces with matching case when set to 1

PromptOnReplace - Prompts before replacing when set to 1

Extract - If 1, all non-matching text is discarded

FirstOnly - If 1, only replace the first occurrence

SkipPromptIdentical - If 1, don't bother prompting if the replacement text is identical to the original.

Action - the action to perform when found:

0 replace

1 remove

2 send to subfilter

3 send non-matching to subfilter

4 send subpattern 1 to subfilter etc

SearchStr - the string to search for

ReplaceStr - the string to replace it with

/xml=Type,IncludeText,IncludeQuotes,MatchCase,BufferSize,Tag,Attribute,EndTag

Adds an HTML/XML filter. The arguments are:

Type - the operation to perform:

0 restrict to an element

1 restrict to an attribute

2 restrict to between tags

IncludeText - whether to include the find string in the restriction result (default false)

IncludeQuotes - whether to include surrounding quotes in the attribute result or not (default false)

MatchCase - match case exactly or not (default false)

BufferSize - the maximum expected size of the match (default 32768)

Tag - the element or start tag to find

Attribute - the attribute to find

EndTag - the endTag to find

What's New - Version 13

NEW VERSION OVERVIEW - Take Command 13.04

VIEW - The menus and dialogs are now available in English, French, Russian, and Spanish. The first time you run VIEW, it will set the language to the one defined in TCMD.INI. If you want to change it, you can select a language by starting VIEW, and selecting Tools / Preferences from the menu.

Updated all of the Internet libraries (ip*.dll).

NEW VERSION OVERVIEW - Take Command 13.03

Updated all of the Internet libraries (ip*.dll).

Updated zip library.

Updated registration (licensing) library.

New installer version.

Added Google Translate to web help.

MKLINK - /D will now create a directory symlink even if the directory to link to does not exist (for CMD compatibility).

NEW VERSION OVERVIEW - Take Command 13.02

The batch debugger editor and command input editor have been upgraded to a major new version.

Added the feedback tab to the web help pages.

BDEBUGGER - Added the Ctrl-F3, F3, and Shift-F3 keys (find next / find prev).

NEW VERSION OVERVIEW - Take Command 13.01

The local help (tcmd.chm) has a number of new display options.

Take Command and TCC now have the option to use either the new Web Help or the local help (tcmd.chm). The web help

has some additional features, including the ability to add comments to help topics.

The search algorithm for the popup windows has changed slightly. TCC will append a * to the search string unless the last character of the string is a wildcard (?, *, or]), or if the search string is a regular expression (the first two characters of the string are ::).

MKLINK - The /X option no longer requires two arguments.

Take Command/LE has been discontinued. Existing Take Command/LE customers have been sent a free update to the full Take Command version.

.INI Directives:

WebHelp=yes|NO - New TCMD.INI directive (set in the Take Command and the TCC configuration dialogs). If set,

Take Command and TCC will use the web help at http://jpsoft.com/help/index.htm instead of the local help.

NEW VERSION OVERVIEW - Take Command 13.0

This is a summary of the new features. For complete details, see the appropriate topics in this help file. Features marked with a * are also in TCC/LE; all other features are Take Command and/or TCC only.

Feature List:

	*	TCC/LE is now available in 32-bit and 64-bit versions.

	*	Removed the (non-Windows) limits on filename and argument size. The maximum filename size (dictated by Windows) and single argument size is now 32,767 characters.

	*	The maximum (input) command line is now 65,535 characters.

	*	The maximum expanded command line size is now 131,072 characters.

	*	Fuzzy directory (jpstree.idx) updates (in MD, RD, DEL /S/X, etc.) are twice as fast as v12.

The Take Command toolbar has a new button "V" that will call the new file viewer VIEW (see below).

All of the popup windows (history lists, filename completion, @select, etc) have an edit control on the toolbar. Entering a search string there (or just typing while the popup window has focus) will eliminate non-matching entries from the window. The search string can also contain wildcards or regular expressions. (For example, entering *jpsoft* in the edit control at the top of the window will select all matching lines that contain "jpsoft" anywhere.)

All paging options (/P) in TCC now accept an "All" key to turn off paging. (This will vary by language, and is shown in the prompt.)

TCC now sets the default regular expression syntax (according to the value set in TCMD.INI) at startup and after saving new values in OPTION. (This is only of interest to plugin authors.)

The persistent directory history file is now only loaded if either local directory history is set, or TCC thinks it is the first instance. But since there's no such thing as "shell levels" in Windows, TCC can only guess (based on the TCMD.INI inheritance).

If the DirHistoryOnEntry .INI directive is set, TCC will save its startup directory to the directory history.

A Ctrl-Enter in the Command Input window will execute the current line and move the cursor down to the next line (without inserting a line).

Take Command now saves toolbar changes done through the add tab or create/edit button dialogs (previously it required you to right click in the toolbar & select "Save to .INI").

Help file updates.

.INI Directives:

AliasSize - Set the size of the global alias list (in characters). (The default is 256K.)

BeepFreq / BeepLength-- you can play a system sound on an error by setting BeepLength to 0 and BeepFreq to the desired sound:

0 - Windows default beep sound

16 - Windows Critical Stop sound

32 - Windows Question sound

48 - Windows Exclamation sound

64 - Windows Asterisk sound

DelWipePasses - The number of passes for a DEL /W. The range is 1-9; the default is 3.

FunctionSize - Set the size of the global function list (in characters). (The default is 128K.)

Command Line Editing:

A Ctrl-Enter in the Command Input window will execute the current line and move the cursor down to the next line (without inserting a line).

An Alt-F1 will look to see if the (first and only) argument on the line is an internal command with a command dialog (see below), and if so invoke the dialog.

The popup history windows have an edit control on the toolbar. Entering a search string there (or just typing while the popup window has focus) will eliminate non-matching entries from the window.

New Commands:

SENDHTML

Send an HTML email.

SENDHTML [/A file1 [/A file2 ...] /D /Eaddress /H"header: value" /In /M /Pn /R /Sn /SSL[=n] /V] "address[,address...] [cc:address[,address] bcc:address[,address...]]" subject [text | @msgfile]

file1... The attachment files

address The destination email address

subject The subject line

text The message to send

msgfile The file containing the message body

/SSL=n SSL negotiation type

/A file Attachment

/D Delivery Confirmation

/E Reply-to address

/H Send custom header

/In Importance

/M CRAM-MD5 authentication

/Pn Priority

/R Send read receipt

/Sn Sensitivity

/V Verbose

/X Send EHLO instead of HELO

If you pass "/=" as the argument, SENDHTML will display a dialog to help you with the command line options.

TCDIALOG

Run the new internal command dialogs. . See the Commands section for details.

The syntax is:

TCDIALOG command

If "command" does not have a dialog, TCDIALOG returns a usage error.

VIEW

VIEW is a replacement for LIST. The syntax is:

VIEW [/A:[[-|+]rhsadecijopt /A /B /E /F /FIX /FLAT / GB /H /L /L:n ?LEN:n /O:xx /P /R /S:xx /T /TEXT /VH /W] file ...

	/=	Display the VIEW command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line.

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes.

	/A	View the file in ASCII mode. This is the default mode and will only need to be specified in order to override an existing EBCDIC mode.

	/B	View the file in EBCDIC mode. VIEW normally automatically determines if a file is EBCDIC and automatically sets this mode.

	/E	Start viewing the file from the end instead of the beginning.

	/F	Standard input has been redirected (such as the output of a DIR command). (VIEW can normally determine this on its own.)

	/FIX:n	When viewing a file, the display may be fixed at a certain column position so that any text to the left of the fixed column will always be visible (ie, it will not scroll off the screen).

	/FLAT	Enables Flat Text Mode. This is a cross between text and hex modes. The file is displayed as text, however, control characters like line feeds and tabs are not expanded, and the file is always wrapped at the specified wrap length.

	/GB	Enables Greenbar Mode. (Each alternating line is in a different color.)

	/H	View the file in Hex mode.

	/L	Display the last file that was viewed. (This will be the first file in the Recent Files list.)

	/L:n	Start displaying the file from line number n. A solid blue line will appear at the top of the file, indicating that a non-zero start offset is being used.

	/LEN:n	Set the wrap length to n.

	/O:xx	Start displaying the file from offset xx.

	/P	Print the file and exit VIEW when finished.

	/R	When started with no parameters, VIEW will browse the current directory. By specifying the /R option, VIEW will display the directory that it last browsed.

	/S	The /S option is used to tell VIEW to start displaying the file at the position of a string match. The format of the /S command line option is as follows:

/S:SearchString /SO:[CWRHUB] /SN:n /SC:Columns

		where SO can contain a series of letters which correspond to the options in the search dialog box. These can be one of:

	C	Match case

	W	Word Only

	R	Regular Expression

	H	Hex/Binary

	U	Unicode

	B	Search backwards (from end of file)

SN indicates which occurrence of the string to find. By default, the first match is found (n=1).

SC can be used to restrict the search to certain columns.

If the search string contains spaces, you must enclose it in double quotes.

	/T	Enable File Tailing. If data is added to the file while you are viewing it, it will automatically be updated. There is no need to press the Refresh button to see any changes since the file was loaded. This is particularly useful when viewing log files while they are still being updated.

	/TEXT	Open the files in text mode (opposite of /H). (This is the default.)

	/VH	Display the file in Vertical Hex Mode. This is a cross between Text and Hex modes. The file is displayed one line at a time (just as in text mode). However, each line is followed by 2 lines containing the hex code of each character in the line.

	/W	Display the VIEW window in a Take Command tab window.

WEBFORM

POST data to interactive web pages or scripts. WEBFORM will use the proxy & firewall settings from TCMD.INI.

WEBFORM [/An /En /Fn /U"username" /P"password" /R"referer" /V] /W"url" "varname" "varvalue" ...

	/An	Authorization scheme:

		0 - basic

		1 - digest

		2 - proprietary

		3 - none

		4 - NTLM

		5 - Negotiate

	/En 	Encoding:

		0 (URLEncoding) This is the most common encoding for HTML form contents.

		1 (MultipartFormData) This is MIME encoding allowing transmission of binary data.

		2 (QueryString) This is an older form of encoding where the actual parameters are appended to the URL query string. (Generally not recommended because most servers limit the size of the URL to less than 1K or 2K).

	/F"from"	Email address of the HTTP agent.

	/U"username"	User name if authentication is to be used.

/P"password"

/L"localfile" Local file for downloading. If the file exists, it will be overwritten.

	/O"headers"	Other headers. The headers must be of the format "header: value" as described in the HTTP specifications. Header lines should be separated by CR/LF (^r^n).

/R"referer" The document referring the requested URL

	/Tn	Firewall type:

		0 - no firewall (default)

		1 - Connect through a tunneling proxy. Port is set to 80.

		2 - Connect through a SOCKS4 proxy. Port is set to 1080.

		3 - Connect through a SOCKS5 proxy. Port is set to 1080.

/V(erbose) Display retrieved document text

	/W"url"	URL of web page

	Example:

		webform /v /w"http://download.finance.yahoo.com/d/quotes.csv" "f", "sl1d1t1c1ohgv" "e", ".csv" "s", "IBM"

WEBUPLOAD

Upload files to RFC1867-compliant web servers. WEBUPLOAD will use the proxy & firewall settings from TCMD.INI.

WEBUPLOAD [/An /Fn /U"username" /P"password" /R"referer" /V] /W"url" [/V "varname" "varvalue"] "filevar" "filename" ...

	/An	Authorization scheme:

		0 - basic

		1 - digest

		2 - proprietary

		3 - none

		4 - NTLM

		5 - Negotiate

	/F"from"	Email address of the HTTP agent.

	/U"username"	User name if authentication is to be used.

/P"password"

/L"localfile" Local file for downloading. If the file exists, it will be overwritten.

	/O"headers"	Other headers. The headers must be of the format "header: value" as described in the HTTP specifications. Header lines should be separated by CR/LF (^r^n).

/R"referer" The document referring the requested URL

	/Tn	Firewall type:

		0 - no firewall (default)

		1 - Connect through a tunneling proxy. Port is set to 80.

		2 - Connect through a SOCKS4 proxy. Port is set to 1080.

		3 - Connect through a SOCKS5 proxy. Port is set to 1080.

	/V	The following two arguments are a varname / varvalue pair.

Commands:

ACTIVATE

DESKTOP - makes the desktop the active window

ASSOC

/U - display/set the associations in HKCU\Software\Classes

ATTRIB

If you pass "/=" as the argument, ATTRIB will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, ATTRIB will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, ATTRIB will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_attrib_dirs - The number of directories modified

%_attrib_files - The number of files modified

%_attrib_errors - The number of errors

CD

Fuzzy directory searches are 250% faster.

Extended the ~ (home) path argument to take appended directory names (i.e., "~\music"). If CD cannot find HOME in the environment, it will look for HOMEDRIVE + HOMEPATH.

CDD

Fuzzy directory searches are 250% faster.

Extended the ~ (home) path argument to take appended directory names (i.e., "~\music"). If CDD cannot find HOME in the environment, it will look for HOMEDRIVE + HOMEPATH.

COPY

If you pass "/=" as the argument, COPY will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, COPY will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, COPY will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_copy_dirs - The number of directories created

%_copy_files - The number of files copied

%_copy_errors - The number of errors

DEL

If you pass "/=" as the argument, DEL will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, DEL will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, DEL will display a dialog to help you set the individual attributes.

/W[n] - takes a new option to specify the number of wipe passes. The range is 1-9999; the default is 3. (It will be REALLY slow and probably really pointless at anything over 3-5.) See also the .INI directive DelWipePasses.

Sets three internal variables:

%_del_dirs - The number of directories deleted

%_del_files - The number of files deleted

%_del_errors - The number of errors

DELAY

UNTIL [yyyy-mm-dd] hh:mm[:ss] - delay until the specified date/time. If no date is specified, default to today.

DESCRIBE

If you specify "/[=]" for the ranges, DESCRIBE will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, DESCRIBE will display a dialog to help you set the individual attributes.

DIR

If you pass "/=" as the argument, DIR will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, DIR will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, DIR will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_dir_dirs - The number of directories displayed

%_dir_files - The number of files displayed

%_dir_errors - The number of errors

/B1 - display bare filenames with the relative path from the start, when used with /S. (Normally, /B shows

the full pathname for each file.)

DIRHISTORY

If you pass "/=" as the argument, DIRHISTORY will display a dialog to help you set the filename and command line options.

DO

If you specify "/[=]" for the ranges, DO will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, DO will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_do_dirs - The number of subdirectories traversed

%_do_files - The number of files processed

%_do_errors - The number of errors

EVENTLOG

If you pass "/=" as the argument, EVENTLOG will display a dialog to help you set the command line options.

FFIND

If you specify "/[=]" for the ranges, FFIND will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, FFIND will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_ffind_matches - The number of matches

%_ffind_files - The number of files found

%_ffind_errors - The number of errors

FOR

If you specify "/[=]" for the ranges, FOR will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, FOR will display a dialog to help you set the individual attributes.

Sets two internal variables:

%_for_files - The number of files processed

%_for_errors - The number of errors

FTYPE

/U - display/set the types in HKCU\Software\Classes

GLOBAL

If you pass "/=" as the argument, GLOBAL will display a dialog to help you set the command line options.

GZIP

If you specify "/[=]" for the ranges, GZIP will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, GZIP will display a dialog to help you set the individual attributes.

HEAD

If you pass "/=" as the argument, HEAD will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, HEAD will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, HEAD will display a dialog to help you set the individual attributes.

/B - ignore Bell (ASCII 7) characters.

Sets two internal variables:

 %_head_files - The number of files displayed

 %_head_errors - The number of errors

HISTORY

If you pass "/=" as the argument, HISTORY will display a dialog to help you set the command line options.

IFTP

If you pass "/=" as the argument, IFTP will display a dialog to help you set the command line options.

JABBER

If you pass "/=" as the argument, JABBER will display a dialog to help you set the command line options.

LIST

If you pass "/=" as the argument, LIST will display a dialog to help you set the file and command line options.

If you specify "/[=]" for the ranges, LIST will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, LIST will display a dialog to help you set the individual attributes.

MD

If you pass "/=" as the argument, MD will display a dialog to help you set the directory and command line options.

Sets two internal variables:

%_md_dirs - The number of directories created

%_md_errors - The number of errors

MKLINK

If you pass "/=" as the argument, MKLINK will display a dialog to help you set the file and command line options.

/A - create a link with an absolute path. (For CMD compatibility, MKLINK normally creates relative links if you don't pass the full pathname.)

/X - deletes a directory link.

Sets two internal variables:

 %_mklink_links - The number of links created

 %_mklink_errors - The number of errors

MKLNK

If you pass "/=" as the argument, MKLNK will display a dialog to help you set the file and command line options.

Sets two internal variables:

%_mklnk_links - The number of links created

%_mklnk_errors - The number of errors

MOVE

If you pass "/=" as the argument, MOVE will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, MOVE will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, MOVE will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_move_dirs - The number of directories created

%_move_files - The number of files moved

%_move_errors - The number of errors

PDIR

If you specify "/[=]" for the ranges, PDIR will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, PDIR will display a dialog to help you set the individual attributes.'

/B1 - display bare filenames with the relative path from the start, when used with /S.

Sets three internal variables:

%_pdir_dirs - The number of directories displayed

%_pdir_files - The number of files displayed

%_pdir_errors - The number of errors

PLAYAVI

If you pass "/=" as the argument, PLAYAVI will display a dialog to help you set the filename and command line options.

PLAYSOUND

If you pass "/=" as the argument, PLAYSOUND will display a dialog to help you set the filename and command line options.

PLUGIN

If you pass "/=" as the argument, PLUGIN will display a dialog to help you set the file and command line options.

RD

If you pass "/=" as the argument, RD will display a dialog to help you set the directory and command line options.

If you specify "/[=]" for the ranges, RD will display a dialog to help you set the individual range arguments.

Sets two internal variables:

%_rd_dirs - The number of directories deleted

%_rd_errors - The number of errors

(Note that if you do an RD /S, the actual deletions are done by DEL, so check the DEL variables.)

REN

If you pass "/=" as the argument, REN will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, REN will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, REN will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_ren_dirs - The number of directories renamed

%_ren_files - The number of files renamed

%_ren_errors - The number of errors

SELECT

If you pass "/=" as the argument, SELECT will display a dialog to help you set the command line options.

If you specify "/[=]" for the ranges, SELECT will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, SELECT will display a dialog to help you set the individual attributes.

Added support for @file lists.

SENDMAIL

If you pass "/=" as the argument, SENDMAIL will display a dialog to help you set the command line options.

/X - Send EHLO instead of HELO.

SET

/Q - don't echo result of /A when at the command line.

START

If you pass "/=" as the argument, START will display a dialog to help you set the command and options.

SWITCH

Added new command CASEALL, which should follow all the CASE statements but precede the DEFAULT. If a CASE statement has been executed, then CASEALL will also be executed; otherwise it is ignored.

CASE arguments can be literals, variables, or functions.

SYNC

If you pass "/=" as the argument, SYNC will display a dialog to help you set the directory and command line options.

If you specify "/[=]" for the ranges, SYNC will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, SYNC will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_sync_dirs - The number of directories created

%_sync_files - The number of files copied

%_sync_errors - The number of errors

TAIL

If you pass "/=" as the argument, TAIL will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, TAIL will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, TAIL will display a dialog to help you set the individual attributes.

/B - ignore Bell (ASCII 7) characters

Sets two internal variables:

%_tail_files - The number of files displayed

%_tail_errors - The number of errors

TAR

If you specify "/[=]" for the ranges, TAR will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, TAR will display a dialog to help you set the individual attributes.

Sets two internal variables:

%_tar_files - The number of files compressed

%_tar_errors - The number of errors

TASKLIST

If you pass "/=" as the argument, TASKLIST will display a dialog to help you set the command line options.

TOUCH

If you pass "/=" as the argument, TOUCH will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, TOUCH will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, TOUCH will display a dialog to help you set the individual attributes.

Sets three internal variables:

%_touch_dirs - The number of directories touched

%_touch_files - The number of files touched

%_touch_errors - The number of errors

TREE

If you pass "/=" as the argument, TREE will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, TREE will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, TREE will display a dialog to help you set the individual attributes.

TYPE

If you pass "/=" as the argument, TYPE will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, TYPE will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, TYPE will display a dialog to help you set the individual attributes.

/B - ignore Bell (ASCII 7) characters.

Sets two internal variables:

%_type_files - The number of files displayed

%_type_errors - The number of errors

UNGZIP

If you specify "/[=]" for the ranges, UNGZIP will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, UNGZIP will display a dialog to help you set the individual attributes.

Added support for wildcards in the gzip filename.

Added range support.

UNTAR

If you pass "/=" as the argument, UNTAR will display a dialog to help you set the archive name and command line options.

If you specify "/[=]" for the ranges, UNTAR will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, UNTAR will display a dialog to help you set the individual attributes.

Added support for wildcards in the tar filename.

Added range support.

Sets two internal variables:

%_untar_files - The number of files extracted

%_untar_errors - The number of errors

UNZIP

If you pass "/=" as the argument, UNZIP will display a dialog to help you set the archive name and command line options.

If you specify "/[=]" for the ranges, UNZIP will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, UNZIP will display a dialog to help you set the individual attributes.

Added support for wildcards in the zip filename.

Added range support.

Sets two internal variables:

%_unzip_files - The number of files extracted

%_unzip_errors - The number of errors

ZIP

If you pass "/=" as the argument, ZIP will display a dialog to help you set the filename and command line options.

If you specify "/[=]" for the ranges, ZIP will display a dialog to help you set the individual range arguments.

If you specify "/A:=" for the attributes, ZIP will display a dialog to help you set the individual attributes.

Sets two internal variables:

%_zip_files - The number of files compressed

%_zip_errors - The number of errors

ZIPSFX

Added ranges support.

If you specify "/[=]" for the ranges, ZIPSFX will display a dialog to help you set the individual range arguments.

Sets two internal variables:

%_zipsfx_files - The number of files compressed

%_zipsfx_errors - The number of errors

Internal Variables:

_TCEXIT - the pathname of the TCEXIT.xxx file, as of the time %_TCEXIT is referenced. (The value could change before TCEXIT.xxx is called.)

_TCSTART - the pathname of the TCSTART.xxx file. It is set prior to TCSTART being executed.

Variable Functions:

	*	The maximum argument size (passed to and returned from) variable functions has been increased to 32,767 characters.

%@ASSOC - added second optional argument "U" for associations in HKCU\Software\Classes.

%@B64DECODE - Decode a Base64 file or string (MIME encoding format).

%@B64ENCODE - Encode a file or string to Base64 (MIME encoding format).

%@FILEOPEN - added support for CON:.

%@FTYPE - added second optional argument "U" for types in HKCU\Software\Classes.

%@GETDIR - now uses the newer Explorer-style dialog.

%@HEXDECODE - Decode a hex encoded file or string.

%@HEXENCODE - Encode a text file or string as hex.

%@LINE - is 50% faster.

%@LINES - is 50% faster.

%@SELECT - is 200% faster.

%@UTF8DECODE - Decode a UTF8 file or string.

%@UTF8ENCODE - Encode a UTF8 file or string.

%@UUDECODE - Decode a UU encoded file.

%@UUENCODE - Encode a file using the UU Encode format.

%@YDECODE - Decode a Y Encoded file

%@YENCODE - Encode file using the Y Encode format (similar to Base64, but uses 8-bit encoding to reduce the amount of data).

What's New in Take Command 12

What's New in Take Command 11

What's New in Take Command 10

Version 12

NEW VERSION OVERVIEW - Take Command 12.11

Feature List:

	*	Added Spanish language support.

NEW VERSION OVERVIEW - Take Command 12.10

Feature List:

Added a Visual Studio 2010 theme to Take Command and the IDE/debugger.

	*	Added Italian language support.

	*	The non-English language support has been extended to include more menus, dialogs, and strings.

TCMD will now copy descriptions from DESCRIPT.ION when dragging & dropping in the Folders and List View windows.

TCMD and TCC will now display "Administrator:" on the title bar if the process is run as an administrator and no other title is defined.

Conditional tests (DO, IF, IFF, @IF) have two new tests:

 string =~ expression Returns 1 if the string matches the regular

 expression

 string !~ expression Returns 1 if the string does not match the

 regular expression

HTTP operations will now try to autodetect and use the system proxy settings, if available. (If not, they will fall back to using the values defined in OPTION / Internet.)

FTP / FTPS / SFTP operations will now try to autodetect and use the system firewall settings, if available. (If not, they will fall back to using the values defined in OPTION / Internet.)

Help file updates.

Commands:

CD

If the path argument is ~ (tilde), CD will change to the user's home directory (defined by HOME in the environment).

CDD

If the path argument is ~ (tilde), CDD will change to the user's home directory (defined by HOME in the environment).

GZIP

Fixed a (3rd party dll) bug when compressing with lzw.

FFIND

Added /8 option for UTF-8 files.

LIST

Added /8 option for UTF-8 files.

Variable Functions:

@HTMLDECODE - Decodes an HTML string.

@HTMLENCODE - Encodes the string for HTML (i.e., replacing things like > with >).

Batch Debugger:

Conditional breakpoints - you can now add breakpoint conditions to break on the number of iterations, or on a conditional expression (like the tests in IF and DO). There is a new tabbed window that shows the breakpoints and their (optional) conditions.

Added the option to disable (without deleting) breakpoints.

The breakpoints and conditions are saved when the batch file is saved & restored when the batch file is reloaded.

NEW VERSION OVERVIEW - Take Command 12.0

This is a summary of the compatibility fixes and new features. For complete details, see the appropriate topics in this help file.

The new features that are supported in TCC/LE are marked with a *.

Feature List:

	*	Numerous optimizations to make everything a little faster.

	*	Added Russian language support.

	*	New icons for Take Command, Take Command/LE, TCC, and TCC/LE.

The Take Command folder view now auto updates when folders are created, deleted, or renamed. (This can be disabled with the new .INI directive AutoUpdateFolders.)

Added directory wildcard support to TCC. You can control the subdirectory recursion by specifying * or ** in the path. A * will match a single subdirectory level; a ** will match any all subdirectory levels for that pathname. Directory wildcards also support regular expressions. Directory wildcards cannot be used with the /O:... option (which sorts entries before executing the command). And think very carefully before using directory wildcards with a /S (recurse subdirectories) option, as this will almost certainly return unexpected results! There are a few commands which do not support directory wildcards, as they would be meaningless or destructive (for example, TREE, @FILEOPEN, @FILEDATE, etc.).

Take Command now supports customizing the color palettes used in the tab windows, via a "Tab Colors" button on the "Configure Take Command / Tab" dialog. Take Command will first try to retrieve the palette from the console (Vista and later only). If the console is using a custom palette, Take Command will use that palette for the tab window. (If you're running XP, Take Command will try to retrieve the custom palette from the registry.) If there is no custom palette for this console, Take Command will use the colors saved from the "Tab Colors" dialog.

The Take Command "Configure Take Command / Tabs / Windows" foreground and background colors combo boxes now display the actual colors instead of the color name. (This is necessary to support the custom color palettes, as otherwise if you redefined the palette the color names would have no relation to the colors used. It also makes it easier to select the color you want.)

You can now use environment variables in the TCMD.INI sections "[4NT]" and "[TCMD]", and the ini parser will expand them before setting the directives. (Note that if you were already setting a directive to a value with an embedded %, you'll need to double the %'s now.)

	*	TCMD.INI file parsing (and thus the startup time) is faster.

The TCC persistent History and DirHistory lists load significantly faster.

Changed the internal TCC Perl support from the hopelessly buggy & undocumented embedded Perl to PerlScript (the WSH COM interface to Perl). The good news is that Perl support is no longer version dependent, so you can use Perl 5.8, 5.10, or 5.12.

TCC now supports Python 3.1, 2.6, and 2.5. (TCC will search for the Python dll's in that order.)

The Take Command tabbed toolbar will hide the tabs row if there is only one tab defined.

The default directory for the Command Input window is now set to the selected directory in the Folders view. (This allows tab completion in the Command Input window to match the List View when no path is specified.)

The Take Command "Tabs" menu now includes "Previous Tab" and "Next Tab", allowing you to define keys to change tabs from the keyboard.

The Take Command "Options" menu now includes "Configure Tabbed Toolbar", which allows you to add buttons or tabs, or save or reload the toolbar from TCMD.INI. (You can also do this by right clicking on the toolbar.) To edit an existing button, right click on the button.

Ranges now support multiple file exclusions (i.e., "dir /[!*.txt] /[!*.doc] *"). (Useful for aliases or variable substitution where a default file exclusion is specified.)

Added "Owner" to file ranges. The syntax is "/[O"owner"]" or "/![O"owner"]". It supports wildcard comparisons; the value returned is the same as shown in DIR /Q or %@owner[file].

If you left click on the current TCC command line while in a Take Command tab window, TCC will move the cursor position to the mouse position.

You can describe directories and files with the List View in Take Command when it is in "Details" view. Double click on the "Description" column, enter or edit the description in the edit box, and press Enter to save.

The toolbar button dialog now has a "Copy" button, which copies the properties of the current button to a new button.

	*	Changed the dialog fonts from MS Sans Serif to Tahoma.

The VK_APPS (menu) key will invoke the context menu in Take Command tab windows.

The Take Command and TCC configuration dialogs have been reformatted to display correctly on Netbook (1024x600) displays.

Added (experimental) double-wide character set (i.e., Japanese, Chinese, etc.) support to Take Command.

	*	File read operations are slightly faster.

Startup Options:

	/C	Run the specified command in a new TCC tab window. If there is already a Take Command session running, /C creates a new tab in the existing Take Command rather than starting a new session. /C must be the last option on the command line (otherwise Take Command can't tell if additional options belong to Take Command or the command to run in the TCC tab).

	/NT	Don't load the default startup tabs (usually only useful when combined with /C or /T).

.INI Directives:

AutoUpdateFolders=yes|NO - Updates the Take Command folder view automatically when folders are created, deleted, or renamed. This will slow things down slightly, so if you have processes that are modifying directories a lot (more than once every few seconds) you may want to disable the autoupdates.

	*	CMDVariables=yes|NO - Requires environment variables in TCC to be delineated by leading and trailing %'s. For those of you who just can't get enough of CMD compatibility, and the consistent way it handles variables. Which have to be enclosed in %'s, like "%varname%". Unless it's a batch variable, which only has a leading %. Or a FOR variable, which only has a leading %. Or sometimes two leading %'s.

CommandInputWrap=YES|no - If set to Yes, Take Command will wrap the input lines in the Command Input window instead of scrolling horizontally.

CompletePercents=yes|NO - If the tab-completed filename has embedded %'s, and the first argument of the command is an internal command, the %'s will be doubled so that variable expansion won't end up deleting (or unexpectedly expanding) the filename. (The tab completion routine cannot preparse aliases or environment variables, so if you're using one of those as your first argument, you're out of luck!)

DirHistoryOnEntry=yes|NO - TCC normally saves the previous directory to the directory history when you change to a new directory. This option saves the new directory to the directory history when you change directories.

IBeamCaret=yes|NO - use an IBeam caret instead of the default console underline caret. (Take Command tab windows only.)

LockListView=yes|NO - Prevents modification of the Take Command List View (double clicking on the description column to edit the description, or selecting a file or directory and pressing F2 to rename it).

SmoothScroll=yes|NO - Scrolls the Take Command tab windows smoothly (1 pixel at a time instead of a line at a time). Slows things down and doesn't provide any extra functionality; it's just eye candy! (In order to reduce the slowdown, Take Command will only use smooth scrolling when the console has scrolled <= 3 lines. If the console is spitting out a lot of short lines, you won't see the smooth scroll, but then you can't really discern anything at that speed.)

StartTabWait - the number of milliseconds to wait before loading the next Take Command startup tab. The range is 0 - 5000. (This should only be needed in rare cases, when tabs are interfering with one another while starting.)

Command Line Editing:

See the new .INI directive CompletePercents.

You can triple-click on a line to select the entire line (Take Command "Command Input" and tab windows only).

Command completion (i.e., Tab or F9 for the first argument on the line) will append a space to the command name.

^P in the Command Input window will print the command history.

^P (last argument in previous command) on the TCC command line has been changed to ^B. (But it can still be remapped.)

New Commands:

CLIPMONITOR

Monitor the Windows clipboard, and execute a command when the contents change.

CLIPMONITOR [/C]

CLIPMONITOR n command

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

	/C	Remove the clipboard monitor.

FONT

Change the console font characteristics. This command is only available in Windows Vista and later, and will only affect stand-alone TCC console windows. (You can already change the font in Take Command tab windows.) The syntax is:

FONT [/Ffamily /Nname /Wn /Xn /Yn]

/F - The font family:

decorative

dontcare

modern

roman

script

swiss

/N - Font face name

/W - Font weight (100 - 1000, in multiples of 100). The normal weight is 400; bold is 700.

/X - The width of each character, in logical units.

/Y - The height of each character, in logical units.

GZIP

The GZIP command is compatible with the archives created by the UNIX gzip utility and supports RFC 1952. GZIP is used for compressing a single file; if you need to compress multiple files you should use the ZIP (or TAR) command. The syntax is:

GZIP [A:[[-][+]rhsdaecjot] /A /E /L /M /O:[-]adegnrstu /Q /V] gziparchive [@file] file

	gziparchive	The .gz file to work with

	path	The path where the file will be extracted

	file	The file to extract

/A:... - Attribute selection

/A - Add file (default).

/E - Compression method (0 = deflate, 1 = lzw). The default is 0.

/L - Compression level (1 - 6). The default is 4.

/M - Move the file to the gzip archive and delete the original on disk

/O - Sort order

/Q - Quiet (don't display filenames as they are added to the archive).

/V - View date, time, and filename of the file in the archive. (Due to the limitations in the GZIP format, this can only display the first file in the archive.)

TAR

The TAR command is compatible with archives created by the UNIX tar utility. TAR also supports gzip compression and can be used to create .tar.gz archives.

TAR [A:[[-][+]rhsdaecjot] /A /C /D /F /G /M /O:[-]adegnrstu /P /Q /R /U /V] tararchive [@file] file...

tararchive The tar file to work with

file The files(s) to be added to the zip file

/A:... - Attribute selection

/A - Add files to the tar archive (default).

/C - Display contents of the tar archive.

/D - Delete the specified file(s) from the tar archive.

/F - Update only those files that currently exist in the tar archive, and which are older than the files on disk.

/G - Use gzip compression.

/M - Move

/O - Sort order

/P - Display progress (in %) for each file.

/Q - Quiet (don't display filenames as they are added to the archive).

/R - If the argument is a subdirectory, copy all of the files in that subdirectory and all of its subdirectories to the tar archive.

/U - Update which either don't exist in the tar archive, or which are older than the files on disk.

/V - View the list of files in the tar archive (date, time, size, and filename).

UNGZIP

The UNGZIP command is compatible with the UNIX gunzip utility and supports RTF 1952. The syntax is:

GZIP [/E /O /Q /V] gziparchive [path]

	gziparchive	The .gz file to work with

	path	The path where files will be extracted

/E - Extract file (default).

/O - Overwrite existing file.

/Q - Quiet (don't display filenames as they are extracted from the archive).

/V - View date, time, and filename of the file in the archive. (Due to the limitations in the GZIP format, this can only display the first file in the archive.)

UNTAR

The UNTAR command decompresses archives created by the TAR command. UNTAR also supports gzip decompression and can be used to extract .tar.gz archives.

UNTAR [/C /D /E /F /G /Nte /O /Q /U /V] tararchive path file ...

	tararchive	The Tar file to work with

	path	The path where files will be extracted

	file	The file(s) to extract

/C - Display contents of the tar archive.

/D - Recreate the directory structure saved in the tar file.

/E - Extract (default)

/F - Extract only those files that currently exist in the target folder, and which are older than the file in the tar archive.

/G - Gzip

/N[te] - Don't update the CD / CDD extended directory search database (JPSTREE.IDX).

/O - Overwrite existing files.

/P - Display progress (in %) for each file.

/Q - Quiet (don't display filenames as they are extracted from the archive).

/U - Extract files which either don't exist in the target folder, or which are older than the file in the zip archive.

/V - View the list of files in the archive (date, time, size, and filename)

ZIPSFX

ZipSFX creates a zip-compatible self-extracting archive. The syntax is:

ZipSFX [/B"text" /C"text" /D"path" /F"file" /Ln /M"message" /R /S"password" /X64] archive directory

	archive	The name of the self-extracting executable

	directory	The directory to be compressed into the self-extracting executable

/B - Banner text to display before the self-extraction begins.

/C - Caption for the self-extractor dialogs.

/D - Target directory for the self-extractor.

/F - Optional name of the file to execute (open) after the archive is extracted. This must be a relative path to a file in directory. If this is set to ".", the folder in which the archive has been decompressed will open in Windows Explorer. If it is set to "" (empty string), the extractor will close and take no action.

/Ln - Compression level (0 - 6; the default is 4).

/M - Message to notify the user that the extraction has completed normally.

/R - Recurse subdirectories

/S - Password

/X64 - Create a 64-bit executable.

Commands:

ACTIVATE

ICON=file - Change a window's caption bar and task bar icon. The file can be an icon file or an executable. (If an executable, ACTIVATE will use the first icon.)

ALIAS

/O - Don't overwrite existing value (only valid in combination with /R)

DEL

/W now uses DoD 5220.22-M (E) for secure deletion.

DIR

/G:nn - Set the disk cluster size to be used by /G. DIR will normally query the system for the cluster size on the specified drive, but you can override with /G:n if you know that the returned info is incorrect, or if you want to find the size required if the specified files were moved to another device with a different cluster size.

/NL - Don't display the link name for symbolic links.

DO

Now supports usage in aliases and on the command line. You need to enclose the body of the DO loop in a command group that follows the DO expression, and there is no ENDDO. The syntax is:

DO [n | FOREVER] (commands)

 or

DO varname = start TO end [BY n] (commands)

 or

DO FOR n SECONDS | MINUTES | HOURS (commands)

 or

DO [WHILE | UNTIL [DATETIME yyyy-mm-dd hh:mm:ss]] condition (commands)

 or

DO varname IN [range] [/I"text"] [/D"path" /N[dj] /O:[-]adegnrstu /Sn] [/A:[[-][+]rhsdaecjot] [/C /L /P /T"..."] [@]set (commands)

For example:

DO count = 1 to 10 (echo count = %count)

ITERATE and LEAVE are supported in command-line DO's.

ISHUNG is a new condition (for DO WHILE and DO UNTIL) that is true if the specified window is not responding.

ENDLOCAL

Restores the Function list.

FFIND

/Ln - The number of leading and trailing lines to display on a match. Each successive group of lines in a file will be separated by a "----" header.

/N[dehjs]

D - don't search hidden directories

E - don't display errors

H - no header

J - don't search junctions or symlinks

S - no footer

FOR

/NJ - Don't recurse into search junctions or symlinks

/W - Indicates that the FOR set is to be treated as filenames, even if no wildcards are detected (or if you're using regular expressions).

FUNCTION

/O - Don't overwrite existing value (only valid in combination with /R)

HISTORY

/F"..." - Delete matching command lines. You can have multiple /F"..." arguments, and they can contain wildcards.

/R1 - Ignore duplicates and HistoryExclude and always append the lines. (This is considerably faster for large history lists.)

IF

ISHUNG is a new condition that is true if the specified window is not responding.

IFTP

/R - Automatically reconnect if the ftp session times out.

JABBER

Now supports SSL, so it will work with SSL servers like Google Talk.

/Tn - Set the port number (default is 5222).

/V - Display verbose output (useful for debugging).

LIST

Added horizontal mouse wheel scrolling in Take Command tab windows (requires Vista or later).

MD

/D will change to the newly created directory.

MOVE

Now displays the empty source directories it is removing (with /S and no /Q).

/K - If the move was to a different drive, this option will move the original to the recycle bin instead of deleting it.

/Ns - Don't display the summary of files moved.

/W now implements DoD 5220.22-M (E) for secure deletion.

ON

DBLCLICK [command] - Execute the specified command on a left mouse button double click.

OPTION

There is a new "Console Palette" button on the Windows tab that allows you to redefine the 16 console color attributes. (Requires Vista or later.) This will *not* work when running TCC in a Take Command tab windows due to a bug in the Windows API (it insists on unhiding hidden console windows), but when in Take Command you can define a custom palette for the tab windows.

The "Windows" foreground and background colors combo boxes now display the actual colors instead of the color name. (This is necessary to support the custom color palettes, as otherwise if you redefined the palette the color names would have no relation to the colors used. It also makes it easier to select the color you want.)

QUERYBOX

/CUE="text" - Displays the cue text in light gray in the edit box (it disappears as soon as you enter a character).

SELECT

/O: - Added /O:o (sort by owner) option

/Q - Display owner (you'd better have a > 80 column display!)

SENDMAIL

/SSL[=n] - Use SSL to connect to the server. Supports automatic, implicit, and explicit modes.

SET

/O - Don't overwrite existing value (only valid in combination with /R)

SETLOCAL

Now saves the Function list as well as the environment & aliases

START

/ELEVATED - Start the program with full admin privileges. (Windows Vista or later only.)

TASKBAR

LOCKDESKTOP - Locks the desktop (Vista and later)

LOGOFF - Display the log off dialog

USER - Display the switch user dialog

TASKLIST

/D - Show the modules loaded in each process

/M - Show the memory usage for each process

/N - Show the class names

/T - Show the kernel and user cpu times

UNZIP

Is now using a different Zip library.

/CRC - Display the file CRCs (only when using /V).

/I - Save the compressed file's description ("File Comment") to the NTFS description or DESCRIPT.ION file.

/P - Display progress (in %) for each file.

ZIP

Is now using a different Zip library.

/CRC - Display the file CRCs (only when using /V).

/En - set the encryption level (0=default, 1=AES 128-bit, 2=AES 192-bit, 3=AES 256-bit)

/I - Save the file's description (from the NTFS description or DESCRIPT.ION) as the compressed file's "File Comment"

/Ln - set the compression level (0-6, where 0 = no compression and 6 = maximum compression). The default is 4.

/P - Display progress (in %) for each file.

/T - Save the file attributes (they will be written to the file system during extraction)

/Z"..." - set the comment for the zip file.

Internal Variables:

_EXECARRAY - The number of array elements assigned by the last @EXECARRAY function.

_INSERT - The current insert edit mode (0=overstrike, 1=insert)

_XMOUSE - The column position of the most recent left mouse click. (Note that this will only work in a Take Command tab window, or if you have enabled the console mouse in a stand-alone TCC session.)

_YMOUSE - The row position of the most recent left mouse click. (Note that this will only work in a Take Command tab window, or if you have enabled the console mouse in a stand-alone TCC session.)

Variable Functions:

@EVAL - The <<, >>, MOD, and \ operators now support large (up to 10,000 digit) numbers. (Previously they were "limited" to 64-bit integers). The bitwise operators (AND, OR, XOR) are still limited to 64-bit integers.

@EVAL - Now supports binary input by prefixing "0b" to the number:

(%@eval[0b1001+2]

@EVAL - Now supports binary output by appending "=b" to the expression:

(%@eval[1+1=b]

@GETDATE[date] - Displays a calendar dialog and returns the selected date (yyyy-mm-dd). You can optionally pass the default date.

@GETDATETIME[datetime] - Displays a date and time picker and returns the selected date and time (yyyy-mm-dd hh:mm:ss). You can optionally pass the default date and time.

@INIWRITE - If you don't specify an entry, will now delete the specified section.

@PPID[file] - Returns the PID for the parent process of the specified executable

@REGBREAD[key,handle,length] - Read a registry value into a (previously created) binary buffer

@REGBWRITE[key,type,handle,length] - Write a registry value from a binary buffer

@REGEX - Removed the (unused and confusing) group count return value. @REGEX now only returns 1 (for a match) or 0 (for no match).

@REGSET - Added support for REG_MULTI_SZ. (The data values are separated by commas.)

@TARCOUNT[file] - Return the number of files in a .tar archive

@TARCFILE[file,i] - Return the compressed name of a file in a .tar archive

@TARDFILE[file,i] - Return the decompressed name of a file in a .tar archive

@TARFILEDATE[file,i]- Return the date & time of a file in a .tar archive

@TARFILESIZE[file,i]- Return the size of a file in a .tar archive

@URLDECODE[string] - Decode an URL encoded string (replacing %xx with the original characters)

@URLENCODE[string] - Encode a string for transmission (replacing non-alphanumeric characters with their %xx hex representation)

@ZIPCOUNT[file]- Return the number of files in a .zip archive

@ZIPCOMMENT[file] - Return the comment for the .zip archive

@ZIPCFILE[file,i] - Return the compressed name of a file in a .zip archive

@ZIPDFILE[file,i] - Return the decompressed name of a file in a .zip archive

@ZIPFILECOMMENT[file,i] - Return the comment for a file in a .zip archive

@ZIPFILECRC[file, i] - Return the CRC for a file in a .zip archive

@ZIPFILEDATE[file,i] - Return the date & time of a file in a .zip archive

@ZIPCFILESIZE[file,i] - Return the compressed size of a file in a .zip archive

@ZIPDFILESIZE[file,i] - Return the decompressed size of a file in a .zip archive

Batch Debugger:

The batch debugger has been rewritten with a new editor and many new features.

If you hover the mouse over a variable, the debugger will display a tooltip with the current value.

If you hover the mouse over an internal TCC command, the debugger will display a tooltip with the command syntax.

If you hover the mouse over an array variable (1-dimensional only!), the debugger will display a tooltip with up to the first 20 elements with assigned values.

The "Aliases" and "Functions" windows now support syntax coloring.

Added "Add to Watch" to the context menu.

The Goto dialog now has an optional Column position.

The File menu has a new option:

Save Copy As - Saves a copy of the file to a new name, without changing the default name.

The Edit menu has new options:

Move Line Up - Moves the current line up one row.

Move Line Down - Moves the current line down one row.

Toggle Comment - Inserts / Removes a "rem " at the beginning of the current line.

Remove Blank Lines - Removes blank lines from the selection (or the entire file if no selection).

Compress Spaces - Removes extra spaces between words for the selection (or the entire file if no selection).

Make Selection Uppercase

Make Selection Lowercase

View Whitespace - Displays a marker (a small dot) in the columns for spaces or tabs.

View EOL - Display the end of line characters (CR and/or LF).

The Debug menu has a new option:

Pause On Error - Switches the debugger to single step mode when TCC encounters an error.

The Options menu entry has new options:

Tabs - Change the tab and indent settings.

Display Line Numbers - Toggles the line numbering on & off.

Display Folding Margin - Toggles the folding margin (the + indicator) on and off.

Indentation Guides - Prints vertical lines at the current indent columns (useful for lining up code).

The Windows menu entry has new options:

Zoom In - Increase text size by one point.

Zoom Out - Decrease text size by one point.

Reset Zoom - Reset the text size to the original size.

Plugins:

Added UNKNOWN_CMD, PRE_INPUT, PRE_EXEC, and POST_EXEC support. TCC will first look for aliases of those names; if it doesn't find a match it will look in the plugins for a matching name. For UNKNOWN_CMD and PRE_EXEC, TCC will pass the command line to the plugin; PRE_INPUT and POST_EXEC will get a NULL.

Version 11

NEW VERSION OVERVIEW - Take Command 11.0

This is a summary of the compatibility fixes and new features. For complete details, see the appropriate topics in this help file.

The new features that are supported in TCC/LE (including the TCC/LE component of Take Command/LE) are marked with a *.

Feature List:

Both Take Command and TCC are now also available in x64 versions.

You can now put (simple) GUI apps into tabs. Note that this will not work for apps that have multiple parent windows!

The Take Command toolbar is now a "tabbed toolbar", allowing up to 20 tabs and 50 buttons per tab. You can also now right click on any button to edit it.

		Take Command supports remapped console color palettes in the tab windows. If you are running Vista or later, Take Command will use the individual palette defined for each console. If you are running XP or 2003, Take Command will use the default console palette defined in the HKCU\Console registry key.

		Display output in Take Command tab windows is 20% faster than v10.

Take Command can now optionally automatically attach all console apps to tabs, regardless of how or when they are started.

The "Attach Tabs" menu option in TCMD now includes hidden console windows. (This allows you to reattach consoles that may have been orphaned from a TCMD crash or unusual shutdown.)

		You can now drag and drop into the Folders View.

The popup windows (history, file searching, etc.) now display the current search string on the left side of the window toolbar.

TCC now loads more than twice as fast as in v10.

Added SSH FTP (SFTP) support.

The FTP, FTPS, and SFTP syntax now accepts a "*" as the password as a request for an interactive password prompt; i.e.:

dir ftps://bob:*@ftp.jpsoft.com/mydir

The new environment variable PROMPT2 defines the prompt used for line continuations (i.e., when the last character on the line is an escape character). The default is "More? ".

	*	The directory stack (DIRS, PUSHD, POPD) size has been increased to 4K.

Added embedded Tcl / tk support.

The TCMD tab labels can be rotated 90 degrees (see TabRotation in the .INI directives), allowing you to fit a lot more labels at the cost of slightly smaller tab windows

	*	Added support for embedded variables in the CMD delayed expansion (!var!) syntax.

The Command Input window can now be autosaved & autoloaded. (See the CommandInputFile .INI directive below.)

	*	DESCRIPT.ION reads are 500% faster.

Increased the maximum number of Take Command startup tabs to 25.

Increased the maximum argument size in TCC to 8191 characters.

Added a "Run..." dialog option to the Take Command tab context menu.

The file processing commands (COPY, DEL,DO, FOR, MOVE, RENAME, etc.) have a new /O:... option to sort the files before they are processed. The sorted filenames are saved to memory before being passed to the command; this allows you to dispense with temporary files when the command might otherwise process the same filename twice (for example, with FOR and RENAME).

Startup Options:

TCC /IX - don't execute TCEXIT

TCC /Q - don't display copyright / version message (registered copies only)

.INI Directives:

This list is for your information only. You should always use OPTION (in TCC) or "Options / Configure Take Command" (in Take Command) to set your TCMD.INI options.

AutoAttachConsole - if Yes, TCMD will periodically look for and create a new tab for any unattached console windows. (Note that this means you cannot ever detach a console tab!)

AutoCDD - if No, disables the automatic directory changes (i.e., directory name with a trailing \) as the only argument on the command line

ClosePrompt - if 1, Take Command will pop up a message box to confirm exiting

CommandInputFile - name of a file used to save & restore the Command Input window

HistCase - if Yes, command history comparisons will be case sensitive

LockExplorerBar - if 1, TCMD will lock the Explorer toolbar in place (so it cannot be moved or docked)

LockMenuBar - if 1, TCMD will lock the menu bar in place (so it cannot be moved or docked)

LockTabBar - if 1, TCMD will lock the tab toolbar in place (so it cannot be moved or docked)

NoINIErrors - if Yes, suppresses error messages when parsing TCMD.INI

SSHLocalPort - the TCP port in the local host where IPPort binds.

SSHLocalHost - the name of the local host or user-assigned IP interface through which connections are initiated or accepted.

SSHPort - the port on the SSH server where the SSH service is running (default is 22).

TabRotation - if 1, TCMD will rotate the tab labels (and text) 90 degrees. (This allows you to fit many more tabs in the window, at the cost of a reduced window size.)

Tcl - if Yes, TCC will execute *.tcl scripts.

Command Line Editing:

Tab completion now supports internal variables

Tab completion now supports variable functions

Tab completion now checks for ftp / ftps names (ftp://xxx) and won't break on the first /

New Commands:

UNZIP - Extract files from a zip archive. UNZIP will automatically use the Zip64 extensions if the archive is in Zip64 format. The UNZIP syntax is:

UNZIP [/C /D /E /F /O /S"password" /U /V] ziparchive path ...

VBEEP - flash the screen (by setting all the attributes to their inverse) and optionally beep the speaker. The syntax is the same as BEEP:

VBEEP [frequency duration...][asterisk | exclamation | hand | question | ok]

ZIP - Add, update, or delete files to a zip archive. UNZIP will automatically use the Zip64 extensions if the archive is in Zip64 format. The ZIP syntax is:

ZIP [A:[[-][+]rhsdaecjot] /A /C /D /F /M /O:[-]adegnrstu /P /Q /R /S"password" /U /V /YC] ziparchive [@file] file...

Commands:

ATTRIB

/O:xxx to sort files before they are processed

+C | -C - compress or uncompress the file or directory

BEEP

Now supported in the x64 version of TCC. (Because 64-bit versions of Windows do not support playing sounds through the Windows Beep API, TCC x64 uses DirectSound for BEEP.)

CDD

/Un sets recursion depth for JPSTREE.IDX updates (like /Sn)

COPY

Added number of files that failed to copy to the result

/O:xxx to sort files before they are processed

/Nn will not update the file descriptions (either in DESCRIPT.ION or an NTFS stream)

/W will delete files in the target directory that don't exist in the source directory (use this instead of SYNC when you only want to synchronize "one-way")

DEL

/O:xxx to sort files before they are processed

Added number of files that failed to be deleted to the result

/S /X displays the directories removed (with a trailing \)

/L deletes symlinks instead of their contents

/Nn will not update the file descriptions (either in DESCRIPT.ION or an NTFS stream)

DESCRIBE

/O:xxx to sort files before they are processed

DIR

/F now supports colorization

/B /S now supports colorization

DIRS

+n / -n - rotate the directory stack up or down by the specified amount

/Q - don't display the directory stack (only useful when combined with +n or -n)

DO

/O:xxx to sort files before they are processed

ENDLOCAL

Can now be used at the command line (including aliases). The maximum nesting level is 10.

FFIND

/H will skip binary files (user-configurable file extensions) when searching.

FOR

/O:xxx to sort files before they are processed

HEAD

/N+n - skip first n lines

/O:xxx to sort files before they are processed

HISTORY

/R - if you load a file that is larger than the history list size, HISTORY will only load the last part of the file that will fit

/Tn - if n is positive, only display the last 'n' history entries. If n is negative, skip the first 'n' entries.

/V - Display the history in reverse order (most recent first)

INPUT

/K"..." - only accept the specified characters

LIST

/O:xxx to sort files before they are processed

MD

/C - create a compressed directory

MOVE

/O:xxx to sort files before they are processed.

Added number of files that failed to be moved to the result

/Nn will not update the file descriptions (either in DESCRIPT.ION or an NTFS stream)

/Ns will not display the summary

OPTION

//directive with no value will reset to the default value

/U - check http://jpsoft.com for updates

PDIR

Added support for escaped characters in separator text

PLUGIN

/C - only display commands

/F - only display variable functions

/K - only display keystroke plugins

/V - only display internal variables

REN

/O:xxx to sort files before they are processed

Added number of files that failed to be renamed to the result

/Ns will suppress the summary

/Nn will not update the file descriptions (either in DESCRIPT.ION or an NTFS stream)

SETLOCAL

Can now be used at the command line (including aliases). The maximum nesting level is 10.

SYNC

/O:xxx to sort files before they are processed

/Nn will not update the file descriptions (either in DESCRIPT.ION or an NTFS stream)

TAIL

/O:xxx to sort files before they are processed

TASKLIST

/C will display the current priority class for each process

/L will display the startup command line for the process (this replaces the window title in the output)

TCTOOLBAR

Added a new parameter at the beginning of the argument list to specify on which tab the button should be set. (The tab to use is specified by its label.)

TOUCH

/O:xxx to sort files before they are processed

/R can now copy an existing directory's timestamp to a newly created (/C) file

TREE

/O:xxx to sort files before they are processed

/Z without /F will now display the directory tree sizes. (Each directory size is the size of the current directory and all of its subdirectories.)

TYPE

/O:xxx to sort files before they are processed

/X supports binary files

WHICH

Plugin commands now show the plugin name (i.e., "Foo is a plugin command (Foobar)")

WINDOW

DETACH - detach the TCC process from a TCMD tab window

Internal Variables:

_CONSOLEB - the handle to the console screen buffer

_ISODOWI - ISO 8601 numeric day of week (Mon=1, Sun=7)

_ISOWDATE - ISO 8601 current week date (yyyy-Www-d)

_ISOWEEK - ISO 8601 week of year

_ISOWYEAR - ISO 8601 week date year

_SERVICE - returns 1 if TCC was started as a service (TCC /N)

_TCTABACTIVE - returns 1 if this TCC instance is the active tab in Take Command

_WOW64DIR - returns the system Wow64 directory (x64 Windows only)

_X64 - returns 1 if TCC is the x64 (64-bit) version

Variable Functions:

@AGEDATE - added support for ISO 8601 formats 5 (yyyy-Www-d) and 6 (yyyy-ddd)

@BPEEK, @BPEEKSTR, @BPOKE, @BPOKESTR, @BREAD, @BWRITE - now accept either decimal or hex arguments for offset / size / length

@CONSOLEB[handle] - create or restore a console screen buffer. "Handle" is the handle to the desired screen buffer. If "handle is -1, @CONSOLEB just returns the current buffer handle. If "handle" is 0, @CONSOLEB will create and activate a new console screen buffer. If "handle" is non-zero, @CONSOLEB will switch to that screen buffer. @CONSOLEB returns the handle to the active screen buffer. @CONSOLEB allows you to preserve the contents of the current screen buffer by switching to a second buffer temporarily and and then back to the original buffer.

	@DATECONV[date,format] - convert date from one format to another format (output):

		0 system default

		1 USA (mm/dd/yy)

		2 European (dd/mm/yy)

		3 Japan (yy/mm/dd)

		4 ISO 8601 (yyyy-mm-dd)

		5 ISO 8601 yyyy-Www-d

		6 ISO 8601 yyyy-ddd

@DISKFREE, @DISKUSED, @DISKTOTAL, @DOSMEM, @WINMEMORY - added E/e (Exabytes) option. (Zettabytes and Yottabytes will have to wait for 128-bit CPUs and OS's.)

@EXECSTR - now supports a negative start line number to mean "starting at the end and counting back"

@EXPAND - added support for exclusion ranges

@FILESIZE - added support for Terabytes (t/T), Petabytes (p/P) and Exabytes (e/E)

@ISODOWI[date] - ISO 8601 numeric day of week

@ISOWEEK[date] - ISO 8601 numeric week of year

@ISOWYEAR[date] - ISO 8601 numeric week date year

@ISPRIME[n] - returns 1 if the (64-bit) n is a prime number

@MAKEAGE - added support for ISO 8601 yyyy-Www-d and yyyy-ddd dates

@MAKEDATE - added support for ISO 8601 formats 5 (yyyy-Www-d) and 6 (yyyy-ddd)

@PIDCOMMAND[pid] - return the startup command line for the specified process ID

@PLUGINVER[plugin] - returns the version number (major.minor.build) for the specified plugin

@PRIME[n] - returns the first prime >= (64-bit) n

@PRIORITY[pid] - return the priority class for the specified PID. The return values are (in hex):

8000 - Above normal

4000 - Below normal

100 - realtime

80 - High

40 - Idle

20 - Normal

@PROCESSTIME[pid,n] - return the process times as a fileage. n is the time to return:

0 - start time

1 - end time

2 - kernel mode time

3 - user mode time

@SYSTEMTIME[n] - return the system times as a fileage. n is the time to return:

0 - idle time

1 - kernel mode time

2 - user mode time

@TCL - execute a Tcl command

@TK - execute a Tk script

Batch Debugger:

The evaluation window (Alt-F11) now supports copying the result to the clipboard

If you right click in the first column of the Watch window, the debugger will pop up an environment variable listbox. If you select an entry, it will be added to the watch list.

Plugins:

Updated the TakeCmd.h file with the new functions

Added some new functions for manipulating the directory history and command history:

DirHistoryStart(void) - returns a pointer to the beginning of the directory history

HistoryStart(void) - returns a pointer to the beginning of the command history

DeleteFromHistory(LPTSTR lpszLine) - deletes the line from the command history (this is a pointer to the line to be deleted, not a line to be matched!)

If the user tries to display online help with HELP, F1 or Ctrl-F1, TCC will check for a plugin variable, variable function, or command, and if the name matches search for, load and execute a "Help" function in the plugin. The plugin is responsible for displaying its own help. The "Help" function should NOT appear in the plugin's comma-delimited function list in pszFunctions. Help should return 1 if it displayed help (or if it doesn't want TCC to try to display help for this topic). The syntax of the Help function in the plugin should be:

Help(LPTSTR pszName);

If Take Command wants to display usage text, TCC will check for a plugin command, and if the name matches search for, load and execute a "Usage" function in the plugin. The plugin is responsible for displaying its own help. The "Usage" function should NOT appear in the plugin's comma-delimited function list in pszFunctions. The plugin should return a multi-line string containing the command syntax. The first line (terminated by a \r) is displayed in the Take Command status bar. The entire string is displayed as a tooltip popup when the mouse hovers over the status bar message. Usage should return 1 if it wrote something to pszUsage (or if it doesn't want TCC to try to display a usage string). The syntax of the Usage function in the plugin should be:

Usage(LPTSTR pszName, LPTSTR pszUsage);

The TakeCommandIPC function allows plugins to communicate with the controlling Take Command instance. The syntax is:

DLLExports int TakeCommandIPC(LPTSTR pszCommand, LPTSTR pszArguments);

The supported commands are:

HWND

 Returns the Take Command window handle in pszArguments

TCTAB

Returns 1 if the process ID in pszArguments is running in a TC window

TCTABS

Returns the number of Take Command tab windows

HVIEW

Returns the handle of the active tab window in pszArguments

HELP

Displays the Take Command help for the topic in pszArguments

USAGE

Display the usage message in pszArguments in the status bar. The first line (up to the first CR) is displayed in the

 status bar; the rest is displayed in the tooltip if you hover the mouse over the status bar.

STATUSBAR

Display the message in pszArguments in the status bar

TCTOOLBAR

Update the Take Command tab toolbar with pszArguments

TCFILTER

Return the selected filter in the list view in pszArguments

TCFILTER_CMD

Set the selected filter in the list view to the value in pszArguments

CDD

Change the folder and list view to the directory in pszArguments

TCFOLDER

Return the selected folder in the Folders tree control in pszArguments

SHORTCUT

Return the name of the shortcut that started Take Command in pszArguments

SELECTED

Return the currently selected text in pszArguments

SELECT

Mark the selection specified in pszArguments (top, left, bottom, right) in Take Command

START

Attach a hidden console window whose hex PID is in pszArguments

ACTIVATE

Activate the window whose handle is in pszArguments

WINDOW

Has a number of arguments (specified in pszArguments) to control the Take Command window:

MAX

MIN

HIDE

RES

TRAY

TRANS=n

FLASH=n

DETACH n (where n is the PID of the process to detach)

TOPMOST

NOTOPMOST

TOP

BOTTOM

Version 10

NEW VERSION OVERVIEW - Take Command 10.0

This is a summary of the compatibility fixes and new features. For complete details, see the appropriate topics in this help file.

The new features that are supported in TCC/LE (including the TCC/LE component of Take Command/LE) are marked with a *.

Feature List:

	*	Take Command and TCC startup is faster.

	*	Most operations in Take Command and TCC are faster.

The quick help displayed on the TCMD status bar will now also identify aliases and display their value.

Holding down the Ctrl key while scrolling the mouse wheel will now change the font size in the Take Command tab windows. Note that not all apps will be happy about you randomly changing their font (and thus the console window size)!

Increased the maximum number of TCMD startup tabs from 10 to 20.

You can now drag files from the desktop to the List View window.

Added an option to set the popup window font for Take Command and TCC (Windows page of their configuration dialogs).

Added support for specifying attributes (/A:...) and ranges in the TCMD Filter combobox. (The syntax is the same as in TCC.) The attribute and range switches must come before the filename wildcards (or regular expressions).

The TCMD filter combobox now saves its entries (up to 10) and restores them when TCMD restarts.

When starting a tab, if the filename is "TCC.EXE" or "TCC" and there is no path specified and TCMD cannot find the filename in the path, it will default to running TCC.EXE in the TCMD installation directory.

The "Up" button on the Take Command toolbar will now take you to "Computer" (or "My Computer" in XP) if you're already at the root directory of a drive.

The Take Command "Find Files" dialog "Edit" button will now try to open the file with its associated app. If that fails, Take Command will use Notepad.

Added support for array variables. See SETARRAY / UNSETARRAY, SET, @ARRAYINFO, @EXECARRAY, and @FILEARRAY for details.

Added internal support for Python (.py). You must enable Python in the OPTION / Startup dialog.

Added an "in-process" pipe. This works like the old DOS pipes, by creating a temporary output file, redirecting STDOUT to that file, and then redirecting the temp file to STDIN of the following command.

The syntax is:

 command1 |! command2

(This the same as doing "command1 > temp.dat & command2 < temp.dat", but is easier to type & to read.) There are some disadvantages to using this type of "pseudo-pipe" -- it will usually be slower than a true pipe; it will use some disk space for its temp file; and "command2" will not be started until "command1" has exited.

Added "here-string" input redirection to send a string to the program's standard input. The syntax is:

cmd <<< this is some input text

		The popup windows (history, directory history, fuzzy directory search) now save their new size & position when moved.

	*	File & disk size variable functions (@DISKFREE, @FILESIZE, etc.) now support terabytes (trailing t or T) and petabytes (trailing p or P).

	*	Size ranges now support terabytes (trailing t or T) and petabytes (trailing p or P).

Date ranges now support ages for the first and/or second parameter.

	*	The Take Command and TCC configuration dialogs now display the name of the active TCMD.INI file in the titlebar. (Hopefully this will reduce some of the "bug" reports when people aren't writing to the TCMD.INI they think they are!)

If the cursor is hidden in a console running in tab window, the tab window cursor will now also be hidden.

Added a combo box to the Take Command and TCC configuration dialogs to allow you to select a language dll (default, English, French, or German).

HTTP and HTTPS addresses in TCMD and TCC will now have embedded spaces converted to "%20" before sending it to the server.

The TCCTABHERE.BTM file will create a "TCC tab window here" prompt in the Folders and List View context menus.

You can now mark text in a TCC tab window using the TCC alt-cursor keystrokes and copy/paste the text using the TCMD edit menu and right-click context menu. (Though it's easier & a lot more powerful to use the command window instead!)

	*	Fuzzy directory searching is now 30-50% faster.

A trailing & on the command line (with preceding white space) will start the command line in a detached process (like Linux). (This is the same as prefixing "DETACH" to the command, but a little easier to type and more natural for Linux users.)

Dropped support for obsolete & unsupported REXX interpreters -- Take Command now only supports ooREXX (Object REXX).

Added Linux-style numeric variable expressions - %((...)) will evaluate and substitute the expression. For example:

echo %((3+5)) is the answer.

(For non-Linux users, this is the same as @EVAL[3+5] but is slightly easier to type.)

Startup Options:

.INI Directives:

BackgroundImage=filename - BMP file to use as TCMD tab window background.

BatchAliases=YES|no - if set to NO, TCC won't try to expand command aliases when in a batch file. (Directory aliases will still be expanded.)

CloseIfNoTabs=YES|no - if set to NO, TCMD won't close if there are no tab windows open. (See the Take Command "Advanced" tab.)

	*	CompleteHidden - has been replaced by CompleteHiddenFiles and CompleteHiddenDirs. CompleteHidden will still be recognized if set in TCMD.INI (CompleteHidden=Yes will now be converted to a CompleteHiddenFiles=Yes and a CompleteHiddenDirs=Yes.) It has been removed from the OPTION dialog.

	*	CompleteHiddenFiles=yes|NO - if set to YES, tab completion will look for hidden files and system files as well as normal files.

	*	CompleteHiddenDirs=yes|NO - if set to YES, tab completion will look for hidden directories as well as normal directories.

Python=yes|NO - enable internal Python support.

Command Line Editing:

Ctrl-F (expand aliases) will now also expand any directory aliases on the line. (Useful when passing directory aliases to external apps.)

New Commands:

DISKMONITOR - monitor the free disk space. If it drops below the specified size, DISKMONITOR will execute the specified command.

DISKMONITOR [/C] drive size command

For example:

DISKMONITOR C: 2Gb sendmail bob@bob.com "Disk Status" Drive C: is full!

The drive can also be a sharename. The size format is the same as that used for size ranges (i.e., either a number or a number with an appended k, K, m, M, g, G, t, or T).

IDE - start the Take Command IDE / debugger with the specified files loaded into tab windows.

SETARRAY - define array variables. You can define up to 4-dimensional arrays. The syntax is:

SETARRAY name[a[,b[,c[,d]]]] [...]

where a, b, c, and d are the sizes. For example, to define a 5-row by 10-column array:

setarray array1[5,10]

(The array elements are addressed in base 0, so to reference this array you would use 0-4 for the rows and 0-9 for the columns.)

To set the variable elements, use the SET command (see below).

If you don't enter any arguments, SETARRAY will display the currently defined arrays. If you don't enter any dimensions, SETARRAY will display the definition for that array. You can use wildcards in the array name.

SETERROR - set the %ERRORLEVEL value and the last-error code in Windows to the specified value. The syntax is:

 SETERROR n

STATUSBAR - write text to the Take Command status bar. The syntax is:

	

		STATUSBAR text

TASKBAR - call the Windows Taskbar to to display dialogs or to manipulate the top level windows. The syntax is:

TASKBAR command

Where "command" is one of the following:

	Cascade	Cascade all top level windows

	Computers	Display the Find Computers dialog (requires Active Directory Domain Services)

	Control	Display the Control panel

	Customize	Display the Customize Taskbar dialog

	Date	Display the Date and Time dialog

	Desktop	Show the Windows desktop

	Help	Display the Help and Support Center dialog

	HTile	Horizontally tile all top level windows

	Lock	Toggle the taskbar lock

	Min	Minimize all windows

	Max	Maximize all windows

	Printers	Display the Printers and Faxes dialog

	Properties	Display the Taskbar Properties dialog

	Run	Display the Run dialog

	Search	Display the Search dialog

	Shutdown	Display the Shut Down Computer dialog

	Start	Display the Start Menu

	Task	Display the Windows Task Manager dialog

	VTile	Vertically tile all top level windows

UNSETARRAY - remove array variables. The syntax is:

UNSETARRAY [/Q] name [...]

	

		/Q - quiet (don't display an error for a non-existent array)

You can use wildcards in "name".

Commands:

ACTIVATE - added a new option:

/FLASH=type,count - flash the specified window. The arguments are:

type - type of flash; one or more of the following values:

0 - stop flashing

1 - flash the window caption

2 - flash the taskbar button

4 - flash continuously until WINDOW is called again with the /FLASH type set to 0

12 - flash continuously until the window comes to the foreground (cannot be used with 4)

count - the number of times to flash the window

ATTRIB - added new options:

/N - do not actually change the attributes

/NE - no error messages

/NJ - no junctions (only useful with /S)

/S+n - start 'n' levels down from the source directory.

	*	CD / CDD - fuzzy directory searching is substantially faster (up to 50%).

CD / CDD - now allow a forward slash at the beginning of a directory name > 1 character (for unreconstructed Linux users). (In CDD, this may conflict with the multicharacter options; in that case, the options will win out over the directory.)

COPY - if you specify the /C or /U options, COPY will no longer return an error result (2) in %? if no files match.

COPY - added new options:

/CF - copy the source to the target if the target file exists and is more than 2 seconds older than the source.

/UF - copy the source to the target if the target file doesn't exist or is more than 2 seconds older than the source.

/S+n - start 'n' levels down from the source directory.

/Sx - subdirectory copy to a single target directory (implies /S). For example, to copy all of the .EXE files in "c:\files" and all of its subdirectories to the directory "d:\exefiles":

copy /sx c:\files*.exe d:\exefiles\

DATE - added new options:

/Fn - where n is the format to use:

0 : "Mon Jan 1, 2009"

1 : " 1/01/09"

2 : "Mon 1/01/2009"

/U - display or set the UTC date

DEL - added a new option:

/S+n - start 'n' levels down from the source directory.

	*	DEL - reformatted the summary to support up to 100 Tb partition sizes.

DELAY - added a new option:

/F - flush the keyboard buffer after the delay ends

DIR - added a new option:

/S+n - start 'n' levels down from the specified directory.

	*	DIR - reformatted the summary to support up to 100 Tb partition sizes.

	*	DIRHISTORY /R - is now 500% faster.

DIRHISTORY /Tn - display the last n lines of the directory history. If n is negative, skip the first -n lines of the directory history.

DO - added new options:

DO var in /P command ... - parse the output of a command:

/S+n - start 'n' levels down from the source directory.

DO - the LEAVE option now accepts an optional parameter to leave nested DO's:

LEAVE n -

ESET - removed the /W option (a result of the batch debugger changes).

FFIND /W - the "Edit" button will now try to open the file with its associated app. If that fails, FFIND will use Notepad.

FFIND - added a new option:

/S+n - start 'n' levels down from the source directory.

FOLDERMONITOR - added a new option:

/U - don't set the trigger until the file is unlocked.

	*	FREE - reformatted the output to support up to 100 Tb partition sizes.

GLOBAL - added a new option:

/S+n - start 'n' levels down from the current directory.

IFTP - a /C will now prevent an automatic reconnection if you try something like a "dir ftp:" after the IFTP /C.

	*	HISTORY /R - is now 500% faster.

HISTORY -- added new options:

/Tn - display the last n lines of the history. If n is negative, skip the first -n lines of the history.

/V - display the history in reverse order.

INKEY - added support for array variables.

INPUT - added a default value for the /E option. The syntax is:

/E"value"

If the environment variable doesn't exist, INPUT will display the default value for editing.

INPUT - added support for array variables.

KEYBD - added a new option:

/Kn - disable (0) or enable (1) the keyboard. (You can also reenable a disabled keyboard with Ctrl-Alt-End.)

LIST - The "E(dit)" option will now first try to edit the file using the editor associated with that filetype (if any). If that fails, LIST falls back to its previous behavior (using the Editor .INI directive if it exists or Notepad.exe if it doesn't).

LIST - added a new option:

/F - display the contents of the console screen buffer.

MOVE - added new options:

/CF - move the source to the target if the target file exists and is more than 2 seconds older than the source.

/UF - move the source to the target if the target file is more than 2 seconds older than the source.

/S+n - start 'n' levels down from the source directory.

/Sx - subdirectory move to a single target directory (implies /S). For example, to move all of the .EXE files in "c:\files" and all of its subdirectories to the directory "d:\exefiles":

 move /sx c:\files*.exe d:\exefiles\

MSGBOX - added new options:

/L - limit the maximum message box width to no more than 1/3 the screen width

/V - display the message box in the Vista style (the message background will be the current window color, the buttons will be right-justified and slightly bigger, and the position of icon and message will be adjusted.)

MSGBOX now supports Ctrl-C to copy the contents of the message box to the clipboard.

	*	OPTION - removed the popup windows from the Windows tab, as they are now auto-saved whenever the windows are moved or resized.

ON - added new options:

ON CONDITION test command ... - execute the command if the test is true. The test can be any valid test that is valid in IF.

ON RESUME command - execute the command when the system resumes from a suspension (sleep or hibernation).

ON SUSPEND command - execute the command when the system is going to sleep or hibernation.

	*	PDIR - added support for quoting filenames (if necessary). The syntax is:

pdir /(f[pnq]) - 'q' will cause the name and/or path to be double quoted if it contains white space or special characters.

	*	PDIR - will now suppress empty lines (for example, if you have an @IF conditional in PDIR and not every matching file results in output).

PDIR - added a new option:

/S+n - start 'n' levels down from the specified directory.

PROCESSMONITOR - added the HUNG test.

	*	REN - added some additional checking to REN /N to see if the rename would actually succeed (i.e., checking for things like the target filename already existing).

SET - added support for setting array variables. For example, to define a 5-row by 10-column array, you would first use SETARRAY (see above):

setarray array1[5,10]

To set the array values (0-based), the syntax is:

set array1[a[,b[,c[,d]]]

For example:

set array1[0,0]=Bob

set array1[0,1]=Bob's Job

To expand the array variable:

echo Name is %array1[0,0] and job is %array1[0,1]

SETDOS - the /Y option (which has been deprecated since 7.0) has been removed.

	*	START - changed the /Affinity option to match the new CMD.EXE behavior (in Vista and XP64). It now takes a hex argument for the processor mask -- i.e., to set the affinity for cpu's 1 and 4, set /affinity=5.

SYNC - added new options:

/S+n - start 'n' levels down from the specified directory.

/Y - suppress the prompt if you have the "COPY Prompt on Overwrite" option set.

/Z - overwrite read-only files

TCTOOLBAR - added new options:

/I - reset toolbar to definition in TCMD.INI.

/W filename - save the toolbar to the specified file.

TIME - added a new option:

/U - display or set the UTC time

TOUCH - added a new option:

/S+n - start 'n' levels down from the specified directory.

TYPE - added new options:

/X - display the file in hex

/XS - display the file in hex, using spaces instead of periods for non-printable characters.

WINDOW - added a new option:

/FLASH=type,count - flash the TCC or TCMD window. The arguments are:

type - type of flash; one or more of the following values:

0 - stop flashing

1 - flash the window caption

2 - flash the taskbar button

4 - flash continuously until WINDOW is called again with the /FLASH type set to 0

12 - flash continuously until the window comes to the foreground (cannot be used with 4)

count - the number of times to flash the window

Internal Variables:

_elevated - (Vista and above) - returns 1 if the TCC process is elevated

_ide - returns 1 if in the IDE / debugger

_lastdir - previous directory (from directory history)

_selected - selected text in the current tab window. (This is normally only useful in toolbar buttons or key aliases, as the selected text will revert to normal on a keystroke.)

_tctabs - current number of Take Command tab windows (0 if not in TCMD).

_vermajor - TCC major version

_verminor - TCC minor version

_version - TCC version in "major.minor" format (i.e., "10.0").

_xwindow - width of the Take Command or TCC window in pixels

_ywindow - height of the Take Command or TCC window in pixels

Variable Functions:

@ARRAYINFO[arrayname,option] - returns information about the specified array.

 arrayname - name of the array (defined by SETARRAY) to query

 option - the type of information:

0 - total number of dimensions

1 - # of elements in the first dimension

2 - # of elements in the second dimension

3 - # of elements in the third dimension

4 - # of elements in the fourth dimension

5 - total number of elements

@BALLOC[size] - alloc a buffer for binary operations. The function returns a handle to the buffer (which must be used for the subsequent binary functions). The only limit on the number & size of the binary buffers is the amount of virtual memory available.

@BFREE[handle] - free a binary buffer (previously allocated by @BALLOC).

@BPEEK[handle,offset,size] - read a value from a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer

size - the size of the value (in bytes):

1 - character

2 - short

4 - int

8 - int64

@BPEEK returns the value read

@BPEEKSTR[handle,offset,type,length] - read a string from a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer

type - the string type:

a - ASCII

u - Unicode

length - the maximum number of characters to read

@BPEEKSTR returns the string

@BPOKE[handle,offset,size,value] - write a value to a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer

size - the size of the value (in bytes):

1 - character

2 - short

4 - int

8 - int64

value - the value to poke

@BPOKE returns 0 on success.

@BPOKESTR[handle,offset,type,string] - write a string to a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer

type - the type of the string to write:

a - ASCII

u - Unicode

string - the string to poke

@BPOKESTR returns 0 on success.

@BREAD[handle,offset,filehandle,fileoffset,length] - read from a file to a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer

filehandle - a file handle opened for reading (from @FILEOPEN)

fileoffset - the read offset (from the current file position)

length - number of bytes to read

@BREAD returns the number of bytes actually read.

@BWRITE[handle,offset,filehandle,fileoffset,length] - write from a binary buffer to a file

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer

filehandle - a file handle opened for writing (from @FILEOPEN)

fileoffset - the write offset (from the current file position)

length - the number of bytes to write

@BWRITE returns the number of bytes written

@EVAL - added support for array names w/o a leading %.

@EVAL - added new operators and functions:

!a - return the inverse not (i.e., !0 = 1, !5 = 0)

a>b - return 1 if a is greater than b

a<b - return 1 if a is less than b

fact(a) - return the factorial

ceil(a) - return the ceiling

floor(a) - return the floor

abs(a) - return the absolute value

gcd(a b) - return the greatest common divisor

lcm(a b) - return the least common multiple

ror(value shift precision) - rotate right

rol(value shift precision) - rotate left

value - integer value to rotate

shift - the number of bits to shift

precision - the size of "value" in bits

For example, to rotate the 32-bit integer "123" 2 bits to the right:

%@eval[ror(123 2 32)]

@EXECARRAY[array,command] - execute the specified command and store the resulting lines in the specified array. (You must define the array before running @EXECARRAY.) For example:

setarray aresult[10]

echo %@execarray[aresult,dir /u] >& nul

@EXECARRAY will read the number of lines specified in the array size definition.

@EXECSTR - added new option for the line to return. The syntax is:

@EXECSTR[[n,]command]

where "n" is the line you want (base 0). For example, to return the third line returned by VER /R:

echo %@execstr[2,command]

@FILEARRAY[array,filename] - read a file and store the lines in the array. (You must define the array before running @FILEARRAY.) For example:

setarray aresult[10]

echo %@filearray[aresult,test.dat]

@FILEARRAY will return the number of lines read. @FILEARRAY will not read more than the number of lines specified in the array size definition.

@FILEHANDLE[handle] - returns the filename for the specified file handle (opened with @FILEOPEN).

@FILES - added /S+n option to start 'n' levels down from the specified directory.

@FILESIZE - added /S+n option to start 'n' levels down from the specified directory.

@FILTER[chars,string] - removes any characters in "string" that aren't in "chars". For example, to remove all non-numeric characters from a variable:

%@filter[0123456789,%var]

@FOLDERS[directory] - returns number of matching folders.

@ISFLOAT[string] - returns 1 if the string is composed only of numeric characters, a decimal separator, and an optional sign and/or thousands separator(s).

@ISLOWER[string] - returns 1 if the string is composed only of lower case letters.

@ISUPPER[string] - returns 1 if the string is composed only of upper case letters.

	*	@LINE - is now 700% faster.

	*	@LINES - is now 700% faster.

@MX[address] - return the email server for the specified user address.

@PID[filename] - returns the PID for specified name (or 0 if no match). If you have multiple copies of the same executable running, @PID will return the first one it finds.

@PYTHON[command] - execute the Python string. The Python interpreter is persistent; if you want to reset it pass an empty string to @PYTHON.

@REGCOPYKEY[source,target] - copy a registry key.

@REGCREATE, @REGDELKEY, @REGEXIST, @REGQUERY, @REGSET, @REGSETENV, and @REGTYPE - added an option to access the 64-bit registry in Win64. If you append "_64" to the HKEY name, TCC will access the 64-bit registry instead of the 32-bit registry. For example:

@regcreate["HKLM_64\Software\Company\Product\User"]

@SERVICE[service,info] : Returns information about the specified service.

service - the service name to query

info - the information you want:

	1	The type of service

	2	The current state of the service

	3	The control codes the service accepts and processes in its handler function.

	4	Returns the check-point value the service increments to report its progress during a lengthy start, stop, pause, or continue operation.

	5	Returns the estimated time required for a pending start, stop, pause, or continue operation (in milliseconds).

@SNAPSHOT - added support for multiple monitors when using the DESKTOP argument.

@WINCLIENTSIZE[title] - returns the client window size in the format:

height,width

@WINPID[title] - returns the process ID for the window.

@WINSIZE[title] - returns the window size in the format:

height,width

Batch Debugger:

The IDE / batch debugger is all new, and includes multiple tabbed editing windows and tabbed / dockable watch & variable windows.

The IDE now supports themes (Options / Theme).

In addition to batch files (.BTM, .BAT, and .CMD) the syntax coloring in the editor also supports editing C++, INI, Javascript, LUA, Pascal, Python, SQL, VBScript, and XML files.

The IDE maintains a list of the recently edited files.

There are new options in the File menu (Save All, Close All, Print Preview).

There are a number of new options in the Edit / Advanced menu (tabify / untabify, make selection uppercase / lowercase, collapse / expand, and view whitespace).

The "Pause" button / menu entry pauses debugging at the completion of the current command line.

The watch window now also supports internal variables, variable functions, and user-defined functions.

The IDE status bar is customizable (right click).

Take Command

This section provides a general description of Take Command operation.

[image: Onestep] Starting Take Command

[image: Onestep] The Take Command Interface

[image: Onestep] Configuration Options

[image: Onestep] The Take Command Interface

[image: Onestep] Take Command and TCC Integration

Starting Take Command

You will typically start Take Command from a Windows shortcut, located:

●on the desktop, or
●in the Programs section of the Start menu (including its Startup subdirectory).

You may also start it from the Start / Run dialog.

The installation software will optionally create both a Take Command folder or group (in the Programs section of the Start menu) and a desktop object (shortcut) which starts Take Command. Usually these are sufficient, but if you prefer, you can create multiple desktop objects or items to start Take Command with different startup commands or options, or to run different applications in the tab windows.

Each item or icon represents a different Take Command window. You can set any necessary command line parameters for Take Command such as a program to run in a tab window, and the name and path for the .INI file. See Take Command Startup Options for more information on startup command line options.

When you configure a Take Command item, place the full path and name for the file in the Command Line field, and put any startup options that you want passed to Take Command. For example:

	Command Line:	C:\Program Files\JPSoft\TCMD\TCMD.EXE

	Working directory:	C:\

You do not need to use the Change Icon button, because TCMD.EXE already contains icons.

Each Windows program has a command line which can be used to pass information to the program when it starts. The command line is entered in the Command Line field for each shortcut or each item in a Program Manager group (or each item defined under another Windows shell), and consists of the name of the program to execute, followed by any startup options.

The Take Command startup command line does not need to contain any information. When invoked with an empty command line, Take Command will configure itself from the TCMD.INI file, and then display a prompt and wait for you to type a command. However, you may add information to the startup command line that will affect the way Take Command operates.

Take Command Startup Options

The Take Command command line includes the program name with drive and path, followed by any options. For example:

"c:\program files\jpsoft\tcmd13\tcmd.exe" @c:\tcmd\tcmd.ini

There are several Take Command startup options. The complete syntax for the Take Command startup command line is (all on one line):

d:\path\tcmd.exe [[/]@d:\path\inifile] [//directive=value...] [/D d:\path] [/N] [/C command] [/T [d:\path\]program]

(Do not include the square brackets shown in the command line above. They are there to indicate that the items within the brackets are optional.)

The command line must start with the full Take Command path and executable name (TCMD.EXE):

d:\path\tcmd.exe

The additional items below may be included on the command line:

		@d:\path\inifile OR

		/@d:\path\inifile

This option sets the path and name of the .INI file. You don't need this option if

	1)	your .INI file is named TCMD.INI, and

	2)	it is in one of the following directories:

	2.1)	the same directory as Take Command

	2.2)	the %localappdata% directory

This option is most useful if you want to start the program with a specific and unique .INI file.

To start Take Command without any .INI file, you can create an empty file and specify it as your .INI file.

To get around a Windows limitation that causes the displayed command line of a shortcut to be truncated when a parameter begins with @, you can use the alternative syntax

/@d:\path\inifile

Take Command will skip the leading forward slash.

Options:

//directive=value

This option tells Take Command to treat the text appearing between the // and the next space or tab as an initialization directive. The directive should be in the same format as a line in TCMD.INI, but may not contain spaces, tabs, or comments. This option may be repeated. It is a convenient way to place a few simple directives on the startup line without having to modify or create a new .INI file.

	/C	Run the specified command in a new TCC tab window. If there is already a Take Command session running, /C creates a new tab in the existing Take Command rather than starting a new session. /C must be the last option on the command line (otherwise Take Command can't tell if additional options belong to Take Command or the command to run in the TCC tab).

	/D	Start Folders and List View in the specified directory.

	/N	Don't load TCMD.INI (useful when trying to isolate configuration problems).

	/NT	Don't load the default startup tabs (usually only useful when combined with /C or /T).

	/T	You can specify the program to start in the first tab with the /T option:

		d:\path\tcmd.exe /t d:\path\program

If there is already a Take Command session running, /T creates a new tab in the existing Take Command rather than starting a new session.

/T must be the last option on the command line (otherwise Take Command can't tell if additional options belong to Take Command or the program to start in the tab).

If you have Startup Tabs defined, Take Command will display them following the tab created by /T.

Take Command Interface

The Take Command Window

[image: Onestep] The Take Command Window

[image: Onestep] Menus

[image: Onestep] Tool Bars

[image: Onestep] Folders

[image: Onestep] List View

[image: Onestep] Command Input

[image: Onestep] Tab Windows

[image: Onestep] Status Bar

[image: Onestep] Keyboard Shortcuts

[image: Onestep] Context Menus

[image: Onestep] Using the Scrollback Buffer

[image: Onestep] Highlighting and Copying Text

[image: Onestep] Take Command Dialogs

Starting Applications

[image: Onestep] Starting Windows Applications

Take Command and the Windows Environment

[image: Onestep] Resizing the Take Command Window

[image: Onestep] Drag and Drop

Take Command and TCC

[image: Onestep] Take Command and TCC Integration

Take Command Window

The Take Command window has nine parts:

[image: tcmd15]

	1.	The Title Bar is the same as the one used in most Windows applications, with a control menu button on the left and the minimize, maximize, and close buttons on the right. You can also adjust the size of the Take Command window using standard window techniques, but see Resizing the Take Command Window for information about how Take Command's display changes when you do so.

	2.	See Take Command Menus for details about the Menu Bar and all of its submenus.

	3.	The Explorer Toolbar is used to start the IDE / batch debugger, search for text in a tab window, change the view type in the List View window, change the Folders view, or filter the files displayed in the List View.

	4.	The Tabbed Toolbar is an optional tool bar that you can use to execute internal or external commands, aliases, or batch files with the click of a mouse (or an accelerator key). You can define up to 20 toolbar tabs, each with up to 50 buttons. To create buttons for the tab toolbar, right click on the toolbar and select "Add Button" or "Add Tab". This selection displays the tool bar dialog. You can also configure the tab toolbar from TCC with the TCTOOLBAR command.

5. The Folders window shows a tree view of your desktop.

6. The List View window shows the contents of the item selected in the Folders window. You can display the List View window in a number of ways (Large Icons, Small Icons, List, and Details views).

	7.	The Command Input window allows you to create and edit commands before sending them to the active tab window. This is not limited to entering something at the command prompt; you can feed strings anywhere a console app is expecting input. You can scroll back to previous lines, edit, and reexecute them. The Command Input window also has full undo/redo (up to 31 levels), drag and drop, and both mouse and keyboard text selection.

	8.	The Tab Windows run the Take Command Console, or any other Windows console application (including CMD, PowerShell, or bash). You can use the scroll bars or the Alt cursor keys to view text that has scrolled through the window. You can also save the contents of a tab window and scrollback buffer to a file, copy text from a tab Window to the clipboard, and copy text from the clipboard or from the tab window scrollback buffer to the command line. See Highlighting and Copying Text for information about saving and retrieving text in the tab window and The Command Line for complete details about using the Take Command console command line.

	9.	Finally, the Status Bar at the bottom of the Take Command window displays information about your system:

	[image: Onestep]	Tooltips for the menu selections

	[image: Onestep]	The tab window size (columns x rows)

	[image: Onestep]	The CPU usage (0 - 100%)

	[image: Onestep]	The memory load (0-100%)

	[image: Onestep]	The state of the Caps Lock key

	[image: Onestep]	The state of the Num Lock key

	[image: Onestep]	The state of the Scroll Lock key

	[image: Onestep]	The current date

	[image: Onestep]	The current time

	[image: Onestep]	A slider control to change the Take Command transparency

If you find the "I-Beam" cursor in the Take Command tab windows difficult to see, you can change it in the Tabs page of the configuration dialog to force the use of an arrow cursor in all parts of the window.

Menus

Like most Windows applications, Take Command displays a menu bar along the top of the Take Command window. To select a particular menu item, click once on the menu heading, or use Alt-x where x is the underlined letter on the menu bar (for example, Alt-F displays the File menu). You can also select a menu by pressing Alt or F10 and then moving the highlight with the cursor keys.

The Take Command menu bar is movable, dockable, and customizable. To move or dock the menu, move the mouse cursor over the grabber bar on the left side of the menu, press the left mouse button, and drag the menu to its new position. To customize the menu (including accelerator keys and menu animations), click on View / Toolbars and Menus / Customize or right click on the menu bar.

[image: clip0036]

The menu bar entries allow you to select a variety of Take Command features:

File

Edit

Tabs

View

Options

Window

Help

File

The File menu allows you to create new tabs, save or print the screen buffer, or exit Take Command.

New Tab

Opens the default Take Command Console command processor in a new tab window. (If you want to run a different application in a new tab, use the Run menu entry in the Tabs menu.)

Save to File...

Saves the contents of the current tab window's scrollback buffer to a file. A Save As dialog box appears in which you can enter the name of the file that you wish to use.

Print...

Sends the contents of the current tab window's scrollback buffer to the printer. A Print dialog box appears in which you can choose the portion of the screen buffer you wish to print.

Setup Printer...

Displays a standard printer setup dialog box. The options available in the dialog box depend on the printer driver(s) you are using.

Refresh

Redraws everything in the current Take Command window (use this selection if the display appears incorrect).

Exit

Ends the current Take Command session.

Edit

The Edit menu allows you to copy text between the Take Command windows and the Windows clipboard. You can also access the clipboard in TCC with redirection to or from the CLIP: device, or with the @CLIP variable function.

To use the Cut, Copy, or Delete commands, you must first select a block of text with the mouse, the keyboard, or with the Select All command, below. If you hold down the right mouse button while you select a block of text, that block will be copied to the clipboard automatically when you release the button.

For more information on copying text see Highlighting and Copying Text.

Copy

Copies selected text from the command line or scrollback buffer to the clipboard.

Paste

Copies text from the clipboard to the command line. If the text you insert contains a line feed or carriage return, the command line will be executed just as if you had pressed Enter. If you insert multiple lines, each line will be treated like a command typed at the prompt.

Copy + Paste

Copies the selected text from the scrollback buffer directly to the command line.

Copy + Paste + Run

Copies the selected text from the scrollback buffer directly to the command line and executes the resulting command line.

Paste + Run

Copies text from the clipboard to the command line and executes the resulting command line.

Select All

Marks the entire contents of the scrollback buffer as selected text.

Insert Directory

Displays the Windows folder selection dialog and puts the selected directory name at the current position on the command line.

Insert Filename

Displays the Windows file selection dialog and puts the selected filename at the current position on the command line.

Find

Search the scrollback buffer of the current tab window using regular expressions.

Find Files

Search for files or text within files.

Console Mouse

Send mouse moves and clicks to the console window. This option is specific to each tab, and is rarely necessary because few console apps use the mouse. You can also toggle this option with Ctrl-M in the tab window.

Tabs

New Tab

Opens the default command processor in a new tab window. Take Command defaults to the program specified in your COMSPEC environment variable; if that isn't found then Take Command will start TCC.EXE.

Run

Displays the run dialog box from which you can run an application or batch file. Take Command remembers the commands you have run from this dialog in the current session. To select from this list click on the drop-down arrow to the right of the "Command Line" field, or press the down-arrow. If the filename is TCC.EXE or TCC, there is no path specified, and Take Command cannot find the filename in the path, it will default to running TCC.EXE in the Take Command installation directory.

Attach Tabs

Displays a popup dialog of all of the console sessions that are not already displayed in a Take Command tab window, and allows you to select one or more to convert to a Take Command tab. You can select multiple sessions by clicking on individual entries and then on OK, or you can select a single session by double clicking on the entry.

Detach Tab

Disconnects the current tab window from Take Command and displays it on the desktop.

Rename Tab

Rename the current tab text (and the console title). If you set the title with this option, Take Command will not change the tab title if the application subsequently changes the console title. If you set the title to an empty string, the title will revert to that set by the console application.)

Close Tab

Closes the current tab window.

Previous Tab

Switch to the next tab window.

Next Tab

Switch to the previous tab window.

Scroll Up

Scroll the current tab window up one line.

Scroll Down

Scroll the current tab window down one line.

Page Up

Scroll the current tab window up one page.

Page Down

Scroll the current tab window down one page.

Home

Go to the beginning of the screen buffer for the current tab window.

End

Go to the end of the screen buffer for the current tab window.

Zoom In

Increase the tab window font size by one point.

Zoom Out

Decrease the tab window font size by one point.

View

Toolbars and Menus

Customize the Take Command toolbars and menus.

Command Input

Show or hide the Command Input window.

Folder and List Views

Show or hide the Folders and List View windows. If you want to have more room for your tab windows, you can set the Folders and List View windows to AutoHide (i.e., they will be collapsed to a single tab label when not in use). If you don't want the view windows to appear at all, you can toggle them off with this option.

Status Bar

Show or hide the status bar.

Toggle Tabs Top/Bottom

Move the tab labels to the top or bottom of the tab window.

Large Icons

Display items in the List View using large icons.

List

Display items in the List View as a list.

Details

Display directory entries in the List View with a DIR-style display (Name, Size, Date/Time, Attributes, Type, and Description).

Set Filter

You can enter an expression to use to filter the directory entries displayed in the List View.

Options

Configure Take Command

Opens a dialog which you can use to change the Take Command configuration.

Configure TCC

Opens a dialog which you can use to change the TCC configuration. This dialog does not affect any existing TCC windows, only new ones. If you want to change the configuration of an active TCC window, use the TCC OPTION command.

Configure Tabbed Toolbar

Create a new toolbar button or tab, or save or reload the toolbar settings in TCMD.INI.

Theme

Select a predefined theme for Take Command. This will change the color and appearance of the Take Command window and its components (such as the tab window labels).

Window

Toggle View Windows

Minimize or restore the Folder and List View windows.

New Horizontal Tab Group

Create a new tab bar by splitting the tabs window horizontally, and move the current tab window to the new tab bar.

New Vertical Tab Group

Create a new tab bar by splitting the tabs window vertically, and move the current tab window to the new tab bar.

This menu will also display the names of all of the tabs, and allow you to switch to a new tab by selecting it in the menu.

Help

See also: the Help File topic.

Contents

Displays the Table of Contents of the Take Command help file, from which you can directly navigate to any topic. This is the same display you will see if you select the Contents tab from within the help system.

Search Topics

Displays the Search dialog of the Take Command help file,from which you can search for any topic. This is the same dialog you will see if you select the Search tab from within the help system.

Index

Displays the Index dialog of the Take Command help file, from which you can search for any keyword. This is the same dialog you will see if you select the Index tab from within the help system.

http://jpsoft.com/

A hyperlink to the JP Software web site. Clicking it will attempt to display the JP Software home page in your default browser.

JP Software Forums

A hyperlink to the JP Software support forums.

Feedback

Leave a suggestion in the JP Software feedback forum.

Register

Enter an activation key to register Take Command.

Check for Updates

Query the JP Software web server to see if there is an updated version of Take Command available. If there is, the new version information will be displayed and you can choose to download and automatically update your existing version.

Buy Now

A hyperlink to our secure online store. Clicking it will attempt to display the store's first page in your default browser. Depending on your configuration, you may need to first establish an Internet connection.

About Take Command

Displays the Take Command version, copyright, and license information.

Tool Bars

The Take Command window has two toolbars: the Explorer toolbar and the Tabbed toolbar.

You can hide or show the toolbars with the View / Toolbars menu entry, and you can detach and dock a toolbar by clicking on the left edge of the toolbar and dragging it to its new position. The new position of the toolbar will be saved when you close Take Command and restored when you restart.

Explorer Toolbar

The Explorer Toolbar has seven default controls:

●The V button starts the file viewer (VIEW in TCC).
●The Edit/Debug button opens the TCC batch debugger in a new TCC tab window.
●The Find combo box searches for text in the current tab window's buffer.
●The Views button toggles the view type in the List View window between Large Icons, List, and Details). You can also select the view type from a drop-down list by clicking on the down arrow.
●The Select Folder combo box changes the current directory for the Folders and List View windows.
●The Up button changes to the parent directory in the Folders and List View windows. If you're already at the root directory of a disk drive, Up will take you to Computer (in Vista or later) or My Computer (in XP).
●The Filter combo box allows you to enter wildcards or regular expressions to filter the directories and files displayed in the List View window. You can enter multiple wildcards by enclosing each argument in double quotes and separating them with a comma. For example:

"*.cmd", "*.txt", "*.doc"

To enter a regular expression in the Filter combo box, precede it with two colons. For example:

::/c

You can specify attributes (/A:...) and ranges in the Filter combo box. (The syntax is the same as in TCC.) The attribute and range switches must come before the filename wildcards or regular expressions.

You can also set the filter from TCC with the TCFILTER command.

The Filter combo box will save its last 10 entries in each session and restore them when Take Command restarts.

You can customize the Explorer Toolbar by clicking on the button on the right edge and selecting Add or Remove Buttons, or by right-clicking on the blank space to the right of the toolbar and selecting Customize.

Tabbed Toolbar

The Tabbed Toolbar is an optional tabbed tool bar that you can use to execute internal or external commands, aliases, or batch files with the click of a mouse (or an accelerator key). You can define up to 20 tabs, each with up to 50 toolbar buttons. If you have only defined one tab, Take Command will hide the tab (to save screen space).

To create buttons for the tabbed toolbar, right click on the toolbar. You can modify or delete a button by right clicking on it. A dialog will appear to let you define the button label, tab title, command, and startup directory. There is a Copy option on the toolbar dialog which will duplicate the selected button so you can quickly create multiple variants of a command. You can also configure the tab toolbar from TCC with the TCTOOLBAR command.

You can reorder toolbar buttons by holding down the Alt key, pressing the left mouse button, and dragging a button to a new location.

[image: toolbarbutton]

Folders

The Folders window displays a tree view of the folders on your system. You can optionally select the folder by entering the name in the combo box on the Explorer Toolbar.

You can detach, move and dock the Folders window by moving the mouse cursor to the upper left corner, left-clicking on the grabber bar, and holding the left mouse button down while dragging the window to its new location.

You can AutoHide the Folders window by clicking on the "push-pin" in the upper right corner, or selecting it from the drop-down menu. When in AutoHide, the window will be minimized to a single tab, and will automatically expand again when you move the mouse cursor over the tab.

You can completely hide the Folders and List View windows by toggling the View / Folder and List Views menu entry.

If the Folders and List View windows are disabled or hidden, Take Command will not try to load their content until the first time the window is displayed.

You can copy selected files in the List View to the clipboard with the Ctrl-C or Ctrl-Ins keys.

List View

The List View window displays the contents of the directory selected in the Folders window. You can choose the format (Large Icons, List, or Details) with the Views button on the Explorer Toolbar.

You can optionally filter the contents of the List View window by entering a regular expression in the Filter combo box on the Explorer Toolbar. You can also set the filter from TCC with the TCFILTER command.

You can detach, move and dock the List View window by moving the mouse cursor to the upper left corner, left-clicking on the grabber bar, and holding the left mouse button down while dragging the window to its new location.

You can AutoHide the List View window by clicking on the "push-pin" in the upper right corner, or selecting it from the drop-down menu. When in AutoHide, the window will be minimized to a single tab, and will automatically expand again when you move the mouse cursor over the tab.

You can completely hide the Folders and List View windows by toggling the View / Folder and List Views menu entry.

If the Folders and List View windows are disabled or hidden, Take Command will not try to load their content until the first time the window is displayed.

You can copy selected files in the List View to the clipboard with the Ctrl-C or Ctrl-Ins keys.

Command Input

The Command Input window allows you to create and edit commands before sending them to the active tab window. This is not limited to entering something at the command prompt; you can feed strings anywhere a console app is expecting input. You can scroll back to previous lines, edit, and reexecute them. The Command Input window also has full undo/redo (up to 31 levels). You can automatically save the contents of the Command Input window when Take Command exits, and reload it when Take Command starts.

You can detach, move and dock the Command Input window by moving the mouse cursor to the upper left corner, left-clicking on the grabber bar, and holding the left mouse button down while dragging the window to its new location.

You can "AutoHide" the Command Input window by clicking on the "push-pin" in the upper right corner, or selecting it from the drop-down menu. When in AutoHide, the window will be minimized to a single tab, and will automatically expand again when you move the mouse cursor over the tab. You can completely hide the Command Input window by toggling the View / Command Input menu entry.

Each command line can contain up to a maximum of 65,535 characters.

The default directory for the Command Input window (used for filename completion) will be set to the selected directory in the Folders window.

You can use the following editing keys when you are entering a command (the words Ctrl and Shift mean to press the Ctrl or Shift key together with the other key named).

Cursor Movement Keys:

	Left

	Move the cursor left one character

	Right

	Move the cursor right one character

	Ctrl-Left

	Move the cursor left one word

	Ctrl-Right

	Move the cursor right one word

	Home

	Move the cursor to the beginning of the command

	End

	Move the cursor to the end of the command

	PgUp

	Scroll the Command Input window back one page

	PgDn

	Scroll the Command Input window forward one page

		

Insert and Delete Keys:

	Ins

	Toggle between insert and overstrike mode

	Del

	Delete the character under (or to the right of) the cursor, or the highlighted text

	Bksp

	Delete the character to the left of the cursor, or the highlighted text

	Ctrl-L

	Delete the word or partial word to the left of the cursor

	Ctrl-R or Ctrl-Bksp

	Delete the word or partial word to the right of the cursor

	Ctrl-Home

	Delete from the beginning of the line to the cursor

	Ctrl-End

	Delete from the cursor to the end of the line

	Esc

	Delete the entire line

Text Selection and Clipboard Cut/Copy/Delete/Paste:

	Shift-Right

	Highlight character right of cursor and move cursor

	Shift-Left

	Highlight character left of cursor and move cursor

	Shift-Home

	Highlight from cursor to beginning-of-line and move cursor

	Shift-End

	Highlight from cursor to end-of-line and move cursor

	Ctrl-Shift-Right

	Highlight word right of cursor and move cursor

	Ctrl-Shift-Left

	Highlight word left of cursor and move cursor

	Ctrl-A

	Select all

	Ctrl-C

	Copy highlighted text to the clipboard

	Ctrl-V

	Paste the first line of text from the clipboard at the current cursor position

	Ctrl-X

	Cut the selected text and copy it to the clipboard

	Ctrl-Shift-Ins

	Copy selected text and paste it at the current cursor position

	Ctrl-B

	Paste the last argument from the previous command line

	Ctrl-0 to Ctrl-9

	Paste the corresponding argument from the previous command line

Execution:

	Ctrl-K

	Save the current command line without executing it

	Enter

	Send the line to the active tab window

	Ctrl-Enter

	Send the line to the active tab window, but don't insert a CR/LF in the input window

Miscellaneous:

	F1

	Get help for the command (first argument on the line)

	Ctrl-F1

	Get help for the current word

	Ctrl-Z

	Undo last action

	Ctrl-Y

	Redo last undo

	Tab or F7

	Pop up the filename / sharename / variable completion window

	Ctrl-E

	Expand environment variables

	Ctrl-.

	Toggle between LFN and SFN

	Ctrl-P

	Print the command input window

	Ctrl-T

	Create new tab window

Mouse Clicks:

	Single left click

	Move text caret

	Double left click

	Select the current word

	Triple left click (or single click in left margin)

	Select the current line

	Single right click

	Context menu

	Left click+drag

	Drag current selection

To highlight text on the command line use the mouse or hold down the Shift key and use any of the cursor movement keys listed above. Once you have selected or highlighted text on the command line, any new text you type will replace the highlighted text. If you press Bksp or Del while there is text highlighted on the command line, the highlighted text will be deleted.

Tab Windows

The Take Command tab windows allow you to run multiple applications in their own tab inside a single Take Command session.

Although you can run any character-mode and many GUI applications in a tab window, the most common usage will be command processors or utilities. Take Command includes its own console-mode command processor (TCC, formerly known as 4NT), but you can run any other command processor, including CMD, PowerShell, bash, etc. in a tab window. You can even tell Take Command to detect new console windows and automatically convert them to Take Command tab windows!

You can use the scroll bars or the Alt cursor keys to view text that has scrolled through the window. You can also save the contents of a tab window and scrollback buffer to a file, copy text from a tab Window to the clipboard, and copy text from the clipboard or from the tab window scrollback buffer to the command line. See Highlighting and Copying Text for information about saving and retrieving text in the tab window and The Command Line for complete details about using the Take Command console command line.

You can display the tabs on the top, left, right, or bottom of the Take Command window. You can also rotate the tab labels 90 degrees, allowing you to fit more labels without scrolling at the cost of slightly smaller tab windows.

Take Command supports remapped console palettes in the tab windows. If you are running Windows Vista or later, Take Command will use the individual palette defined for each console. If you are running XP or 2003, Take Command will use the default console palette defined in the HKCU\Console registry key.

Holding down the Ctrl key while scrolling the mouse wheel will change the font size in the Take Command console tab windows. Not all apps will be happy about you randomly changing their font (and thus the console window size)!

If the cursor is hidden in a console application running in a tab window, the tab window cursor will also be hidden.

You can also run simple GUI applications in tab windows. (This will not work for applications that have multiple parent windows.)

Splitter Windows

Take Command supports a splitter window option for each tab window. You must enable "Splitter Windows" in the Take Command configuration dialog (Tabs window), and restart Take Command to see the splitter.

To open a splitter window, drag the splitter button on the horizontal scrollbar to the right. The splitter window (on the right side) will not automatically scroll to the end when new output is displayed, or when you enter new commands. This allows you to scroll back in the screen buffer to review previous commands and output, and to select text from previous pages.

Status Bar

The Take Command window has a Status Bar that displays tooltips when you move the cursor over menu entries.

[image: statusbar]

The status bar also displays the following information:

[image: Onestep] The tab window size (columns x rows)

[image: Onestep] The CPU usage (0 - 100%)

[image: Onestep] The memory load (0 - 100%)

[image: Onestep] The state of the Caps Lock key

[image: Onestep] The state of the Num Lock key

[image: Onestep] The state of the Scroll Lock key

[image: Onestep] The current date

[image: Onestep] The current time

You can hide the status bar fields by right clicking on the status bar and unchecking the fields you don't want to see.

There is a slider in the right corner that allows you to dynamically change the transparency level of the Take Command window. (You can also set the transparency in the Options / Configure Take Command / Windows dialog.)

If you are running TCC in a tab window and you enter an internal command, the status bar will display the brief syntax for that command. If you move the mouse over the status bar, a tooltip will pop up with the full syntax. If you enter an alias name, the status bar will identify it as an alias and display its value.

TC Keyboard Shortcuts

Take Command offers a number of keyboard shortcuts to change windows or select entries in the Folders and List View windows. If you are in a tab window, you need to set the Left Alt Key or Right Alt Key and Left Ctrl Key or Right Ctrl Key options in the Take Command tab options dialog. (Otherwise the keystroke will be sent to the console application rather than being interpreted by Take Command.)

All Windows

	Alt-F4	Closes the Take Command window

	Ctrl-Tab	Pops up a window allowing you to select the Folder, List View, or any of the tab windows.

	Alt-F6	Cycle through the Folders View, List View, Command Input, and the active tab windows. If the Folder View and List View windows are disabled, Alt-F6 will toggle between the Command Input window and the active tab window.

Tab Window

	Ctrl-F4	Closes the active tab window

	Ctrl-T	Open a new tab

	Ctrl-Ins	Copy the selected text to the clipboard

	Ctrl-V	Paste the clipboard contents to the command line

	Alt-Left	Change to the previous tab window

	Alt-Right	Change to the next tab window

	Alt-Up	Scroll tab window buffer up one line

	Alt-Down	Scroll tab window buffer down one line

	Alt-PgUp	Scroll tab window buffer up one page

	Alt-PgDn	Scroll tab window buffer down one page

	Alt-Home	Scroll to the beginning of the tab window buffer

	Alt-End	Scroll to the end of the tab window buffer

The Tab Window keys can be changed by right-clicking on the Take Command menu, and selecting Customize / Keyboard.

Folders and/or View Windows

	Alt-Enter	Display the Properties dialog for the selected folder or file

	Ctrl-Enter	Open the selected folder or file

	Shift-Enter	Explore the selected folder

	Del	Delete the selected file(s) in the List View window to the recycle bin

	Shift-Del	Permanently delete the selected file(s) in the List View window

	F2	Rename the selected file(s) in the List View window

	Ctrl-A	Select everything in the List View window

You can customize menu shortcut keys by right clicking on the Take Command menu bar and selecting "Customize / Keyboard".

Context Menus

Take Command displays a variety of context menus when you click on the right mouse button, depending on the location of the mouse cursor. If the mouse cursor is on the:

Menu Bar

You can customize the menu and toolbars.

Toolbar

You can customize the menu and toolbars.

Folders caption bar

You can detach, dock, AutoHide, or Hide the Folders window.

Folders view

Displays the Windows Shell context menu.

List View caption bar

You can detach, dock, AutoHide, or Hide the List View window.

List View

Displays the Windows Shell context menu.

Tab Bar

You can create a new tab, run an application (in a tab or stand-alone) or move an existing console window to a Take Command tab window.

Tab Labels

You can attach, detach, rename, and close tabs;

Tab Windows

You can copy selected text to the clipboard or paste the clipboard contents to the application in the tab window. (Paste works by sending the contents of the clipboard to the tab window as a series of keystrokes, so it will work with any application that accepts input.)

Running DOS apps

If you want to run 16-bit DOS programs in Take Command tab windows, you need to be aware of some limitations in the 16-bit support in Windows XP. (Windows Vista, Windows 2008, Windows 7, and Windows 8 do not support 16-bit DOS programs unless you configure a VM with XP.)

32-bit and 64-bit console applications can be run in any size tab window (subject to any internal limitations in the program itself). However, when Windows starts a 16-bit DOS program, it will always force the console buffer to resize itself to 80x25, 80x43, or 80x50 (whichever is nearest to the current console size). This has three implications:

●If Windows increases the console window size, Take Command has to increase its window height to match, and
●You will lose everything in your scrollback buffer when you start the DOS program, and
●You will not be able to scroll through the output of the DOS program.

When the DOS program exits, Windows will resize the screen buffer to its original size (but it keeps the screen window at the same size). If Take Command increased its window height, it will not resize itself to its previous size.

If you size your Take Command tab windows to 25, 43, or 50 lines, Take Command will not need to resize itself when running DOS programs.

You can also start a DOS program in a tab window (with the Run dialog). Take Command will not need to resize its window in this case, as the console manager will be forced to size the console downwards rather than upwards. Or you can run the DOS program in a separate console window (with the Run dialog or the TCC START command.

Whenever possible, we recommend you retire your DOS programs and replace them with Windows console applications!

Using the Scrollback Buffer

Take Command retains the text displayed on its tab windows in a "scrollback buffer". You can scroll through this buffer using the mouse and the vertical scroll bar at the right side of the Take Command window, just as you can in any Windows application. You can also use the Alt-Up and Alt-Down keys to scroll the display one line at a time from the keyboard, and the Alt-PgUp and Alt-PgDn keys to scroll one page at a time.

If you scroll back through the buffer to view previous output, and then enter text on the command line, Take Command will automatically return to the bottom of the buffer to display the text.

You can set the size of the scrollback buffer on the Tabs tab of the configuration dialogs.

Highlighting and Copying Text

While you are working at the Take Command Console prompt you can use common Windows keystrokes to edit commands, and use the Windows clipboard to copy text between Take Command and other applications. You can also select all of the text in a Take Command tab window buffer by using the Select All command on the Edit menu.

The right mouse button will pop up an Edit context menu.

Take Command allows both line and column selection. If you hold down the Ctrl key while dragging the mouse, Take Command will select a rectangular block of text. Otherwise, as you drag the mouse down Take Command will highlight text to the end of the previous line.

To copy text from a Take Command tab window to the clipboard, first use the mouse to highlight the text, then right click and select Copy, or use the COPY command on the Edit menu. You can optionally combine multiple selected lines into a single line before placing it in the clipboard by holding down the Ctrl key and selecting Copy (or Copy+Paste or Copy+Paste+Run) from the right-click context menu or the Edit menu. If you have an existing multiline selection in the clipboard, you can copy it to a single line (with the CR/LF's replaced by a space) in the Take Command window by holding down the Ctrl key and selecting Paste. (If you hold down the Ctrl key and the selection wraps around the last screen column, the lines will be appended without an intervening space.)

If you double-click on a word in the Take Command window, the entire word is highlighted or selected. If you triple click, the entire line is selected.

To highlight text on the command line use the Shift key in conjunction with the Left, Right , Ctrl-Left, Ctrl-Right, Home, and End cursor movement keys. The Del key will delete any highlighted text on the command line, or you can type new text to replace the highlighted text.

While Take Command tab windows contain text, they are not document windows like those used by word processors and other similar software, and you cannot move the cursor throughout the window as you can in text processing programs. As a result, you cannot use the Windows shortcut keys like Shift-Left or Shift-Right to highlight text in the window. These keys work only at the command line; to highlight text elsewhere in the window you must use the mouse.

To copy text from the clipboard to the command line use Ctrl-V, or the Paste command on the Edit menu.

To paste text from elsewhere in a Take Command tab window directly onto the command line, highlight the text with the mouse and press Ctrl-Shift-Ins, or use the Copy+Paste command on the Edit menu. This is equivalent to highlighting the text and pressing Ctrl-Ins followed by Ctrl-V,except that it will not change the contents of the clipboard. It's a convenient way to copy a filename from a previous DIR or other command directly to the command line.

You should use caution when pasting text containing carriage return or line feed characters onto the command line. If the text you insert contains one of these characters the command line will be executed just as if you had pressed Enter. If you insert multiple lines, the text will be treated just like multiple lines of commands typed at the prompt.

You can also use Windows' Drag and Drop facility to paste a filename from another application onto the command line, and you can access the clipboard with redirection to or from the CLIP: device, or with the @CLIP variable function.

Resizing the Window

You can resize the Take Command window at any time by dragging a corner with the mouse. Resizing the window changes the number of rows and columns of text which will fit in the command window (the actual number of rows and columns for any given window size depends on the font you are using). Take Command reacts to these changes using two sets of rules: one for the height and one for the width.

When the height of the command window changes, future commands simply use the new height as you see it on the screen. For example, if you reduce the window to three rows high and do a DIR /P (display a directory of files and pause at the bottom of each visual "page"), DIR will display two lines of output, a prompt ("Press any key to continue ..."), and then pause. If you expand the window to 40 lines high and repeat the same command, DIR will display 39 lines, a prompt, and then pause.

However, when the width of the window changes, Take Command must check the current virtual screen width. The virtual width is the maximum number of characters on each line in Take Command's internal screen buffer. You can think of it as the width of the data which can be displayed in the Take Command window, including an invisible portion to the right of the window's right-hand edge. When the virtual width is larger than the actual width, a standard horizontal scroll bar is displayed to allow you to see any hidden output.

The _ROWS internal variable can be used to determine the current screen height.

The virtual screen width starts at 80 columns or the number of columns which fit into the startup Take Command window, whichever is larger. The _COLUMNS internal variable can be used to determine the current virtual screen width.

If you expand the Take Command window beyond its previous virtual width, the virtual width is automatically increased. This ensures that the internal buffer can hold lines which will fill the newly enlarged window. If you shrink the window, the virtual width is not reduced because this might require removing output already on the screen or in the scrollback buffer.

As a result, widening the window will make future commands use the new enlarged size (for example, as the window is widened DIR /W, which displays a "wide" directory listing, will display additional columns of file names). However, if the window is narrowed future commands will still remember the enlarged virtual width, and display data to the right of the window edge. Use the horizontal scroll bar to make this data visible.

When the font is changed, Take Command will recalculate the virtual screen width.

Drag and Drop

Take Command is compatible with Windows' Drag-and-Drop facility.

To add a filename to the command line using drag and drop simply drag the file from an application (or the Take Command folder or list view windows), and drop it anywhere inside a Take Command tab window. The full name of the file will be pasted at the current cursor position.

Take Command is a drag and drop "client", which means it can accept files dragged in from other applications and paste their names onto the command line as described above. It is not a drag and drop "server", so you cannot drag filenames from the Take Command tab windows into other applications. However you can copy filenames and other text from the Take Command window to other applications using the clipboard; see Highlighting and Copying Text for details.

Take Command Dialogs

The Take Command menus lead to several dialog boxes. Each is listed here for quick reference, though in general you will find it easier to learn about each one from the context in which it is used (for example, the information referenced below on the tool bar dialog will be more useful after you have read the section on the tool bar).

Take Command uses standard Windows dialogs for tasks like printing, selecting a font, or browsing files and directories. Since these dialogs are provided by Windows, not Take Command, and are common to many different Windows programs; they are not documented within this help system.

The reference in parentheses after certain dialogs listed below shows the name of the menu you can use to access that dialog.

	Run Program	(Tabs)

	Find Files	(Edit)

	Configure Take Command	(Options)

Windows Tab

Tabs Tab

AdvancedTab

	Configure Tab Toolbar	(Options)

Run Program

The Run Program dialog, started from the Tabs menu, allows you to run a program by typing its name or browsing the disk.

[image: clip0042]

In the Command Line edit box, you can enter the name of any executable program plus command line parameters. If you click on the arrow to the right of the edit box, the dialog displays a list of previous commands you have entered during the current Take Command session.

The Browse button leads to a standard file browser from which you can select any executable program. Your choice will be placed in the Command Line edit box, and you can add parameters before selecting OK to run the program.

You can enter an optional startup directory in the Directory edit box.

You can specify an optional user name and password in whose context the program should be run. (Depending on your user privileges, you may not be able to run the program in a Take Command tab window.)

Start in a New Tab will start the application in a new Take Command tab window. This will usually be a Windows console (character-mode) application, but Take Command can also run many simple GUI applications in a tab window (provided the application does not have multiple parent windows).

The Normal, Minimized, and Maximized buttons determine the type of window that will be used for the program. If you select Minimized, the program will start as an icon on the Taskbar. Maximized starts the program in a full-screen window. The Normal button lets the operating system select the size and position of the program's window.

If you're running Windows Vista or later, you can opt to Run as Administrator to start the program with admin privileges. (This option will invoke the Windows UAC dialog).

Find Files

The Find Files/Text dialog box, available from the Edit menu, gives you the same features as the FFIND command, in dialog form.

[image: clip0037]

Enter the file name or names you wish search in the Files field. You can use wildcards and include lists as part of the file name. To select files from previous searches in the same Take Command session, click on the down arrow beside the Files field, or press the up or down arrow while the input cursor is in the Files field. You can also use the Browse button to find files to include in the search.

Enter the drive(s) you want to search in the Disks field. This field is ignored unless Entire Disk is selected in the Search portion of the dialog. If you select All Hard Disks, this field is set automatically to include all hard disk drive letters Take Command finds on your system.

If you use wildcards to specify the files to search, you can narrow the search with the Exclude field by specifying files that you want to exclude from the search. Like the Files field, the Exclude field can contain wildcards and include lists. For example, if you want to search all files with an extension beginning with I except for .ICO and .INI files, you could enter *.i* in the Files field and then *.ico;*.ini in the Exclude field.

Enter the text (or hexadecimal values) you are searching for in the Text field. You can use extended wildcards in the search string to increase the flexibility of the search. Use back-quotes ` around the text if you want to search for characters which would otherwise be interpreted as wildcards. For example, to search for an A, followed by some number of other characters, followed by a B, enter the A*B as your search string. To search for the literal string A*B (A, followed by an asterisk, followed by B), enter `A*B` as your search string search string (the closing back-quote is optional).

You can search either using the TCC-style extended wildcards or with regular expressions.

The Match Case box, when it is selected, makes the search case-sensitive. This option is ignored if Hex Search is selected. The Hex Search option signals that you are searching for hexadecimal values, not ASCII characters. See the FFIND command for more details.

If you enable All Lines, every matching line from every file will be displayed; otherwise only the first matching line from each file will be displayed. Unless you enable the Hidden Files option, files with the hidden and system attributes will not be included in the search.

The radio buttons in the Search area let you specify where you want Take Command to look for files. If you select Dir Only or Dir & Below, the search will begin in the current default directory, shown above the Files box. If you select Entire Disk, Take Command will use the drives that you specified in the Disks field. If you select All Hard Disks, Take Command will search all the hard disk drives it finds on your system.

To start the search, press the Search button. Once the search has started the Search button changes to a Stop button, which you can use to interrupt the search before it is finished.

If the search yields a list of matching files, you can save that list with the Export button or send it to the default printer with the Print button.

If you select one of the matching files in the list (by double-clicking on it, or selecting it with the cursor and pressing Enter), Take Command will display another dialog with complete directory information about the file. From that dialog you can Run the file (if it is an executable file, a batch file, or has an executable extension), or Edit the file (with its associated app, or Notepad if there is no association). When you exit from the editor, the original list of matching files will still be available.

Tab Window Toolbar Configuration

You can create new buttons by right clicking on an empty part of the toolbar and selecting "Add Button" from the popup menu. You can modify or delete a button by right clicking on it. A dialog will open to let you define the button label, tab title, command, and startup directory.

[image: clip0043]

A toolbar button can either open a new tab, send keystrokes to the current tab, or change the directory displayed in the Folder and List views.

You can define a toolbar button to display either an icon, a text label, or both. You must specify either the Icon or Label fields. If you enter both, Take Command will display the text to the right of the icon on the button.

In the Icon field, enter the filename for the icon (.ico) that you want to display on the button. If you specify an .exe filename, Take Command will use the first icon in that file. You can use the Browse button to find the file.

In the Button Label field, enter the text that you want to display on the button.

In the Tab Title field, enter the text that you want to display on the tab window title. This field is optional, and is only used when creating a new tab window.

In the Command field, you can enter either the command to be started in a new window ("Start a new window"), or the keystrokes to be sent to the current tab ("Send to current tab"). You can use the Browse button to find a file to be entered at the beginning of the Command field. If the command is a GUI app, it will be started in a new window outside of Take Command. If it is a console app, it will be started in a new tab window. (You can start GUI apps in a Take Command tab window by using the START /TAB option.)

If the tab is sending keystrokes to the current tab, the text is in the same format as the KEYSTACK command in the Take Command Console:

If you're starting a new window, the Directory field will set the startup directory for the command. If you are changing the Folders directory, the Directory field specifies the new directory. You can use the Browse button to find the directory.

The command and directory fields can include environment variables and TCC internal variables and variable functions. Note that the variable expansion occurs in Take Command, not TCC, so internal variables like %_cwd will not probably work as expected.

Keystroke Interpretation

Characters entered within double quotes, e.g., "abc" will be sent to the active console application as is. The only items allowed outside the quotes are key names, the ! and /W options, and a repeat count.

If keyname is a number, it is interpreted as an ASCII character value.

Repetition. To send keyname several times, follow it with a space, left bracket [, the repetition count, and a right bracket]. For example, the command below will send the Enter key 4 times:

enter [4]

The repeat count works only with an individual keyname. It cannot be used with quoted strings. You must have a blank space between the keyname and the repetition count.

If you exit by choosing the OK button, any changes you have made will be saved in TCMD.INI, and reloaded automatically the next time you start Take Command. If you use the Cancel button, your changes will be discarded.

The tool bar can also be configured with the TCTOOLBAR command.

Configuration Options

Take Command offers a wide range of configuration options, allowing you to customize their operation for your needs and preferences. The Take Command menu entry Options / Configure Take Command invokes the Take Command Configuration Dialog.

Initialization (.INI) Files

Part of the power of Take Command is its flexibility, in allowing you to alter its configuration to match your style of computing. Take Command's configuration is controlled through a file of initialization information.

See Locating the .INI files below to find out how Take Command locates its TCMD.INI file.

Modifying the TCMD.INI File

You can create, add to, and modify the TCMD.INI file with the Configure Take Command selection on the Options menu, or (for the TCC-specific sections) with the configuration dialog, available via the OPTION command.

Most of the changes you make in the configuration dialog take effect immediately. A few (e.g., startup tabs and buffer size) only take effect when you start a new Take Command session. See the online help for each individual dialog page if you are not sure when a change will take effect.

Take Command reads its TCMD.INI file (see Locating the .INI file) when it starts, and configures itself accordingly. The .INI file is not reread when you change it manually. For manual changes to take effect, you must restart Take Command.

Each item that you can include in the .INI file has a default value. You only need to include entries in the file for settings that you want to change from their default values.

Using the TCMD.INI File

Some settings in the .INI file are initialized when you install Take Command; others are modified as you use and when you exit Take Command.

You can optionally include environment variables in the TCMD.INI [4NT] and [TCMD] sections; they will be expanded when TCMD.INI is loaded. If you want to delay expansion until command execution time (for example, with ColorDir) you will need to double the %'s.

Locating the TCMD.INI File

When starting Take Command or a Take Command Console (TCC) shell:

	[image: Onestep]	If there is an @d:\path\inifile option on the startup command line, Take Command will use the path and file name specified there.

	[image: Onestep]	Otherwise, the default TCMD.INI file name is used, and the search starts in the directory where the Take Command program file is stored. If the .INI file is not found, Take Command will look in the %LOCALAPPDATA% directory.

If no .INI file is found, all options are set to their default values. A new .INI file will be created, using the default location and name, as explained above.

TCMD.INI File Sections

 The TCMD.INI file has a number of sections. Each section is identified by the section name in square brackets on a line by itself. Take Command stores the user-defined options in [TakeCommand]; TCC stores its user-defined options in [4NT].

Take Command Configuration Dialog

This dialog, available from the Options menu in Take Command, contains four pages or "tabs" of options that let you change the way Take Command looks and works.

The configuration dialog displays the name of the active TCMD.INI file in the title bar.

Unless you select the Cancel button, any changes you make will take effect immediately. If you select Apply, the settings will only apply for the duration of that session. If you select OK, the settings will be recorded in the appropriate section of the TCMD.INI file and will be in effect each time you start Take Command.

While you are using the dialog, you can move between sets of configuration options by clicking on the individual tabs. The options available in this dialog are:

Windows

Tabs

Advanced

Registration

Windows

[image: tc_windows]

If you are not familiar with the purpose or use of the Windows configuration dialog, review the main configuration dialogs topic before continuing.

Take Command Window

Single Instance restricts Take Command to a single instance. (If you try to start another copy of Take Command, the previous instance will be brought to the foreground.)

Always on Top makes Take Command a topmost window (i.e., it will remain on top of all other non-topmost windows).

Minimize to Tray minimizes Take Command to the system tray instead of the task bar.

Startup Mode - The Normal, Max, and Min buttons select the initial state for the Take Command windows.

Command Input:

These options affect filename completion (tab or F7) in the optional Command Input window.

Complete hidden files : If enabled, hidden and system files will be displayed.

Complete hidden directories : If enabled, hidden directories will be displayed.

Add '\' to Directories : If enabled, a \ (backslash) is automatically appended to directory names (or / to FTP directories).

Double % in filename : If enabled, and the filename has embedded % characters, and the first argument on the command line is an internal command, the % characters will be doubled so that variable expansion won't delete (or unexpectedly expand) the filename. (This will not affect filenames on lines beginning with aliases or variables.)

Search PATH : If enabled, the directories in the PATH variable are searched if a match isn't found in the current directory.

Options : Sets the files returned during filename completion for selected commands. The format is the same as that used by the TCC FILECOMPLETION environment variable. See Customizing Filename Completion for a detailed explanation of selective filename completion.

Server Completion : Configures server name completion (see Filename Completion for information on how to use server name completion). Local lists only local servers (i.e., those in your "network neighborhood"). Global will enumerate the entire network. None will disable server completion; this may be necessary to prevent "hanging" if you start typing a server name and accidentally press Tab, and your local domain is very large or slow to respond.

Auto Save File: The name of a file used to save and restore the Command Input window when Take Command exits and starts.

Transparency:

Transparency sets the transparency level for the Take Command window. The range is from 20 (nearly invisible) to 255 (completely opaque). You can define both the active transparency (when Take Command is the foreground window, and the inactive transparency (when Take Command is in the background).

Cursor:

The Pointer and I-Beam buttons let you select the type of cursor which Take Command will use in the tab windows.

Language:

The Language combo box allows you to override the default language that Take Command uses for menus and dialogs.

Background Image:

A bitmap file (.BMP) to use as the background in Take Command tab windows. (Changing this option will not affect existing windows, only new ones.)

Pop-Up Font:

Set the font to use in the filename completion popup window.

Tab Windows

[image: tc_tabs]

If you are not familiar with the purpose or use of the Tab Windows configuration dialog, review the main configuration dialogs topic before continuing.

Tabs:

Tab Size sets the maximum length of the tab label text (in characters).

Tab Icons displays the application's icon in the tab label.

You can position the tab labels with the Top, Bottom, Left, and Right options.

Close Tab Button defines the close button (X) on the tab labels. You must restart Take Command for this option to take effect.

Auto Attach Consoles converts all new console windows to Take Command tab windows.

Rotate Tabs rotates the tab labels 90 degrees. This allows you to fit many more tabs in the window, at the cost of a reduced window size.

Startup Wait is the number of milliseconds to wait before loading the next startup tab. The range is 0 - 5000. (This should only be needed in rare cases, when the apps are accessing the same files and are interfering with one another while starting.)

COMSPEC sets the program you want to start in new tabs. If no COMSPEC option is set, Take Command will run its default command processor (TCC).

Windows:

Tab Colors lets you define a custom color palette to use in the tab windows. Take Command will first try to retrieve a color palette from the console (Vista or later only). If the console app is using a custom palette, Take Command will use that palette for the tab window. (If you're using XP, Take Command will try to retrieve a default custom color palette from the registry.) If there is no custom palette defined for this console, Take Command will use the palette set by Tab Colors.

The Font button opens a standard Windows font dialog that lets you select the font, point size, and font style for Take Command tab windows.

Colors lets you select the default foreground and background colors for text in the Take Command tab windows. (These colors will be overwritten if the application in the tab window sets its own colors.)

Buffer Rows sets the number of rows in the console-mode screen buffer.

Left Alt Key sends the left Alt key to Take Command, so you can use it to invoke the Take Command menu or scroll the window. (The right Alt key will be passed to the application in the tab window.)

Right Alt Key sends the right Alt key to Take Command, so you can use it to invoke the Take Command menu or scroll the window. (The left Alt key will be passed to the application in the tab window.)

Left Ctrl Key sends the left Ctrl key to Take Command. (The right Ctrl key will be passed to the application in the tab window.)

Right Ctrl Key sends the right Ctrl key to Take Command. (The left Ctrl key will be passed to the application in the tab window.)

I-Beam Caret uses the I-Beam (vertical) caret in tab windows instead of the console underline (horizontal) caret.

Smooth Scrolling scrolls the Take Command tab windows smoothly (2 pixels at a time instead of a line at a time). This will slow down scrolling and output from fast programs. The smooth scrolling is only visible if the underlying console window is scrolling two lines or less, so if the tab window is displaying a lot of fast output you probably won't see it.

Splitter Windows enables the splitter option on the horizontal scrollbar in tab windows.

Startup Tabs:

The Startup Tabs specify programs to run in each tab at startup. You can specify an optional title, the command line (the name of the program and any optional arguments), an optional startup directory, and optionally the user context where the tab should run. You can define up to 25 startup tabs.

Advanced Directives

[image: tc_advanced]

If you are not familiar with the purpose or use of the Advanced Directives configuration dialog, review the main configuration dialogs topic before continuing.

Advanced Options:

Close if No Tabs Exist : If disabled, Take Command won't close if there are no tab windows open.

Linux-style Selection : Copy selected text automatically to the clipboard when the left mouse button is released.

Lock Explorer Bar : Locks the Explorer toolbar in place so it cannot be moved or docked. (Takes effect after restarting Take Command.)

Lock Menu Bar : Locks the menu in place so it cannot be moved or docked. (Takes effect after restarting Take Command.)

Lock Tabbed Toolbar : Locks the tabbed toolbar in place so it cannot be moved or docked. (Takes effect after restarting Take Command.)

Minimize on Close : If enabled, clicking on the Close button or pressing Alt-F4 will minimize Take Command instead of closing it. To close Take Command, select File / Exit.

MouseWheel Support for LIST : If enabled, Take Command will pass the mouse wheel messages to TCC when it detects that TCC is executing its internal LIST command.

Notify Windows Shell on File or Directory Change : Notify the system shell when changing files or directories.

Prompt on Close : Take Command will pop up a confirmation message box when exiting.

Show File Extensions : If enabled, List View will always show file extensions even if they are disabled in the Windows Shell folder properties.

Show Hidden Files : If enabled, the Folders and List View windows will show hidden files. (You must restart Take Command after changing this option.)

Single Click to Open Folders : Single click to open an item in the Folders window. (This will also close any other expanded items.) If this option is not enabled, Take Command will open folders in the Folders window with a double click and will not close other expanded items. You must restart Take Command after changing this option.

Update Environment on System Change : If enabled, Take Command will monitor the WM_SETTINGCHANGE message and if the environment is specified, update the environment from the User, Volatile, and System registry entries. The updates are done whenever Take Command displays a prompt (to prevent the environment from changing in the middle of a batch file).

Update Folder View on Directory Creation / Deletion : If enabled, Take Command will monitor the system for new, deleted, or renamed directories and automatically update the Folder view window.

Web Help : If enabled, Take Command will use the browser-based help (at http://jpsoft.com/help/index.htm) instead of the local help. Using web help allows you to add comments to the help topics.

Win64 File System Redirection : If disabled, overrides the default Win64 behavior of remapping windows\system32 calls to windows\SysWOW64.

Zone ID : Set the NTFS Zone ID security when running executables downloaded from the Internet. (Note that CMD never checks for the Zone ID, so setting it may introduce a minor incompatibility.)

Start Folder : The initial directory to display in the Folders / List View windows.

Descriptions:

Enable Descriptions : Set description display for the List View window.

NTFS Descriptions : If set, Take Command uses the Comments field in the NTFS SummaryInformation stream for each file to hold its description, instead of the DESCRIPT.ION file. The advantages are that the description will always remain with the file regardless of what program copies, moves, or renames it. The disadvantage is that you cannot attach a description to directories.

Maximum Length : Set the description length limit. The allowable range is 20 to 512 characters.

Filename : Sets the file name in which to store file descriptions. The default file name is DESCRIPT.ION.

Regular Expression Syntax:

Sets the regular expression syntax.

Register

There are no separate trial and registered versions of our products. Without registration, a trial version is fully functional for 30 days of use.

The Register tab allows you to register Take Command. When you purchase a new or upgrade copy of Take Command, you will receive an email with your name and registration key. Enter the registration information exactly as you received it in the email (preferably by copying & pasting with the clipboard). Remember to save your registration key in a safe place in case you need to reinstall. If you have lost your registration key, you can request a replacement by contacting JP Software at support@jpsoft.com.

When you enter your registration information, Take Command will save it in the Windows Registry.

(Windows 7, Windows 8 and Vista) If you are running an elevated administrator session, you can optionally check the "Register for All Users" option.

Windows Explorer Integration

Take Command includes five batch files to help integrate Take Command and TCC with Windows Explorer:

	 TCCBATCH.BTM	Batch file to make TCC the default handler (replacing CMD.EXE) in Windows Explorer for .BAT, .BTM, and/or .CMD batch files.

	 TCCHERE.BTM	Batch file to add a "TCC prompt here" menu entry to Explorer. Clicking on this will open a new copy of TCC in the selected directory.

	 TCCTABHERE.BTM	Batch file to create a "TCC tab window here" in the Take Command Folders and List View context menus.

	 TCMDBATCH.BTM	Batch file to make Take Command the default handler (replacing CMD.EXE) in Windows Explorer for .BAT, .BTM, and/or .CMD batch files

	 TCMDHERE.BTM	Batch file to add "Take Command Prompt Here" menu entry to Windows Explorer. Clicking on this will open a new copy of TCC in the selected directory.

Take Command and TCC Integration

Take Command and TCC are tightly integrated and pass messages and commands back and forth. (If you are running another application, such as CMD or PowerShell in a Take Command tab window, you will not have access to these commands and variables.)

The "Change Folder" combobox on the Take Command toolbar recognizes TCC directory aliases (if you are using a global alias list).

Internal commands:

CDD /T or /TO - Change the selected folder in the Take Command Folders window.

START /TAB - Start the process in a new Take Command tab window.

TCFILTER - Display or set the filter for the Take Command list view.

TCTOOLBAR - Change the tool bar buttons.

WINDOW - When run in a tab window, the WINDOW options act on the Take Command window, not the TCC tab window.

Internal Variables:

_TCFILTER - returns the Take Command list view filter.

_TCFOLDER - returns the selected folder in the Folders window if in a Take Command tab window.

_TCTAB - returns 1 if TCC is in a Take Command tab window.

Take Command also creates two environment variables that can be queried by its child tab window processes:

TCMD - the full pathname of the Take Command executable

TCMDVER - the version & build number (i.e., 14.00.20).

Syntax Messages:

Take Command will display the syntax for TCC internal commands on the status bar when you enter them on the TCC command line or in the Command Input window. If you move the mouse over the syntax message on the status bar, Take Command will display a tooltip with the full syntax and switch descriptions.

TCC

TCC is a command processor compatible with CMD (the default command processor in Windows XP / 2003 / Vista / 2008 / 7 / 8) but massively enhanced with thousands of additional features. TCC/LE is a limited version of TCC, distributed as a separate free product.

[image: Onestep] Comparing TCC and TCC/LE

[image: Onestep] Starting TCC

[image: Onestep] Commands

[image: Onestep] Variables & Functions

[image: Onestep] The TCC Command Line

[image: Onestep] Aliases & Batch Files

[image: Onestep] File Selection

[image: Onestep] Input / Output Redirection

[image: Onestep] Configuration Options

[image: Onestep] IDE / Batch Debugger

Comparing TCC, TCC/LE, and CMD

TCC comes in two versions: the full TCC as distributed with Take Command, and TCC/LE, which is distributed separately in a free but unsupported version. We will refer to TCC in this section to mean both TCC and TCC/LE, except where a feature is flagged Not in LE.

TCC/LE contains a subset of the TCC commands, variables, and variable functions. In addition, TCC/LE does not include the following TCC features:

●Batch IDE (debugger and editor)
●FTP, FTPS, SFTP, HTTP, HTTPS, and TFTP file access
●OpenAFS
●Internal Perl, Python, REXX, Ruby, and Tcl/tk support
●Active Scripting
●Command dialogs

TCC/LE does include the full command line editing, alias, filename completion, directory navigation, file selection, and regular expression support in TCC.

If an internal command, variable function, or internal variable is not supported in TCC/LE, the heading for that topic in this help file will include Not in LE.

●Internal Commands
●Variables
●Variable Functions

The following table lists the TCC commands supported in TCC/LE -- and, by way of comparison, with the default Windows command processor CMD. Most of the CMD commands have only a limited subset of the options and/or functionality in the equivalent TCC command. (Commands marked with a * in the CMD column are external Windows commands.)

	TCC

	TCC/LE

	CMD

	?

	Y

	

	ACTIVATE

	Y

	

	ALIAS

	Y

	

	ASSOC

	Y

	Y

	ASSOCIATE

	

	

	ATTRIB

	Y

	*

	BATCOMP

	

	

	BDEBUGGER

	

	

	BEEP

	Y

	

	BREAK

	Y

	Y

	BREAKPOINT

	

	

	CALL

	Y

	Y

	CANCEL

	Y

	

	CD / CHDIR

	Y

	Y

	CDD

	Y

	

	CHCP

	Y

	*

	CLIPMONITOR

	

	

	CLS

	Y

	Y

	COLOR

	Y

	Y

	COPY

	Y

	Y

	DATE

	Y

	Y

	DATEMONITOR

	

	

	DEBUGSTRING

	

	

	DEFER

	

	

	DEL / ERASE

	Y

	Y

	DELAY

	Y

	

	DESCRIBE

	Y

	

	DETACH

	

	

	DIR

	Y

	Y

	DIRHISTORY

	Y

	

	DIRS

	Y

	

	DISKMONITOR

	

	

	DO

	Y

	

	DRAWBOX

	Y

	

	DRAWHLINE

	Y

	

	DRAWVLINE

	Y

	

	ECHO

	Y

	Y

	ECHOERR

	Y

	

	ECHOS

	Y

	

	ECHOSERR

	Y

	

	ECHOX

	

	

	ECHOXERR

	

	

	EJECTMEDIA

	Y

	

	ENDLOCAL

	Y

	Y

	ESET

	Y

	

	EVENTLOG

	

	

	EVENTMONITOR

	

	

	EVERYTHING

	

	

	EXCEPT

	Y

	

	EXIT

	Y

	Y

	FFIND

	Y

	

	FIREWIREMONITOR

	

	

	FOLDERMONITOR

	

	

	FONT

	

	

	FOR

	Y

	Y

	FREE

	Y

	

	FTYPE

	Y

	Y

	FUNCTION

	

	

	GLOBAL

	Y

	

	GOSUB

	Y

	

	GOTO

	Y

	Y

	GZIP

	

	

	HEAD

	

	

	HELP

	Y

	*

	HISTORY

	Y

	

	IDE

	

	

	IF

	Y

	Y

	IFF

	Y

	

	IFTP

	

	

	INKEY

	Y

	

	INPUT

	Y

	

	JABBER

	

	

	KEYBD

	Y

	

	KEYS

	Y

	Y

	KEYSTACK

	Y

	

	LIST

	Y

	

	LOADBTM

	

	

	LOADMEDIA

	Y

	

	LOG

	Y

	

	MD / MKDIR

	Y

	Y

	MEMORY

	Y

	

	MKLINK

	Y

	Y

	MKLNK

	Y

	

	MOVE

	Y

	Y

	MSGBOX

	Y

	

	NETMONITOR

	

	

	ON

	Y

	

	OPTION

	Y

	

	OSD

	

	

	PATH

	Y

	Y

	PAUSE

	Y

	Y

	PDIR

	Y

	

	PLAYAVI

	

	

	PLAYSOUND

	

	

	PLUGIN

	Y

	

	POPD

	Y

	Y

	POSTMSG

	

	

	PRINT

	

	

	PRIORITY

	

	

	PROCESSMONITOR

	

	

	PROMPT

	Y

	Y

	PUSHD

	Y

	Y

	QUERYBOX

	Y

	

	QUIT

	Y

	

	RD / RMDIR

	Y

	Y

	REBOOT

	Y

	

	RECYCLE

	

	

	REM

	Y

	Y

	REN / RENAME

	Y

	Y

	RETURN

	Y

	

	REXEC

	

	

	RSHELL

	

	

	SCREEN

	Y

	

	SCREENMONITOR

	

	

	SCRIPT

	

	

	SCRPUT

	Y

	

	SELECT

	Y

	

	SENDHTML

	

	

	SENDMAIL

	

	

	SERVICEMONITOR

	

	

	SERVICES

	

	

	SET

	Y

	Y

	SETARRAY

	

	

	SETDOS

	Y

	

	SETERROR

	

	

	SETLOCAL

	Y

	Y

	SHIFT

	Y

	Y

	SHORTCUT

	

	

	SHRALIAS

	Y

	

	SMPP

	

	

	SNMP

	

	

	SNPP

	

	

	START

	Y

	Y

	STATUSBAR

	

	

	SWITCH

	Y

	

	SYNC

	

	

	TAIL

	

	

	TAR

	

	

	TASKBAR

	

	

	TASKDIALOG

	

	

	TASKEND

	

	

	TASKLIST

	

	

	TCDIALOG

	

	

	TCFILTER

	Y

	

	TCTOOLBAR

	Y

	

	TEE

	Y

	

	TEXT

	Y

	

	TIME

	Y

	Y

	TIMER

	Y

	

	TITLE

	Y

	Y

	TOUCH

	Y

	

	TRANSIENT

	

	

	TREE

	Y

	*

	TRUENAME

	Y

	

	TYPE

	Y

	Y

	UNALIAS

	Y

	

	UNFUNCTION

	

	

	UNGZIP

	

	

	UNSET

	Y

	

	UNSETARRAY

	

	

	UNTAR

	

	

	UNZIP

	

	

	USBMONITOR

	

	

	VBEEP

	

	

	VER

	Y

	Y

	VERIFY

	Y

	Y

	VIEW

	

	

	VOL

	Y

	Y

	VSCRPUT

	Y

	

	WEBFORM

	

	

	WEBUPLOAD

	

	

	WHICH

	Y

	

	WINDOW

	Y

	

	WMIQUERY

	

	

	Y

	Y

	

	ZIP

	

	

	ZIPSFX

	

	

The following table lists the TCC internal variables supported in TCC/LE (none are included in CMD):

	TCC

	TCC/LE

	+

	Y

	=

	Y

	!

	Y

	?

	Y

	_4ver

	Y

	_?

	Y

	_acstatus

	

	_admin

	

	_afswcell

	

	_alt

	Y

	_ansi

	Y

	_batch

	Y

	_batchline

	Y

	_batchname

	Y

	_batchtype

	

	_battery

	

	_batterylife

	

	_batterypercent

	

	_bdebugger

	

	_bg

	Y

	_boot

	Y

	_build

	Y

	_capslock

	Y

	_cdroms

	

	_childpid

	

	_ci

	Y

	_cmdline

	Y

	_cmdproc

	Y

	_cmdspec

	Y

	_co

	Y

	_codepage

	Y

	_column

	Y

	_columns

	Y

	_consoleb

	

	_consolepids

	

	_country

	Y

	_cpu

	

	_cpuusage

	

	_ctrl

	Y

	_cwd

	Y

	_cwds

	Y

	_cwp

	Y

	_cwps

	Y

	_date

	Y

	_datetime

	Y

	_day

	Y

	_detachpid

	

	_disk

	Y

	_dname

	Y

	_dos

	Y

	_dosver

	Y

	_dow

	Y

	_dowf

	Y

	_dowi

	Y

	_doy

	Y

	_drives

	Y

	_dst

	

	_dvds

	

	_echo

	Y

	_editmode

	

	_elevated

	

	errorlevel

	Y

	_execarray

	

	_execstr

	Y

	_exit

	Y

	_expansion

	Y

	_fg

	Y

	_ftperror

	

	_hdrives

	

	_hlogfile

	Y

	_host

	

	_hour

	Y

	_hwprofile

	

	_ide

	

	_idleticks

	

	_idow

	Y

	_idowf

	Y

	_iftp

	

	_iftps

	

	_imonth

	Y

	_imonthf

	Y

	_ininame

	Y

	_ip

	

	_isodate

	Y

	_isodowi

	

	_isowdate

	

	_isoweek

	

	_isowyear

	

	_kbhit

	Y

	_lalt

	Y

	_lastdir

	

	_lastdisk

	Y

	_lctrl

	Y

	_logfile

	Y

	_lshift

	Y

	_minute

	Y

	_monitors

	

	_month

	Y

	_monthf

	Y

	_numlock

	Y

	_openafs

	

	_osbuild

	Y

	_parent

	Y

	_pid

	

	_pipe

	Y

	_ppid

	

	_ralt

	Y

	_rctrl

	Y

	_ready

	

	_registered

	

	_row

	Y

	_rows

	Y

	_rshift

	Y

	_rubytype

	

	_rubyvalue

	

	_scrolllock

	Y

	_second

	Y

	_selected

	

	_service

	

	_shell

	Y

	_shift

	Y

	_shortcut

	

	_shralias

	Y

	_startpath

	Y

	_startpid

	

	_stdin

	

	_stdout

	

	_stderr

	

	_stzn

	

	_stzo

	

	_syserr

	Y

	_tccver

	Y

	_tcfilter

	Y

	_tcfolder

	Y

	_tclistview

	

	_tctab

	Y

	_tctabactive

	

	_tctabs

	

	_time

	Y

	_transient

	Y

	_tzn

	

	_tzo

	

	_unicode

	

	_utctime

	

	_utcdate

	

	_utcdatetime

	

	_utchour

	

	_utcisodate

	

	_utcminute

	

	_utcsecond

	

	_vermajor

	

	_verminor

	

	_version

	

	_virtualbox

	

	_virtualpc

	

	_vmware

	

	_vxpixels

	

	_vypixels

	

	_windir

	Y

	_winfgwindow

	Y

	_winname

	Y

	_winsysdir

	Y

	_winticks

	

	_wintitle

	Y

	_winuser

	Y

	_winver

	Y

	_wow64

	

	_wow64dir

	

	_x64

	

	_xmouse

	

	_xpixels

	Y

	_xwindow

	

	_year

	Y

	_ymouse

	

	_ypixels

	Y

	_ywindow

	

The following table lists the TCC variable functions supported in TCC/LE (none are included in CMD):

	TCC

	TCC/LE

	@ABS

	Y

	@AFSCELL

	

	@AFSMOUNT

	

	@AFSPATH

	

	@AFSSYMLINK

	

	@AFSVOLID

	

	@AFSVOLNAME

	

	@AGEDATE

	

	@ALIAS

	

	@ALTNAME

	Y

	@ARRAYINFO

	

	@ASCII

	Y

	@ASSOC

	

	@ATTRIB

	Y

	@AVERAGE

	

	@BALLOC

	

	@BFREE

	

	@BPEEK

	

	@BPEEKSTR

	

	@BPOKE

	

	@BPOKESTR

	

	@BREAD

	

	@BWRITE

	

	@CAPI

	

	@CAPS

	

	@CDROM

	Y

	@CEILING

	

	@CHAR

	Y

	@CLIP

	Y

	@CLIPW

	Y

	@COLOR

	

	@COMMA

	Y

	@COMPARE

	

	@CONSOLE

	

	@CONVERT

	

	@CONSOLEB

	

	@COUNT

	Y

	@CRC32

	Y

	@CWD

	Y

	@CWDS

	Y

	@DATE

	Y

	@DATECONV

	

	@DAY

	Y

	@DEC

	Y

	@DECIMAL

	Y

	@DESCRIPT

	Y

	@DEVICE

	Y

	@DIGITS

	Y

	@DIRSTACK

	

	@DISKFREE

	Y

	@DISKTOTAL

	Y

	@DISKUSED

	Y

	@DOMAIN

	

	@DOW

	Y

	@DOWF

	Y

	@DOWI

	Y

	@DOY

	Y

	@DRIVETYPE

	Y

	@DRIVETYPEEX

	

	@ENUMSERVERS

	

	@ENUMSHARES

	

	@ERRTEXT

	

	@EVAL

	Y

	@EXEC

	Y

	@EXECARRAY

	

	@EXECSTR

	Y

	@EXETYPE

	

	@EXPAND

	Y

	@EXT

	Y

	@FIELD

	Y

	@FIELDS

	Y

	@FILEAGE

	

	@FILEARRAY

	

	@FILECLOSE

	Y

	@FILEDATE

	Y

	@FILEHANDLE

	

	@FILENAME

	Y

	@FILEOPEN

	Y

	@FILEREAD

	Y

	@FILEREADB

	Y

	@FILES

	Y

	@FILESEEK

	Y

	@FILESEEKL

	Y

	@FILESIZE

	Y

	@FILETIME

	Y

	@FILEWRITE

	Y

	@FILEWRITEB

	Y

	@FILTER

	

	@FINDCLOSE

	Y

	@FINDFIRST

	Y

	@FINDNEXT

	Y

	@FLOOR

	

	@FOLDERS

	

	@FORMAT

	Y

	@FORMATN

	Y

	@FORMATNC

	Y

	@FSTYPE

	Y

	@FTYPE

	

	@FULL

	Y

	@FUNCTION

	

	@GETDATE

	

	@GETDATETIME

	

	@GETDIR

	Y

	@GETFILE

	Y

	@GETFOLDER

	Y

	@GROUP

	

	@HISTORY

	

	@IDOW

	Y

	@IDOWF

	Y

	@IF

	Y

	@INC

	Y

	@INDEX

	Y

	@INIREAD

	Y

	@INIWRITE

	Y

	@INODE

	

	@INSERT

	Y

	@INSTR

	Y

	@INT

	Y

	@IPADDRESS

	

	@IPNAME

	

	@ISALNUM

	Y

	@ISALPHA

	Y

	@ISASCII

	Y

	@ISCNTRL

	Y

	@ISDIGIT

	Y

	@ISFLOAT

	

	@ISLOWER

	

	@ISODOWI

	

	@ISOWEEK

	

	@ISOWYEAR

	

	@ISPRIME

	

	@ISPRINT

	Y

	@ISPROC

	

	@ISPUNCT

	Y

	@ISSPACE

	Y

	@ISUPPER

	

	@ISXDIGIT

	Y

	@JUNCTION

	

	@LABEL

	Y

	@LCS

	

	@LEFT

	Y

	@LEN

	Y

	@LFN

	Y

	@LINE

	Y

	@LINES

	Y

	@LINKS

	

	@LOWER

	Y

	@LTRIM

	Y

	@MAKEAGE

	

	@MAKEDATE

	

	@MAKETIME

	

	@MAX

	

	@MD5

	Y

	@MIN

	

	@MONTH

	Y

	@MX

	

	@NAME

	Y

	@NUMERIC

	Y

	@OPTION

	Y

	@OWNER

	

	@PATH

	Y

	@PERL

	

	@PING

	

	@PID

	

	@PIDCOMMAND

	

	@PLUGINVER

	

	@PPID

	

	@PRIME

	

	@PRIORITY

	

	@PROCESSTIME

	

	@PYTHON

	

	@QUOTE

	

	@RANDOM

	Y

	@READSCR

	Y

	@READY

	Y

	@REGBREAD

	

	@REGBWRITE

	

	@REGCREATE

	Y

	@REGCOPYKEY

	

	@REGDELKEY

	Y

	@REGEX

	

	@REGEXINDEX

	

	@REGEXIST

	Y

	@REGEXSUB

	

	@REGQUERY

	Y

	@REGSET

	Y

	@REGSETENV

	Y

	@REGTYPE

	Y

	@REMOTE

	Y

	@REMOVABLE

	Y

	@REPEAT

	Y

	@REPLACE

	Y

	@REVERSE

	Y

	@REXX

	

	@RIGHT

	Y

	@RTRIM

	Y

	@RUBY

	

	@SCRIPT

	

	@SEARCH

	

	@SELECT

	Y

	@SERIAL

	Y

	@SERVICE

	

	@SFN

	Y

	@SHA1

	

	@SHA256

	

	@SHA384

	

	@SHA512

	

	@SHFOLDER

	

	@SIMILAR

	

	@SNAPSHOT

	

	@STRIP

	Y

	@SUBST

	Y

	@SUBSTR

	Y

	@SUMMARY

	

	@SYMLINK

	

	@SYSTEMTIME

	

	@TALNUM

	

	@TALPHA

	

	@TARCFILE

	

	@TARCOUNT

	

	@TARDFILE

	

	@TARFILEDATE

	

	@TARFILESIZE

	

	@TASCII

	

	@TCL

	

	@TCNTRL

	

	@TDIGIT

	

	@TIME

	

	@TIMER

	Y

	@TLOWER

	

	@TPRINT

	

	@TPUNCT

	

	@TRIM

	Y

	@TRUENAME

	Y

	@TRUNCATE

	

	@TSPACE

	

	@TUPPER

	

	@TXDIGIT

	

	@UNC

	

	@UNICODE

	Y

	@UNIQUE

	Y

	@UNQUOTE

	Y

	@UNQUOTES

	Y

	@UPPER

	Y

	@VERINFO

	

	@WATTRIB

	Y

	@WILD

	Y

	@WINAPI

	

	@WINCLASS

	

	@WINCLIENTSIZE

	

	@WINEXENAME

	

	@WININFO

	Y

	@WINMEMORY

	Y

	@WINMETRICS

	

	@WINPID

	

	@WINPOS

	

	@WINSIZE

	

	@WINSTATE

	

	@WINSYSTEM

	

	@WMI

	

	@WORD

	Y

	@WORDS

	Y

	@WORKGROUP

	

	@XMLCLOSE

	

	@XMLNODES

	

	@XMLOPEN

	

	@XMLXPATH

	

	@YEAR

	Y

	@ZIPCFILE

	

	@ZIPCFILESIZE

	

	@ZIPCOMMENT

	

	@ZIPCOUNT

	

	@ZIPDFILE

	

	@ZIPDFILESIZE

	

	@ZIPFILECOMMENT

	

	@ZIPFILEDATE

	

TCC also includes 60+ command variables that are not in TCC/LE or CMD.

Starting TCC

You will typically start TCC in a Take Command tab window. But you can also start TCC (and TCC/LE) from a Windows shortcut, located:

●on the desktop, or
●in the Quick Launch bar, or
●in the Programs section of the Start menu (including its Startup subdirectory).

You may also start it from the Start / Run dialog.

The TCC/LE installer will optionally create both a TCC/LE folder or group (in the Programs section of the Start menu) and a desktop object (shortcut) which starts TCC/LE. Usually these are sufficient, but if you prefer, you can create multiple desktop objects or items to start TCC/LE with different startup commands or options, or to run different applications in the tab windows.

See TCC Startup Options for more information on startup command line options.

When you configure a TCC shortcut, place the full path and name for the file in the Command Line field, and put any startup options that you want passed to TCC. For example:

	Command Line:	C:\Program Files\JPSoft\TCMD\TCC.EXE

	Working directory:	C:\

You do not need to use the Change Icon button, because TCC.EXE already contains icons.

Each Windows program has a command line which can be used to pass information to the program when it starts. The command line is entered in the Command Line field for each shortcut or each item in a Program Manager group (or each item defined under another Windows shell), and consists of the name of the program to execute, followed by any startup options.

The TCC startup command line does not need to contain any information. When invoked with an empty command line, TCC will configure itself from the TCMD.INI file, and then display a prompt and wait for you to type a command. However, you may add information to the startup command line that will affect the way TCC operates.

TCC Startup Options

The command line that starts TCC will typically include the program name with drive and path, followed by any options. For example:

"c:\program files\jpsoft\tcmd13\tcc.exe" @c:\jpsoft\tcmd.ini

Although the startup command line is usually very simple, you can add several options. You can do this manually in the Windows RUN dialog, in a Windows shortcut file (.LNK), at the TCC prompt or in a batch file (with or without using the internal START command). Each of these methods will start a new instance of the selected command processor, which will run in a new window, except when TCC is started from TCC (either at the command prompt or within a batch file) without the START command.

When you use a pipe in a command, either at the command prompt or in a batch file, TCC starts another instance of itself, using the same command line parameters (except as required for the pipe).

The complete syntax for the TCC startup command line is (all on one line):

d:\path\tcc.exe [d:\path] [[/]@d:\path\inifile] [//directive=value...] [/A /H /I[IPSX]/L: /LA /LD /LF /LH /N/Q /S /T:bf /U /V /X] [/C | /K] [command]

Do not include the square brackets shown in the command line above. They are there to indicate that the items within the brackets are optional. Some options are available only in specific products; see below for details.

If you include any of the options below, you should use them in the order that they are described. If you do not do so, you may find that they do not operate properly.

The command line must start with the path and name of the executable program file (TCC.EXE):

d:\path\tcc.exe

The additional items below may be included on the command line:

		d:\path

If included, this second copy d:\path of TCC path must be identical to d:\path in the command line segment above. It sets the drive and directory where the program is stored, called the COMSPEC path. This option is included for compatibility with other character mode command processors, but is not needed in normal use. TCC can find its own directory without a COMSPEC path.

		@d:\path\inifile OR

		/@d:\path\inifile

This option sets the path and name of the .INI file. You don't need this option if

	1)	your .INI file is named TCMD.INI, and

	2)	it is in one of the following directories:

	2.1)	the same directory as TCC

	2.2)	the %localappdata% directory

This option is most useful if you want to start the program with a specific and unique .INI file.

To start TCC without any .INI file, you can use the /I or /II options, or create an empty file and specify it as your .INI file.

To get around a Windows limitation that causes the displayed command line of a shortcut to be truncated when a parameter begins with @, you can use the alternative syntax

/@d:\path\inifile

TCC will skip the leading slash.

		//directive=value

This option tells TCC to treat the text appearing between the // and the next space or tab as a directive. The directive should be in the same format as a line in the .INI file, but may not contain spaces, tabs, or comments. This option may be repeated. It is a convenient way to place a few simple directives on the startup line without having to modify or create a new .INI file.

Directives on the command line override any corresponding directive in the .INI file.

	/A	This option causes the output of internal commands to a pipe or redirected to a file to be in ASCII when TCC starts. This is the default value, and isn't necessary unless you want to override a Unicode Output configuration option.

	/D	Disable execution of AutoRun commands from Registry. If /D is not specified when TCC starts, it will look for and execute the following registry variables:

HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor\AutoRun

and / or

HKEY_CURRENT_USER\Software\Microsoft\Command Processor\AutoRun

See also the AutoRun configuration option.

	/H	Start TCC in a hidden window. The window will not appear on the task bar, or in the Alt-tab list of applications.

	/I	Don't load the .INI file, execute TCSTART or TCEXIT, or load plugins. You can optionally specify individual arguments:

	/II	Don't load the .INI file.

	/IP	Don't load plugins.

	/IS	Don't execute TCSTART.

	/IX	Don't execute TCEXIT.

	/L:	Forces the use of local lists as the default for aliases, functions, directory history and command history, overriding any configuration options. This method allows you to use global lists as the default, but start a specific session with local aliases, functions and histories. See the topics ALIAS, FUNCTION, and Local and Global History Lists for more details. Note the required trailing colon (:)!

	

		You can optionally specify individual arguments:

	/LA	Forces the use of local aliases.

	/LD	Forces the use of a local directory history.

	/LF	Forces the use of local functions (not supported in TCC/LE).

	/LH	Forces the use of a local command history list.

	/N	If TCC was started as a service, use the /N option to prevent TCC from being closed on a Windows CTRL_LOGOFF_EVENT (not supported in TCC/LE).

	/Q	Don't display version / copyright message (registered copies only; not supported in TCC/LE).

	/S	This option tells TCC that you do not want it to set up a Ctrl-C / Ctrl-Break handler. It is included for compatibility with CMD.

Warning: It may cause the system to operate incorrectly if you use this option without other software to handle Ctrl-C and Ctrl-Break. This option should be avoided by most users.

	/T:bf	This option sets the foreground and background colors in the TCC command window. Both b and f are hexadecimal digits. b specifies the background color and f specifies the foreground color. This option is included only for compatibility with CMD. See the CMD color codes in Colors, Color Names & Codes.

In most cases you should set default colors with the corresponding Output Colors configuration option. If you use both, the /T switch overrides the configuration options.

	/U	This option causes the output of internal commands to a pipe or redirected to a file to be in Unicode when TCC starts. The command :

OPTION //UnicodeOutput=yes | no

		

may be used at any time to switch between Unicode and ASCII output.

	/U8	This option causes the output of internal commands to a pipe or redirected to a file to be in UTF-8 when TCC starts. The command :

OPTION //UTF8Output=yes | no

		

may be used at any time to switch between UTF-8 and ASCII output.

	/V	Tells TCC to handle the CMD syntax !varname! as a delayed expansion of %varname. Since CMD, unlike TCC, doesn't support delayed expansion of variable references in the %varname% format, it introduced a special !varname! notation. Using /V simply tells TCC to handle that syntax as an alternative to %varname% or %varname or %[varname].

	/X	This option forces TCC to alter the operation of the MD (MKDIR) command to automatically create all necessary intermediate directories when it creates a new subdirectory. Its effect is the same as adding a /S option to all MD (MKDIR) commands. This option is included for compatibility with CMD, where it also enables other options. However, in TCC those options are already enabled by default.

/C command or

/K command or

command

		Only one of these options may be used to specify for TCC what it must do after startup, and what it should do after completing command. Command will be executed after the automatic TCC startup program TCSTART, but before a prompt is displayed. Command may be any valid alias, internal or external command, or batch file, including parameters.

All other startup options must be placed before command, because TCC will treat characters after command as parameters for command and not as additional startup options.

If command is preceded by /C, TCC will execute command and then exit, returning to the parent program or the desktop without displaying a prompt.

The /K switch has no effect. Using it is the same as placing command (with neither /C nor /K) at the end of the startup command line. It is included only for compatibility with CMD.

Example 1

Assume that you execute the command line below:

c:\TCMD\TCC.exe c:\TCMD\start.btm

The events below will take place in the order shown:

	1	Windows starts c:\TCC\TCC.exe

	2	TCC initializes from

1st choice: c:\TCC\TCMD.INI

2nd choice: TCMD.INI in the %localappdata% directory.

	3.1	If the initialization file was found, and it contains the directive

TCStartPath=c:\start

and one of the files

c:\start\tcstart.btm

c:\start\tcstart.bat

c:\start\tcstart.cmd

c:\start\tcstart.exe

c:\start\tcstart.com

exists, that file is executed by TCC.

	3.2	If no initialization file was found in Step 2, or the initialization file either does not contain the TCStartPath directive, or the value of the directive is c:\TCC, and a TCSTART program is found in directory c:\TCC, it is executed by TCC

	4	TCC executes c:\tcmd\start.btm (or, if not found, it displays an error message).

	5	TCC displays the command prompt, unless an EXIT command was executed in c:\tcmd\start.btm, terminating TCC.

Example 2

The command line below, when executed by TCC, CMD, the RUN dialog, or a shortcut, will start TCC, select local aliases, execute any TCSTART file you have created, execute the file PROCESS.BTM, and exit. No prompt will be displayed by this session:

c:\tcmd13\tcc.exe /la /c c:\tcmd13\process.btm

TCSTART and TCEXIT

TCC Startup Program

Each time TCC starts, it looks for a program named TCSTART. TCSTART is normally a batch file (.BAT, .BTM, or .CMD), but it can be any executable file. If you specify a path in the TCSTART / TCEXIT configuration option, the file must be in the specified directory. If the configuration option is not used, the TCSTART program, if any, in the same directory as your command processor is executed. Use of TCSTART is optional, and TCC will not display an error message if it cannot find the program. If you do not want to use a startup program, set the TCSTART / TCEXIT path to a directory which does not have one, or leave it unspecified, and make sure that no matching executable file is in TCC's directory.

TCSTART is a convenient place to change the color or content of the prompt for each session, LOG the start of a session, or execute other special startup or configuration commands. It is also one way to set aliases, functions, and environment variables. See the section below on Pipes etc. about changing directories via TCSTART.

With the exception of some initialization switches, the entire startup command line passed to TCC is available to TCSTART as batch file parameters (%1, %2, etc.). For example, to pause if any parameters are passed, you could include this command in TCSTART:

if %# GT 0 pause Starting %_cmdproc with parameters [%$]

You can disable TCSTART and/or TCEXIT

Pipes, Transient Sessions / Processes, and TCSTART

When you set up the TCSTART program, remember that it is executed every time the command processor starts, including when running a pipe or when a transient copy of TCC is started with the /C startup option. For example, suppose you enter a command line like this, which uses a pipe:

[c:\data] myprog | sort > out.txt

Normally this command would create the output file C:\DATA\OUT.TXT. However, if your TCSTART program changes to a different directory, the output file will be written there, not in C:\DATA. This is because TCC starts a second copy (instance) of itself to run the commands on the right hand side of the pipe, and that new copy executes TCSTART before processing the commands from the pipe.

The same thing occurs if you use a transient session (one started with the /C option) to run an individual command, then exit. The session will execute in the directory set by TCSTART, not the directory in which it was originally started (e.g., by specifying a working directory in a shortcut). For example, suppose you set up a desktop object with a command line like this, which starts a transient session:

	Command:	d:\tc\tcmd.exe /c list myfile.txt

	Working Directory:	c:\data

Normally this shortcut would LIST the file C:\DATA\MYFILE.TXT. However, if TCSTART changes the default to a different directory, TCC will look for MYFILE.TXT there, not in C:\DATA.

Similarly, any changes to environment variables, aliases, or other settings in TCSTART will affect all copies of TCC, including those used for pipes and transient sessions.

You can work around these potential problems with the IF or IFF commands and the _PIPE and _TRANSIENT internal variables. For example, to skip all TCSTART processing when running in a pipe or in a transient session, you could use a command like this at the beginning of TCSTART:

if %_pipe != 0 .or. %_transient != 0 quit

TCC Termination Program

Whenever a TCC session ends, it looks for a program named TCEXIT. TCEXIT is normally a batch file (.BAT, .BTM, or .CMD), but it can be any executable file. The location of this optional program is determined by the same rule as the location of the TCSTART program for the session, and is not necessary in most circumstances. However, it is a convenient place to put commands to save information from one session to another, such as a (command) history list before TCC exits, or to LOG the end of the session. You can use a termination program even if you have no startup program.

No parameters are passed to the termination program.

TCC Exit Codes

If you start TCC from another program (e.g. to run a batch file or internal command), it will return a numeric code to the other program when it exits. This code indicates whether or not the operation performed was successful, with 0 indicating success and a non-zero value indicating a failure or other numeric result.

TCC's exit code is normally the numeric exit code from the last internal or external command. However, for CMD compatibility reasons and to avoid conflicts with external commands, only some internal commands set the exit code; others leave it unchanged from the most recent external command.

You can also use the EXIT n command to explicitly set the exit code. This overrides the rules above, and sets the return code to the parameter of your EXIT command.

Commands

TCC gives you instant access to more than 180 internal commands. (By contrast, Microsoft's CMD has fewer than 40 internal commands.) The best way to learn about commands is to experiment with them. This section will help you find the one(s) that you need, categorized in the lists below by name and by category.

	[image: Onestep]	Commands By Name

	[image: Onestep]	Commands By Category

Note: Remember that you can replace any internal command with an ALIAS or plugin, or disable an internal command with SETDOS /I.

Internal Commands Listed by Name

? A B C D E F G H I J K L M N O P Q R S T U V W Y

See also: Internal Commands Listed by Category

	

	Description

	?

	Display list of internal commands or

Prompt to execute a command

	ACTIVATE

	Activate or set window state

	ALIAS

	Define or display aliases

	ASSOC

	Windows file associations

	ASSOCIATE

	Combine ASSOC and FTYPE

	ATTRIB

	Change or display file attributes

	BATCOMP

	Batch file compression

	BDEBUGGER

	Batch file debugger

	BEEP

	Beep the speaker

	BREAK

	Define or display Ctrl-C state

	BREAKPOINT

	Set a batch debugger breakpoint

	CALL

	Call another batch file

	CANCEL

	End batch file processing

	CD

	Display or change directory

	CDD

	Change drive and directory

	CHCP

	Display or change code page

	CHDIR

	Display or change directory

	CLIPMONITOR

	Monitor Windows clipboard

	CLS

	Clear the display window

	COLOR

	Change the display colors

	COPY

	Copy files and/or directories

	DATE

	Display or change date

	DATEMONITOR

	Monitor the current date and time

	DEBUGMONITOR

	Monitor OutputDebugString calls

	DEBUGSTRING

	Send text to system debugger

	DEFER

	Defer a command until batch file exit

	DEL

	Delete files and/or directories

	DELAY

	Wait for specified time

	DESCRIBE

	Display or change descriptions

	DESKTOP

	Create or switch desktops

	DETACH

	Start app detached

	DIR

	Display files and/or directories

	DIRHISTORY

	Display directory history list

	DIRS

	Display directory stack

	DISKMONITOR

	Monitor disk usage

	DO

	Create batch file loops

	DRAWBOX

	Draw a box

	DRAWHLINE

	Draw a horizontal line

	DRAWVLINE

	Draw a vertical line

	ECHO

	Echo a message

	ECHOERR

	Echo a message to STDERR

	ECHOS

	Echo a message with no CR/LF

	ECHOSERR

	Echo with no CR/LF to STDERR

	ECHOX

	Echo with no expansion to STDOUT

	ECHOXERR

	Echo with no expansion to STDERR

	EJECTMEDIA

	Eject a removable drive

	ENDLOCAL

	Restore from a SETLOCAL

	ERASE

	Delete files and/or directories

	ESET

	Edit variables or aliases

	EVENTLOG

	Write Windows event log

	EVENTMONITOR

	Monitor event log

	EVERYTHING

	Search for files and/or directories

	EXCEPT

	Exclude files from a command

	EXIT

	Exit TCC

	FFIND

	Search for files or text

	FIREWIREMONITOR

	Monitor FireWire devices

	FOLDERMONITOR

	Monitor folders and/or files

	FONT

	Change console font

	FOR

	Repeat a command

	FREE

	Display disk space

	FTYPE

	Display or edit file types

	FUNCTION

	Create or edit user functions

	GLOBAL

	Run command in subdirectories

	GOSUB

	Call batch subroutines

	GOTO

	Branch in a batch file

	GZIP

	Compress files to .gz archive

	HEAD

	Display beginning of file

	HELP

	Help for internal commands

	HISTORY

	Display or change history

	IF

	Conditional command execution

	IFF

	Conditional command execution

	IFTP

	Open FTP connection

	INKEY

	Get a single keystroke

	INPUT

	Get a text string

	JABBER

	Send an IM

	KEYBD

	Set keyboard toggles

	KEYS

	Enable or disable history list

	KEYSTACK

	Send keystrokes to app

	LIST

	Display content of files

	LOADBTM

	Load batch file as .BTM

	LOADMEDIA

	Close CD-ROM / DVD drive door

	LOG

	Save log of commands

	MD

	Create subdirectories

	MEMORY

	Display memory statistics

	MKDIR

	Create subdirectories

	MKLINK

	Create NTFS symbolic links

	MKLNK

	Create NTFS hard or soft link

	MOVE

	Move files or directories

	MSGBOX

	Popup message box

	NETMONITOR

	Monitor networks

	ON

	Batch file error trapping

	OPTION

	Configure the TCC console

	OSD

	Display floating text

	PATH

	Set or display PATH

	PAUSE

	Wait for input

	PDIR

	User-formatted DIR

	PLAYAVI

	Display an .AVI file

	PLAYSOUND

	Play a sound file

	PLUGIN

	Load or unload plugin DLL

	POPD

	Restore from directory stack

	POSTMSG

	Send a message to a Window

	PRINT

	Print a file

	PRIORITY

	Set process priority

	PROCESSMONITOR

	Monitor processes

	PROMPT

	Change command line prompt

	PUSHD

	Save directory to stack

	QUERYBOX

	Popup input box

	QUIT

	Exit batch file

	RD

	Remove subdirectory

	REBOOT

	Reboot system

	RECYCLE

	Display or empty recycle bin

	RESOLUTION

	Change display resolution

	REXEC

	Remotely execute commands

	REM

	Remark

	REN

	Rename files or directories

	RENAME

	Rename files or directories

	RETURN

	Return from GOSUB

	RMDIR

	Remove subdirectory

	RSHELL

	Remotely execute commands

	SCREEN

	Position cursor

	SCREENMONITOR

	Monitor screen saver

	SCRPUT

	Write directly to screen

	SELECT

	Select files for a command

	SENDHTML

	Send HTML email

	SENDMAIL

	Send email

	SERVICEMONITOR

	Monitor Windows services

	SERVICES

	Display, stop, or start system services

	SET

	Set or display environment variables

	SETDOS

	Set or display console options

	SETLOCAL

	Save environment, aliases & functions

	SHIFT

	Shift batch file parameters

	SHORTCUT

	Create a Windows shortcut

	SHRALIAS

	Share aliases

	SMPP

	Simple message transfer

	SNMP

	Send SNMP traps

	SNPP

	Send message to pager

	START

	Start a new session

	STATUSBAR

	Display text on status bar

	SWITCH

	Batch file switch / case

	SYNC

	Synchronize directories

	TAIL

	Display end of file

	TAR

	Add files to .tar archive

	TASKBAR

	Call Windows Taskbar functions

	TASKDIALOG

	Popup Windows task dialog

	TASKEND

	End a task

	TASKLIST

	Display Windows task list

	TCDIALOG

	Display command dialogs

	TCFILTER

	Filter Take Command List View

	TCTOOLBAR

	Edit Toolbar

	TEE

	Pipe "tee-fitting"

	TEXT

	Display text in batch file

	TIME

	Set or display time

	TIMER

	Stopwatch

	TITLE

	Set window title

	TOUCH

	Change file timestamps

	TPIPE

	Text filtering and substitution

	TRANSIENT

	Toggle shell transient mode

	TREE

	Display directory tree

	TRUENAME

	Display true pathname

	TYPE

	Display files

	UNALIAS

	Remove aliases

	UNFUNCTION

	Remove user-defined functions

	UNSET

	Remove environment variable

	UNGZIP

	Extract files from .gz archive

	UNTAR

	Extract files from .tar archive

	UNZIP

	Unzip files from zip archive

	USBMONITOR

	Monitor USB devices

	VBEEP

	Flash the screen and beep

	VER

	Display version

	VERIFY

	Display or set disk verification

	VIEW

	Display file contents

	VOL

	Display or set disk volume label

	VSCRPUT

	Write text vertically

	WEBFORM

	Post data to web forms

	WEBUPLOAD

	Upload files to web servers

	WHICH

	Display command information

	WINDOW

	Window management

	WMIQUERY

	WMI queries

	Y

	Pipe "y-fitting"

	ZIP

	Zip files to zip archive

	ZIPSFX

	Create self-extracting executable

Internal Commands Listed by Category

See also: Internal Commands Listed by Name

The best way to learn about commands is to experiment with them. The lists below categorize the available commands by topic and will help you find the one(s) you need.

	[image: Onestep]	File and directory management

	[image: Onestep]	Subdirectory management

	[image: Onestep]	Input and output

	[image: Onestep]	Window management commands

	[image: Onestep]	Commands primarily for use in or with batch files and aliases

	[image: Onestep]	Environment and path commands

	[image: Onestep]	System configuration and status

	[image: Onestep]	Monitoring commands

	[image: Onestep]	Compression / Decompression

	[image: Onestep]	Other commands

File and directory management

	

	Description

	ATTRIB

	Change or display file attributes

	COPY

	Copy files and/or directories

	DEL

	Delete files and/or directories

	DESCRIBE

	Display or change descriptions

	ERASE

	Delete files and/or directories

	EVERYTHING

	Search for files and/or directories

	FFIND

	Search for files or text

	HEAD

	Display beginning of file

	IFTP

	Open FTP connection

	LIST

	Display contents of files

	MOVE

	Move files or directories

	RECYCLE

	Display or empty recycle bin

	REN

	Rename files or directories

	RENAME

	Rename files or directories

	SELECT

	Select files for a command

	SYNC

	Synchronize directories

	TAIL

	Display end of file

	TOUCH

	Change file dates/times

	TPIPE

	Text filtering and substitution

	TREE

	Display directory tree

	TRUENAME

	Display true pathname

	TYPE

	Display files

	UNZIP

	Unzip files from archive

	VIEW

	Display file contents

	Y

	Pipe "y-fitting"

	ZIP

	Zip files to archive

Subdirectory management

	

	Description

	CD

	Display or change directory

	CDD

	Change drive and directory

	CHDIR

	Display or change directory

	DIR

	Display files and/or directories

	DIRS

	Display directory stack

	MD

	Create subdirectories

	MKDIR

	Create subdirectories

	MKLNK

	Create NTFS hard or soft link

	PDIR

	User-formatted DIR

	POPD

	Restore from directory stack

	PUSHD

	Save directory to stack

	RD

	Remove subdirectory

	RMDIR

	Remove subdirectory

Input and output

	

	Description

	DRAWBOX

	Draw a box

	DRAWHLINE

	Draw a horizontal line

	DRAWVLINE

	Draw a vertical line

	ECHO

	Echo a message

	ECHOERR

	Echo a message to stderr

	ECHOS

	Echo a message with no CR/LF

	ECHOSERR

	Echo with no CR/LF to stderr

	ECHOX

	Echo with no expansion

	ECHOXERR

	Echo with no expansion to stderr

	FONT

	Change console font

	INKEY

	Get a keystroke

	INPUT

	Get an input line

	KEYSTACK

	Send keystrokes to app

	MSGBOX

	Popup message box

	OSD

	Display floating text

	PLAYAVI

	Play an .AVI file

	PLAYSOUND

	Play a sound file

	PRINT

	Print a file

	QUERYBOX

	Popup input box

	SCREEN

	Position cursor

	SCRPUT

	Write directly to screen

	SENDHTML

	Send HTML email

	SENDMAIL

	Send email

	SMPP

	Send SMS message

	SNMP

	Send SNMP trap

	SNPP

	Send message to pager

	STATUSBAR

	Display text on status bar

	TASKDIALOG

	Popup Windows task dialog

	VSCRPUT

	Write text vertically

Window management commands

	

	Description

	ACTIVATE

	Activate or set window state

	DESKTOP

	Create or switch desktops

	POSTMSG

	Send a message to a Window

	TITLE

	Set window title

	WINDOW

	Window management

Commands primarily for use in or with batch files and aliases

(some work only in batch files; see the individual commands for details)

	

	Description

	ALIAS

	Define or display aliases

	BATCOMP

	Batch file compression

	BDEBUGGER

	Batch file debugger

	BEEP

	Beep the speaker

	BREAKPOINT

	Set a batch debugger breakpoint

	CALL

	Call another batch file

	CANCEL

	End batch file processing

	DEBUGSTRING

	Send text to system debugger

	DEFER

	Defer a command until the batch file exits

	DELAY

	Wait for specified time

	DO

	Batch file looping

	ENDLOCAL

	Restore a SETLOCAL

	EJECTMEDIA

	Eject a removable drive

	FOR

	Repeat a command

	FUNCTION

	Create or edit user functions

	GLOBAL

	Run command in subdirectories

	GOSUB

	Call batch subroutines

	GOTO

	Go to a batch file label

	IF

	Conditional command execution

	IFF

	Conditional command execution

	JABBER

	Send an IM

	LOADBTM

	Load batch files as .BTM

	LOADMEDIA

	Close CD-ROM / DVD drive door

	ON

	Batch file error trapping

	PAUSE

	Wait for input

	QUIT

	Exit batch file

	REM

	Remark

	RETURN

	Return from GOSUB

	SETLOCAL

	Save environment, aliases, and functions

	SHIFT

	Shift batch file parameters

	SWITCH

	Batch file switch / case

	TEXT

	Display text in batch file

	TRANSIENT

	Toggle shell transient mode

	UNALIAS

	Remove aliases

	UNFUNCTION

	Remove user-defined functions

	VBEEP

	Flash the screen and beep

	WEBFORM

	Post data to web servers

	WEBUPLOAD

	Upload files to web servers

Environment and path commands

	

	Description

	ESET

	Edit variables or aliases

	PATH

	Set or display PATH

	SET

	Set or display environment variables

	UNSET

	Remove environment variables

System configuration and status

	

	Description

	ASSOC

	Windows file associations

	ASSOCIATE

	Combine ASSOC and FTYPE

	BREAK

	Define or display Ctrl-C state

	CHCP

	Display or change code page

	CLS

	Clear the display window

	COLOR

	Change the display colors

	DATE

	Display or change date

	DIRHISTORY

	Display directory history list

	EVENTLOG

	Write to Windows event log

	FREE

	Display disk space

	FTYPE

	Display or edit file types

	HISTORY

	Display or change history

	KEYBD

	Set keyboard toggles

	KEYS

	Enable or disable history list

	LOG

	Save log of commands

	MEMORY

	Display memory statistics

	OPTION

	Configure the TCC console

	PLUGIN

	Load or unload plugin DLL

	PROMPT

	Change command line prompt

	REBOOT

	Reboot system

	RESOLUTION

	Change display resolution

	SETDOS

	Internal options

	SERVICES

	Display, stop, or start services

	SHORTCUT

	Create a Windows shortcut

	TASKBAR

	Call Windows Taskbar functions

	TASKEND

	End a task

	TASKLIST

	Display Windows task list

	TCFILTER

	Filter Take Command List View

	TCTOOLBAR

	Edit Take Command toolbar

	TIME

	Set or display time

	VERIFY

	Display or set disk verification

	VER

	Display version

	VOL

	Display or set disk volume label

Monitoring commands

	

	Description

	CLIPMONITOR

	Monitor Windows clipboard

	DATEMONITOR

	Monitor current date and time

	DEBUGMONITOR

	Monitor OutputDebugString API

	DISKMONITOR

	Monitor disk usage

	EVENTMONITOR

	Monitor event log

	FIREWIREMONITOR

	Monitor FireWire devices

	FOLDERMONITOR

	Monitor folders and/or files

	NETMONITOR

	Monitor network connections

	PROCESSMONITOR

	Monitor processes

	SCREENMONITOR

	Monitor Windows screen saver

	SERVICEMONITOR

	Monitor Windows services

	USBMONITOR

	Monitor USB devices

Compression / Decompression commands

	

	Description

	GZIP

	Compress files to .gz archive

	TAR

	Add files to tar archive

	UNGZIP

	Extract files from .gz archive

	UNTAR

	Extract files from tar archive

	UNZIP

	Unzip files from archive

	ZIP

	Zip files to archive

	ZIPSFX

	Create self-extracting executable

Other commands

	

	Description

	?

	Display list of internal commands, or prompt to execute a command

	DETACH

	Start app detached

	EXCEPT

	Exclude files from a command

	EXIT

	Exit TCC

	HELP

	TCC help

	SHRALIAS

	Share aliases & functions

	START

	Start a new session

	REXEC

	Remotely execute command

	RSHELL

	Remotely execute command

	TCDIALOG

	Display command dialogs

	TEE

	Pipe "tee-fitting"

	TIMER

	Stopwatch

	WHICH

	Display command information

	Command Dialogs	Not in LE

Most of the internal TCC file handling commands have an alternate dialog form. This simplifies invoking the command when using some of the more obscure options, and also allows you to test commands and copy the generated command line to your batch files.

You can invoke the command dialogs three different ways:

●With the TCDIALOG command
●With the /= command line argument
●With the Alt-F1 key after entering the command name at the command line

The command dialog will be displayed, and when you press OK it will pass the generated command line on to the command.

For example:

tcdialog copy

[image: clip0023]

The "Show" button in a command dialog will show all of the files that match the file specification in the edit field to the left. This may include subdirectories if you've selected that option (for example, in COPY or DIR), so it may take a few seconds to populate the list before displaying it.

?

	Purpose:	Display a list of internal and plugin commands, or prompt for a command

	Format:	? ["prompt" command]

Usage:

The ? command has two separate meanings:

1. When you use the ? command by itself, it displays a list of internal and plugin commands. For help with any individual command, see the HELP command. If you have disabled a command with SETDOS /I, it will not appear in the list.

2. The second function of ? is to prompt the user before executing a specific command line. If you add a prompt and a command, ? will display the prompt followed by (Y/N)? and wait for the user's response. If the user presses Y or y, the command line will be executed. If the user presses N or n, it will be ignored.

Example

? "Load the network" call netstart.btm

When this command is executed, you will see the prompt

Load the network (Y/N)?

If you answer Y, the CALL command will be executed:

ACTIVATE

	Purpose:	Activate a window, set its state, or change its title

	Format:	ACTIVATE [/R] "title" [MAX | MIN | RESTORE | DESKTOP CLOSE | ENABLE | DISABLE | TOPMOST | NOTOPMOST | TOP | BOTTOM | HIDE | /FLASH=type,count | /ICON=iconfile | /POS=left,top,width,height | /TRANS=n | TRAY | "newtitle"]

	title	Current title of the window to be activated

	left	New location of the left border of the window, in pixels

	type	One or more of the following values:

0 - stop flashing

1 - flash the window caption

2 - flash the taskbar button

4 - flash continuously until WINDOW is called again with the /FLASH type set to 0

12 - flash continuously until the window comes to the foreground (cannot be used with 4)

	count	Number of times to flash the window

	top	New location of the top border of the window, in pixels

	iconfile	New caption / task bar icon (an .ico file or an executable)

	width	New width of the window, in pixels

	height	New height of the window, in pixels

	newtitle	New title for window

/R(estore original window)

See also: START, TITLE, and WINDOW.

Usage:

ACTIVATE activates, and optionally modifies, another session's window. It is not intended to modify the characteristics of the current TCC session (use TITLE or WINDOW for that purpose).

Title specifies the name of the target window to be activated. You can use wildcards, including extended wildcards, in title. This is useful with applications that change their window title to reflect the file currently in use. Title must be enclosed in quotes.

Each execution of ACTIVATE allows you to modify one property of the target window. To perform multiple operations, use multiple ACTIVATE commands.

The options are:

	MAX

	Expands the window to its maximum size and activates it.

	MIN

	Reduces the window to an icon.

	RESTORE

	Activates the window at its default size and location.

	DESKTOP

	Activates the Windows desktop.

	CLOSE

	Sends a "close" message to close the window.

	ENABLE

	Enable mouse and keyboard input.

	DISABLE

	Disable mouse and keyboard input.

	TOPMOST

	Keeps the window on top of all other windows until it closes, or NOTOPMOST is used.

	NOTOPMOST

	Allows other windows to overlay the window (this is the normal state for most windows).

	TOP

	Moves the window to the top of the window order, above all other non-TOPMOST windows.

	BOTTOM

	Moves the window to the bottom of the window order.

	HIDE

	Makes the window invisible (to make the window visible again, use RESTORE).

	FLASH

	Flash the window (not available in TCC/LE).

	ICON

	Change the window's caption and task bar icon.

	POS

	Sets the window position and size (in pixels).

	TRANS

	Transparency level, where n=0 (invisible) to 255 (opaque) (does not work for console windows).

	TRAY

	Move the specified window to the system tray.

	"newtitle"

	Changes the window title.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

If you specify newtitle, it must be enclosed in double quotes (which will not appear as part of the title text).

ACTIVATE is often used before KEYSTACK to make sure the proper window receives the keystrokes.

ACTIVATE works by sending messages to the named window. If the window ignores or misinterprets the messages, ACTIVATE may not have the effect you want.

If ACTIVATE is used in a batch file, and the batch file is not itself running in the active window (the window with its title bar highlighted), then ACTIVATE may not activate the desired window. This is because under Windows you cannot make another window active except when the window which issues the command is itself active already. This is a Windows feature which helps to prevent windows which are not in the foreground from grabbing input intended for other windows.

Example

The example below first maximizes, and then renames the window originally called "Take Command":

activate "Take Command" max

activate "Take Command" "Take Command is Great!"

ALIAS

	Purpose:	Create new command names that execute one or more commands or redefine default options for existing commands; assign commands to keystrokes; load or display the list of defined alias names

	Format:	Display mode:

ALIAS [/G /L /P] [wildname]

Definition mode:

ALIAS [/G /L /O] /R [file...] | name[=]value

	file	One or more input files to read alias definitions from

	wildname	Name of alias whose definition is to be displayed (may contain * and ? wildcards)

	name	Name for an alias, or for the key to execute the alias

	value	Text to be substituted for the alias name or key

	/G(lobal)	/P(ause)

	/L(ocal)	/R(ead file)

/O(verwrite)

See also: UNALIAS, ESET, and Aliases.

Usage:

[image: Onestep] Overview

[image: Onestep] Displaying Aliases

[image: Onestep] Multiple Commands and Special Characters in Aliases

[image: Onestep] Nested Aliases

[image: Onestep] Temporarily Disabling Aliases

[image: Onestep] Partial (Abbreviated) Alias Names

[image: Onestep] Keystroke Aliases

[image: Onestep] Directory Aliases

[image: Onestep] Saving and Reloading Your Aliases

[image: Onestep] Alias Parameters

[image: Onestep] Expanding Aliases at the Prompt

[image: Onestep] Local and Global Aliases

[image: Onestep] Retaining Global Aliases with SHRALIAS

[image: Onestep] The PRE_INPUT, PRE_EXEC, and POST_EXEC Aliases

[image: Onestep] The UNKNOWN_CMD Alias

[image: Onestep] Warnings

Overview

The ALIAS command lets you create new command names or redefine internal commands. It also lets you assign one or more commands to a single keystroke. An alias is often used to execute a complex series of commands with a few keystrokes or to create "in memory batch files" that run much faster than disk-based batch files.

For example, to create a single-letter command d to display a wide directory, instead of using DIR /W, you could use the command:

alias d = dir /w

Now when you type a single d as a command, it will be translated into a DIR /W command.

If an ALIAS command specifies a value, and there was an alias already assigned to name, the old alias value is discarded.

If you define aliases for commonly used application programs, you can often remove the directories they're stored in from the PATH. For example, if you use Microsoft Word and had the C:\WINWORD directory in your path, you could define the following alias:

alias ww = c:\winword\winword.exe

With this alias defined, you can probably remove C:\WINWORD from your path. Word will now load more quickly than it would if TCC had to search the PATH for it. In addition, PATH can be shorter, which will speed up searches for other programs.

If you apply this technique for each application program, you can often reduce your PATH to just two or three directories containing utility programs, and significantly reduce the time it takes to load most software on your system. Before removing a directory from the PATH, you will need to define aliases for all the executable programs you commonly use which are stored in that directory.

TCC also supports Directory Aliases, a shorthand way of specifying pathnames.

Aliases are stored in memory, and are not saved automatically when you turn off your computer or end your current TCC session. See below for information on saving and reloading your aliases.

Displaying Aliases

If you want to see a list of all currently defined aliases, type:

alias

You can view the definition of a single alias. For example, if you want to see the definition of the alias LIST, you can type:

alias list

You can also view the definitions for all aliases matching a specific pattern by specifying a single parameter containing wildcards (* or ?). For example:

alias *win*

will display all aliases containing the string win.

You can use the /P option to control display scrolling when displaying aliases.

Multiple Commands and Special Characters in Aliases

An alias can represent more than one command. For example:

alias letters = `cd \letters & tedit`

This alias creates a new command called LETTERS. The command first uses CD to change to a subdirectory called \LETTERS of the directory current at the time of its execution, and then runs a program called TEDIT.

Aliases make extensive use of the command separator and the parameter character, and may also use the escape character.

When an alias contains multiple commands, the commands are executed one after the other. However, if any of the commands runs an external Windows application, you must be sure the alias will wait for the application to finish before continuing with the other commands. This behavior is controlled by the Wait for completion setting in the configuration dialogs.

When you use the alias command at the command prompt or in a batch file, you must use back quotes ` around the alias definition if it contains multiple commands, or parameters (discussed below), or environment variables, or variable functions, or redirection, or piping. If you do not use back quotes, parameters, variables and functions are evaluated, and redirection or piping performed during the alias definition, and only the first command becomes part of the alias, the remaining ones are performed immediately. The back quotes prevent this premature expansion. You may use back quotes around other definitions, but they are not required. You do not need back quotes when your aliases are loaded from an ALIAS /R file; see below for details. The examples above and below include back quotes only when they are required.

Nested Aliases

Aliases may invoke internal commands, external commands, or other aliases. However, an alias may not invoke itself, except in special cases where an IF or IFF command is used to prevent an infinite loop. The two aliases below demonstrate alias nesting (one alias invoking another). The first line defines an alias which runs in the current directory, and executes Word located in the E:\WINWORD\. The second alias changes directories with the PUSHD command, runs the WP alias, and then returns to the original directory with the POPD command:

alias wp = e:\winword\winword.exe

alias w = `pushd c:\wp & wp & popd`

The second alias above could have included the full path and name of WINWORD.EXE instead of calling the WP alias. However, writing two aliases makes the second one easier to read and understand, and makes the first alias available for independent use. If you rename the WINWORD.EXE program or move it to a new directory, only the first alias needs to be changed.

Temporarily Disabling Aliases

If you put an asterisk * immediately before a command in the value of an alias definition (the part after the equal sign), it tells TCC not to attempt to interpret that command as another (nested) alias. An asterisk used this way must be preceded by a space or the command separator and followed immediately by an internal or external command name.

By using an asterisk, you can redefine the default options for any internal or external command. For example, suppose that you always want to use the DIR command with the /2 (two column) and /P (pause at the end of each page) options:

alias dir = *dir /2/p

If you didn't include the asterisk, the second DIR on the line would be the name of the alias itself, and TCC would repeatedly re invoke the DIR alias, rather than running the DIR command. This would cause an "Alias loop" or "Command line too long" error. The asterisk forces interpretation of the second DIR as a command, not an alias.

An asterisk also helps you keep the names of internal commands from conflicting with the names of external programs. For example, suppose you have a program called DESCRIBE.EXE. Normally, the internal DESCRIBE command will run anytime you type DESCRIBE. But two simple aliases will give you access to both the DESCRIBE.EXE program and the DESCRIBE command:

alias describe = c:\winutil\describe.exe

alias filedesc = *describe

The first line above defines describe as an alias for the DESCRIBE.EXE program. If you stopped there, the external program would run every time you typed DESCRIBE and you would not have easy access to the internal DESCRIBE command. The second line defines FILEDESC as a new name for the internal DESCRIBE command. The asterisk is needed in the second command to indicate that the following word means the internal command DESCRIBE, not the describe alias which runs your external program.

Another way to understand the asterisk is to remember that a command is always checked for an alias first, then for an internal or external command, or a batch file. The asterisk at the beginning of a command name simply skips over the usual check for aliases when processing that command, and allows TCC to go straight to checking for an internal command, external command, or batch file.

You can prevent alias expansion by using an asterisk before a command that you enter at the command line or in a batch file. This can be useful when you want to be sure you are running the original command and not an alias with the same name, or temporarily defeat the purpose of an alias which changes the meaning or behavior of a command. For example, above we defined an alias for DIR which made directories display in 2-column paged mode by default. If you wanted to see a directory display in the normal single-column, non-paged mode, you could enter the command *DIR and the alias would be ignored for that command.

You can disable aliases temporarily with the SETDOS /X command.

Partial (Abbreviated) Alias Names

You can also use an asterisk in the name of an alias. When you do, the characters following the asterisk are optional when you invoke the alias command. (Use of an asterisk in the alias name is unrelated to the use of an asterisk in the alias value discussed above.) For example, with this alias:

alias wher*eis = dir /s /p

The new command, WHEREIS, can be invoked as WHER, WHERE, WHEREI, or WHEREIS. Now if you type:

where myfile.txt

The WHEREIS alias will be expanded to the command:

dir /s /p myfile.txt

Keystroke Aliases

There are two kinds of keystroke aliases: insert-only and autoexecute.

Insert-only Keystroke Aliases

Assignment: To assign an insert-only alias to a keystroke, use the key name on the left side of the equal sign, preceded by one at sign @, and the value of the alias on the right side of the equal sign:

alias @key=value

Operation: When you press the key to which you assigned an insert-only alias, TCC displays and inserts the alias value in the current command line, at the current cursor position. If your command line editing mode is overwrite, and the cursor is not at the end of the line, the alias value will overwrite part of the command line. You can continue to edit the command line, e.g., adding other parameters to the command. You must press Enter to execute the command.

Examples:

To assign the command DIR /W to the F4 key, type:

alias @F4 = dir /w

To use it, press F4 at the command prompt, and DIR /W will be placed on the command line for you. You can type additional parameters if you wish, and press Enter to execute the command. With the example alias, you can define the files that you want to display after pressing F4 and before pressing Enter to execute the command.

You can also define a keystroke alias to insert a frequently used string into the middle of a command, e.g.,

alias @shift-F4 =%@expand[

which specific example can assist in processing wildcards for a program without such a feature.

Autoexecute Keystroke Aliases

Assignment: To assign an autoexecute alias to a keystroke, use the key name on the left side of the equal sign, preceded by two at signs @@, and the value of the alias on the right side of the equal sign:

alias @@key=value

Operation: When you press the key to which you assigned an autoexecute alias, TCC inserts the alias value in the current command line, at the current cursor position. If your command line editing mode is overwrite, and the cursor is not at the end of the line, the alias value will overwrite part of the command line. After the insertion/overwrite the command line is automatically executed.

Example: This command will assign an alias to the F11 key that uses the CDD command to take you back to the previous default directory:

alias @@f11 = cdd -

Special Considerations for Keystroke Aliases

When you define keystroke aliases, the assignments will only be in effect at the command line, not inside application programs or batch files.

To insure that a keystroke alias, esp. an autoexecute one, is on the command line by itself, use the character defined by the EraseLine option (by default, the Esc key, represented as ^e or %=e) as the first character of the alias value.

To force a visible indication that an autoexecute keystroke alias was used, include a descriptive ECHO command in the alias value.

Be careful not to assign aliases to keys that are already used at the command line (e.g., F1 for HELP). The command line meanings take precedence and the keystroke alias will never be invoked. If you want to use one of the command line keys for an alias instead of its normal meaning, you must first disable its default use with the NormalKey or NormalEditKey options.

The value of an alias, including a keystroke alias, may contain only characters. It cannot contain representations of keys such as F1 .. F12, Home, etc.

See Keys and Key Names for a complete listing of key names and a description of the key name format.

Directory Aliases

Directory Aliases are a shorthand way of specifying pathnames. For example, if you define an alias:

 alias pf:=c:\program files

You can then reference the files in c:\program files\jpsoft by entering pf:\jpsoft. Directory aliases work in places that accept filenames and directory names (internal command arguments or the first argument in a command line), including filename completion. You cannot use them in arguments to external applications, as TCC has no way of knowing what is a valid argument for external applications.

Directory alias names can be either two or more alphanumeric characters followed by a colon, or a single digit followed by a colon. You cannot abbreviate directory aliases.

Directory aliases support environment variable expansion.

Saving and Reloading Your Aliases

You can save your aliases to a file:

alias > alias.lst

You can then reload all the alias definitions in the file the next time you start up with the command:

alias /r alias.lst

This is much faster than defining each alias individually in a batch file. If you keep your alias definitions in a separate file which you load when TCC starts, you can edit them with a text editor, reload the edited file with ALIAS /R, and know that the same alias list will be loaded the next time you start TCC.

When you define aliases in a file that will be read with the ALIAS /R command, you do not need back quotes around the value, even if back quotes would normally be required when defining the same alias at the command line or in a batch file.

To remove an alias, use the UNALIAS command.

Alias Parameters

Aliases can use command line parameters or parameters like those in batch files. The command line parameters are numbered from %0 to %511. (%0 contains the alias name.) You can use double quotes to pass spaces, tabs, commas, and other special characters in an alias parameter; see Parameter Quoting for details. (Alias examples in this section assume the TCC default of ParameterChar=$.)

Parameters that are referred to in an alias, but which are missing on the command line, appear as empty strings inside the alias. For example, if you only put two parameters on the command line, any reference in the alias to %3 or any higher-numbered parameter will be interpreted as an empty string.

The parameter %n$ has a special meaning. TCC interprets it to mean "the entire command line, from parameter n to the end." If n is not specified, it has a default value of 1, so %$ means "the entire command line after the alias name."

The parameter %-n$ means "the command line from parameter 1 to n - 1".

The special parameter %# contains the number of command line parameters.

For example, the following alias will change directories, perform a command, and return to the original directory:

alias in `pushd %1 & %2$ & popd`

When this alias is invoked as:

in c:\comm mycomm /zmodem /56K

The first parameter, %1, has the value c:\comm. %2 is mycomm, %3 is /zmodem, and %4 is /56K. The command line expands into these three separate commands:

pushd c:\comm

mycomm /zmodem /56K

popd

This next example uses the IFF command to redefine the defaults for SET. It should be entered on one line:

alias set = `iff %# == 0 then & *set /p & else & *set %$ & endiff`

This modifies the SET command so that if SET is entered with no parameters, it is replaced by SET /P (pause after displaying each page), but if SET is followed by a parameter, it behaves normally. Note the use of asterisks (*set) to prevent alias loops.

If an alias uses parameters, command line parameters will be deleted up to and including the highest referenced parameter. For example, if an alias refers only to %1 and %4, then the first and fourth parameters will be used, the second and third parameters will be discarded, and any additional parameters beyond the fourth will be appended to the expanded command (after the value portion of the alias). If an alias uses no parameters, all of the command line parameters will be appended to the expanded command. A convenient way to prevent unwanted command line parameters from being appended is to add a reference to %511 within the alias.

Aliases also have full access to all variables in the environment, internal variables, and variable functions. For example, you can create a simple command line calculator this way:

alias calc = `echo The answer is: %@eval[%$]`

Now, if you enter:

calc 5 * 6

The alias will display:

The answer is: 30

Expanding Aliases at the Prompt

You can expand an alias on the command line and view or edit the results by pressing Ctrl-F after typing the alias name, but before the command is executed. This replaces the alias with its contents, and substitutes values for each alias parameter, just as if you had pressed the Enter key. However, the command is not executed; it is simply redisplayed on the command line for additional editing.

Ctrl-F is especially useful when you are developing and debugging a complex alias, or if you want to make sure that an alias that you may have forgotten won't change the effect of your command.

Local and Global Aliases

Aliases can be stored in either a local or global list. The selection is made during TCC startup, using the /L or /LA START or startup options, or by the Local Aliases configuration option, or interactively with the ALIAS /G and ALIAS /L options. The global alias list is limited to 256 K characters; the local alias list is limited only by memory size.

With a local alias list, any changes made to the aliases will only affect the current copy of TCC. They will not be visible in other shells or other sessions.

With a global alias list, all copies of TCC, which are started with global alias list will share the same alias list, and any changes made to the aliases in one copy will affect all other copies. This is the default for TCC.

There is no fixed rule for determining whether to use a local or global alias list. Depending on your work style, you may find it most convenient to use one type, or a mixture of types in different sessions or shells. We recommend that you start with the default approach, then modify it if you find a situation where the default is not convenient.

When you use SETLOCAL / ENDLOCAL inside a batch file, changes in alias definitions are restored by the ENDLOCAL. However, if the session uses the global alias list, any concurrent sessions also using the global alias list are affected.

Retaining Global Aliases with SHRALIAS

If you select a global alias list for TCC you can share the aliases among all running copies of TCC. When you close all TCC sessions, the memory for the global alias list is released, and a new, empty alias list is created the next time you start TCC.

If you want the alias list to be retained in memory even when no TCC session is running, you need to execute the SHRALIAS command, which performs this service for the global alias list, the global user-defined functions list, the global command history list, and the global directory history list. You may find it convenient to execute SHRALIAS from your TCSTART file.

SHRALIAS retains the alias list in memory, but cannot preserve it when Windows itself is shut down. To save your aliases when restarting Windows, you must store them in a file and reload them after the system restarts. For details on how to do so, see Saving and Reloading Your Aliases above.

The PRE_INPUT, PRE_EXEC, and POST_EXEC Aliases

When at the command prompt (i.e., not executing a batch file), TCC will look for (and execute them if found) the following aliases:

PRE_INPUT - executed immediately before accepting input for a new command line.

PRE_EXEC - executed immediately after a command line is entered (before any expansion or redirection).

POST_EXEC - executed immediately after returning from a command and before displaying the prompt.

None of these aliases will be passed any arguments.

If the alias does not exist, TCC will search the plugins for PRE_INPUT / PRE_EXEC / POST_EXEC functions and execute them if found.

The UNKNOWN_CMD Alias

If you create an alias with the name UNKNOWN_CMD, it will be executed any time TCC would normally issue the "Unknown command" error message. This allows you to define your own handler for unknown commands. When the UNKNOWN_CMD alias is executed, the command line which generated the error is passed to the alias for possible processing. For example, to just display the command that caused the error:

alias unknown_cmd `echo Error in command "%$"`

If the UNKNOWN_CMD alias contains an unknown command, it will call itself repeatedly. If this occurs, TCC will loop up to 10 times, then display the UNKNOWN_CMD loop error.

If an UNKNOWN_CMD alias does not exist, TCC will search the plugins for an UNKNOWN_CMD command and execute it if found.

Warnings

When you define an alias in the command line (i.e., without using the /R option), variables and functions not protected by back quotes or doubled % signs are immediately evaluated, and the result becomes part of the alias value.

Syntax errors in an alias are not detected until the alias is executed.

Options:

	/G	Switch from a local to a global alias list.

	/L	Switch from a global to a local alias list.

	/O	Don't overwrite existing values (only valid in combination with /R).

	/P	This option is only effective when ALIAS is used to display existing definitions. It pauses the display after each page and waits for a keystroke before continuing (see Page and File Prompts).

	/R	This option loads an alias list from a file. The format of the file is the same as that of the ALIAS display:

name=value

where name is the name of the alias and value is its value. You can use an equal sign = or space to separate name and value. Back quotes are not required around the value. Variables and functions referenced in the definitions remain in the definitions, to be evaluated each time the alias is executed. You can add comments to the file by starting each comment line with a colon :. You can load multiple files with one ALIAS /R command by placing the names on the command line, separated by spaces:

alias /r alias1.lst alias2.lst

Each definition in an ALIAS /R file can be up to 32,767 characters long. The definitions can span multiple lines in the file if each line of the definition, except the last, is terminated with an escape character.

ALIAS /R will read from stdin if no filename is specified and input is redirected:

alias /r <

ASSOC

	Purpose:	Modify or display relationships between file extensions and file types stored in the Windows registry

	Format:	ASSOC [/P /R [file...] | [.ext[=[filetype]] /U]

	file	One or more input files to read association definitions from.

	.ext	The file extension whose file type you want to display or set.

	filetype	A file type stored in the Windows registry.

	/P(ause)	/U(ser)

/R(ead)

See also: FTYPE, and Executable Extensions.

Usage:

ASSOC allows you to create, modify, or display associations between file extensions and file types stored in the Windows registry.

ASSOC manages Windows file associations stored under the registry handle HKEY_CLASSES_ROOT, and discussed in more detail under Windows File Associations. If you are not familiar with file associations be sure to read about them before using ASSOC.

If you invoke ASSOC with no parameters, it will display the current associations. If you include a .ext, with no equal sign or filetype, ASSOC will display the current association for that extension.

If you include the equal sign and filetype, ASSOC will create or update the association for extension .ext to refer to the specified file type. The valid file types depend on the contents of your Windows registry. See the FTYPE command or your Windows documentation for additional details.

ASSOC cannot delete an extension from the registry. However, you can create a similar effect by associating the extension with an empty file type using ASSOC .ext=, without the filetype parameter.

ASSOC should be used with caution, and only after backing up the registry. Improper changes to file associations can prevent applications and / or the operating system from working properly.

Options:

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

	/R	This option loads an association list from a file. The format of the file is the same as that of the ASSOC display:

.ext=filetype

where .ext is an extension, which is to be associated with filetype.

You can load multiple files with one ASSOC /R command by placing the names on the command line, separated by spaces:

assoc /r assoc1.lst assoc2.lst

You can insert comments in the file by prefixing the line with a colon (:).

ASSOC /R will read from stdin if no filename is specified and input is redirected.

	/U	Display or set the association in HKCU\Software\Classes.

	ASSOCIATE	Not in LE

	Purpose:	Display, create, or delete file / command associations.

	Format:	ASSOCIATE [/D /F /P /R [file...] /U [.ext[=[command]]]

	file	One or more input files to read association definitions from.

	.ext	The file extension whose associated command you want to display or set.

	command	The executable command to run for the specified file extension

	/D(elete)	/R(ead)

	/F(orce)	/U(ser)

	/P(ause)	

See also: ASSOC, FTYPE, and Executable Extensions.

Usage:

If you are running Windows Vista or above, you must be running in an elevated session to use ASSOCIATE (unless you're using the /U option).

ASSOCIATE combines the ASSOC and FTYPE commands. It allows you to create, modify, or display associations between file extensions and commands types stored in the Windows registry.

ASSOCIATE manages Windows file associations stored under the registry handle HKEY_CLASSES_ROOT (or HKEY_CLASSES_USER), and discussed in more detail under Windows File Associations. If you are not familiar with file associations be sure to read about them before using ASSOCIATE.

If you invoke ASSOCIATE with no parameters, it will display the current associations. If you include a .ext, with no equal sign or command, ASSOCIATE will display the command associated with that extension.

If you include the equal sign and command, ASSOCIATE will create or update the association for extension .ext to refer to the specified command.

ASSOCIATE should be used with caution, and only after backing up the registry. Improper changes to file associations can prevent applications and / or the operating system from working properly.

Options:

	/D	Delete the association for the specified .ext.

	/F	Force an overwrite of an existing association.

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts. (Only useful when running ASSOCIATE with no arguments.)

	/R	This option loads an association list from a file. The format of the file is the same as that of the ASSOCIATE display:

.ext=command

where .ext is an extension, which is to be associated with command.

You can load multiple files with one ASSOCIATE /R command by placing the names on the command line, separated by spaces:

associate /r assoc1.lst assoc2.lst

You can insert comments in the file by prefixing the line with a colon (:).

ASSOCIATE /R will read from stdin if no filename is specified and input is redirected.

	/U	Display or set the association in HKCU\Software\Classes.

ATTRIB

	Purpose:	Change or view file and subdirectory attributes

	Format:	ATTRIB [/A:[[-+]rhsa] /D /E /I"text" /L /N[EJ] /O:[-]adegnrstu /P /Q /S[[+]n]] [+|-[AHIORSTVX]] [@file] files ...

	files	A file, directory, or list of files or directories to process.

	@file	A text file containing the names of the files to process, one per line (see @file lists for details).

	/A: (Attribute select)

	/N(o)

	/D(irectories)

	/O:...(order)

	/E (No error messages)

	/P(ause)

	/I"text" (match description)

	/Q(uiet)

	/L (symbolic Link)

	/S(ubdirectories)

Attribute flags:

	Clear

	Set

	Attribute affected

	-A

	+A

	archive

	-C

	+C

	compressed

	-H

	+H

	hidden

	-I

	+I

	not content indexed

	-O

	+O

	offline

	-R

	+R

	read-only

	-S

	+S

	system

	-T

	+T

	temporary

	-V

	+V

	integrity (Windows 8 ReFS only)

	-X

	+X

	no_scrub_data (Windows 8 ReFS only)

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage:

Every file and subdirectory has attributes that can be turned on (set) or turned off (cleared): Archive, Hidden, Not content indexed, Offline, Read-only, System, and Temporary. For details on the meaning of each attribute, see File Attributes.

The ATTRIB command lets you view, set, or clear attributes for any file, group of files, or subdirectory.

You can view file attributes by entering ATTRIB without specifying new attributes (i.e., without the [+|-[AHIORST]] part of the format), or with the DIR /T command.

The primary use of ATTRIB is to set attributes. For example, you can set the read-only and hidden attributes for the file MEMO:

attrib +rh memo

Attribute options apply to the file(s) that follow the options on the ATTRIB command line. The example below shows how to set different attributes on different files with a single command. It sets the archive attribute for all .TXT files, then sets the system attribute and clears the archive attribute for TEST.EXE:

attrib +a *.txt +s -a test.exe

When you use ATTRIB on an LFN drive, you must double quote any file names which contain white space or special characters.

To change directory attributes, use the /D switch. If you give ATTRIB a directory name instead of a file name, and omit /D, it will append "*" to the end of the name and act on all files in that directory, rather than acting on the directory itself.

NTFS also supports D (subdirectory), V (virtualized), E (encrypted), J or L (junction / symbolic link) and P (sparse file) attributes. These attributes will be displayed by ATTRIB, but cannot be altered; they are designed to be controlled only by Windows.

ATTRIB will ignore underlines in the new attribute (the [+|-[ADHIORST]] part of the command). For example, ATTRIB sees these 2 commands as identical:

attrib +a filename

attrib +__A_ filename

This allows you to use a string of attributes from either the @ATTRIB variable function or from ATTRIB itself (both of which use underscores to represent attributes that are not set) and send that string back to ATTRIB to set attributes for other files. For example, to clear the attributes of FILE2 and then set its attributes to match those of FILE1:

attrib -arhs file2 & attrib +%@attrib[file1] file2

When ATTRIB encounters a +D or -D in the attribute string it treats it as equivalent to the /D switch, and allows modification of the attributes of a directory. When combined with @ATTRIB, or with ATTRIB's output, both of which return a D to signify a directory, this feature allows you to transfer attributes from one directory to another. For example, to clear the attributes of all files and directories beginning with ABC and then set their attributes to match those of FILE1 (enter this on one line):

attrib -arhs abc* & attrib +%@attrib[file1] abc*

ATTRIB sets three internal variables:

	%_attrib_dirs	The number of directories modified

	%_attrib_files	The number of files modified

	%_attrib_errors	The number of errors

Options:

	/=	Display the ATTRIB command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Warning: the colon after /A is not optional.

This switch specifies which files to select, not which attributes to set. For example, to remove the archive attribute from all hidden files, you could use this command:

attrib /a:h -a *

Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/D	If you use the /D option, ATTRIB will modify the attributes of directories in addition to files (yes, you can have a hidden directory):

attrib /d +h c:\mydir

If you use a directory name instead of a file name, and omit /D, ATTRIB will append "*" to the end of the name and act on all files in that directory, rather than acting on the directory itself.

	/E	Suppress all non-fatal error messages, such as "File Not Found." Fatal error messages, such as "Drive not ready," will still be displayed. This option is most useful in batch files and aliases, and when recursing through the directory hierarchy, where many directories have no files matching your selection criteria. .

	/I"text"	Select files by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must immediately follow the /I, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

	/L	Set or display the attributes of the symbolic link versus the target of the symbolic link.

	/N	Do everything except actually change the attributes. This option is useful for testing what the result of a complex ATTRIB command will be. (Not available in TCC/LE.)

A /N with one of the following arguments has an alternate meaning:

e Don't display errors.

j Skip junctions (when used with /S)

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts

.

	/Q	This option turns off ATTRIB's normal screen output. It is most useful in batch files.

	/S	If you use the /S option, the ATTRIB command will be applied to all matching files in the current or named directory and all of its subdirectories. Do not use /S with @file lists; see @file lists for details.

If you specify a number after the /S, ATTRIB will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, ATTRIB will not modify any file attributes until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not modify anything in \a or \a\b. (Not available in TCC/LE.)

	BATCOMP	Not in LE

	Purpose:	Compress and encrypt batch files. See Batch File Compression for additional details.

	Format:	BATCOMP [/O /Q] InputFile OutputFile

	InputFile

	A file to compress and/or encrypt.

	OutputFile

	A file to hold the output from the command

	/O(verwrite)

	/Q(uiet)

File Selection

The input file must be specified explicitly (no wildcards).

Usage:

BATCOMP is a batch file compressor and optionally allows for simple key-based encryption.

If you do not specify an extension for OutputFile, it defaults to BTM. If OutputFile already exists it will not be overwritten unless /O is used.

The output BTM file will not be legible, but it will run under TCC. The behavior and performance of the file should be the same as if it were run in its original source form as a .BTM file.

Compression is not effective for very small files and may even result in a larger file.

Options:

	/O	Forces overwriting of an existing OutputFile.

	/Q	Suppresses all progress reports (stdout). Errors (stderr) are still shown.

	BDEBUGGER / IDE	Not in LE

	Purpose:	Calls the Take Command IDE / batch debugger (IDE.EXE)

	Format:	BDEBUGGER [/C] batchfilename [parameters]

or

IDE [/C] file...

	batchfilename

	Full name of the batch file to debug.

	parameters

	Parameters for the batch file

	file

	File(s) to edit

	/C(reate new batch file)

	

Usage:

BDEBUGGER and IDE open a development environment in which file can be edited and (in the case of batch files) debugged. The difference between the two commands is that BDEBUGGER assumes that you're trying to edit & debug a batch file. BDEBUGGER will add a missing .BTM, .CMD, or .BAT extension on the filename, and it assumes that any arguments following the batch file name are batch file parameters. The IDE command is intended as a generic file editor (it supports syntax colorization for several scripting languages, including .BAT, .BTM, and .CMD batch files, Perl, Python, Ruby, and Tcl). Each argument on the command line is assumed to be a filename to be opened in a separate tab window.

The BDEBUGGER / IDE window includes a slider control on the lower right corner of the status bar to control the transparency level.

The edit window toolbar (which is configurable by clicking on the rightmost down arrow), has a number of icons to control debugging. Each has a tooltip for quick reference:

	New	Create a new batch file in a new tab window.

	Open	Open an existing batch file in a new tab window.

	Save	Save the current batch file.

	Print	Print the current batch file.

	Cut	Copy the highlighted selection to the clipboard and delete it from the file.

	Copy 	Copy the highlighted selection to the clipboard.

	Paste	Copy the contents of the clipboard to the current cursor location.

	Delete	Delete the highlighted selection.

	Undo	Undo the last edit.

	Redo	Restore the last Undo.

	Find	Search for text.

	Batch Arguments	New batch file arguments. The text will be parsed into %1 - %n batch arguments and used when the batch file is debugged.

	Start Debugging	Starts the debugger. The cursor will be placed on the first line.

	Pause Debugging	Pause execution at the next line.

	Stop Debugging	Stops the debugger.

	Step Into	Execute the current line.

	Step Over	Execute the current line but disable the debugger during a CALL or GOSUB.

	Run to Breakpoint	Execute the batch file, stopping at the next breakpoint.

	Toggle Breakpoint	Sets or turns off a breakpoint on the current line.

	Clear Breakpoints	Clear all breakpoints in the current batch file.

	File Properties	Displays information on the current batch file.

	Start New Shell	Start another copy of TCC (this is useful if you need to perform some tasks while debugging a file.)

	Help	Display the online help.

You can get help for the currently selected (highlighted) command / variable / function by pressing Ctrl-F1, or right-clicking the mouse and selecting Help from the context menu.

If you press Ctrl-C or Ctrl-Break while debugging, you will see the prompt:

Cancel batch job filename (Y/N/A/D) :

Pressing D will return you to single-step mode in the debugger. (This allows you to interrupt a run-to-breakpoint without terminating the debugger and batch file.)

You can change the line to be executed next when in debugging mode by moving the caret to the line and either right clicking & selecting "Jump to This Line" or by pressing Ctrl-Shift-F11. Note that if you attempt to jump into or out of a DO loop or IFF block, bad things will happen!

Alt-F11 will invoke the Evaluate Expression dialog. Alt-Shift-F11 will invoke the Evaluate Expression dialog for the current selection, or if no text is selected, for the current line.

The IDE includes tabbed windows to display and/or modify the breakpoint list, watch list, aliases, batch variables, environment variables, and user functions. The variable windows also have a toolbar, with the following buttons:

	New	Restore the original values for the list (alias, variable, environment, or function)

	Open	Add the contents of a file to the list

	Save	Save the current list to a file

	Apply	Replace the original values with the modified list

	Print	Print the current list

	Cut	Copy the highlighted selection to the clipboard and delete it from the file

	Copy 	Copy the highlighted selection to the clipboard

	Paste	Copy the contents of the clipboard to the current cursor location

	Delete	Delete the highlighted selection (or the character at the cursor location if no selection)

	Undo	Undo the last edit

	Redo	Restore the last Undo

	Find	Search for text

	Help	Display the online help

The environment variables window displays any variables changed since the last command in red. You can specify variables to exclude from the environment variable window with the DebugVariableExclude variable. For example, to suppress the display of the processor and user variables:

set DebugVariableExclude=proc*;user*

Note that this option doesn't affect the existence of the variables, just whether they're displayed in the environment variable window.

Breakpoints

You can set a breakpoint either through the menu, the toolbar, or by moving the mouse cursor to the left margin of a line and left-clicking. You can only set a breakpoint on an executable line (i.e., not on a blank line, comment, label, etc.),

You can define conditional breakpoints by specifying the number of iterations before the breakpoint is triggered, and/or define a conditional expression that must be true before the breakpoint is triggered. After setting the breakpoint, enter the conditions either by right-clicking on the breakpoint and selecting "Break >=" (to set the minimum number of iterations), or "Condition" (to set the conditional expression). You can also select the Breakpoint window and double-click on the "Break >=" or "Condition" columns to edit or modify the conditions.

You can temporarily disable a breakpoint (without deleting it) by right-clicking on the breakpoint and selecting "Enable/Disable Breakpoint". You can disable all breakpoints by clicking on the Debug menu and selecting "Disable All Breakpoints".

Watch Window

The Watch window allows you to monitor environment variables, internal variables, variable functions, and user-defined functions, or to pause execution when a specified condition is met. The Watch window appears at the bottom of the debugger window. Enter the variable name or expression in the left column; the debugger will automatically display the current value in the right column. You can also add a variable to the Watch window by selecting it in the main debugger window, then clicking the right mouse button and selecting "Add to Watch". If the string in the left column is a single argument, it is assumed to be a variable name. Otherwise, it is assumed to be an expression. Expressions can be anything that IF can evaluate; for example:

%i = 3

ERRORLEVEL GT 12

Note that expressions require variable names to be prefixed by a %. If you're entering a single variable argument to monitor, do not use a %.

If you right click on the first column in the Watch window, the debugger will display an environment variable listbox. Select an entry to have it added to the watch list.

When the value of a monitored variable changes, the Watch window will change the text color to red.

Margins

There are three possible margins on the left of the edit window:

●The line number (selectable by the "Options / Display Line Numbers" menu option).
●The Breakpoint margin (left click in this margin to set a breakpoint on this line).
●The Fold margin (selectable by the "Options / Display Fold Margin" menu option), which will display a - for blocks that can be collapsed to a single line (DO, IFF, and SWITCH commands, and command groups). When a block is collapsed, the Fold margin will display a +. Left clicking in the Fold margin will toggle the fold state.

Edit Windows

The text processing commands available in the IDE edit windows are listed below. The text commands can be classified into general categories:

[image: Onestep] Caret commands

[image: Onestep] Edit commands

[image: Onestep] Mark / Clipboard commands

[image: Onestep] Search commands

[image: Onestep] File commands

[image: Onestep] Bookmark commands

[image: Onestep] Breakpoint commands

[image: Onestep] Expression evaluation commands

●Caret commands

	Right

	This command will move the caret one character to the right. When the caret is on the last position of the current line it is moved to the first position of the next line.

	Shift-Right

	In addition to the caret movement this command will also extend the current selection to the new caret position.

	Left

	This command will move the caret one character to the left. When the caret is on the first position of the current line it is moved to the last position of the previous line.

	Shift-Left

	In addition to the caret movement, this will also extend the current selection to the new position.

	Up

	This command will move the caret one line up. The caret column position will be set as close to its previous column position as possible.

	Shift-Up

	In addition to the caret movement this command will also extend the current selection to the new position.

	Down

	This command will move the caret one line down. The caret column position will be set as close to it's previous column position as possible. When the caret is on the last line but not on the last column it will be moved to the last column.

	Shift-Down

	In addition to the caret movement this command will also extend the current selection to the new position.

	End

	This command will move the caret to the end of the line it is currently on. If the caret is already at the end nothing happens.

	Shift-End

	In addition to the caret movement this command will also extend the current selection to the new position.

	Home

	This command will move the caret to the start of the line it is currently on. If the caret is already at the start nothing happens.

	Shift-Home

	In addition to the caret movement this command will also extend the current selection to the new position.

	Ctrl-Right

	This command will move in one of the following ways:

	

	●When the caret is located on a delimiter character the caret is moved right until the first non-delimiter is found.

	

	●When the caret is located on a non-delimiter character the caret is moved to the next delimiter character.

	

	●When the caret is located on the last word or delimiter of the current line the caret is moved to the first word or delimiter of the next line.

	Ctrl-Shift-Right

	In addition to the caret movement this command will also extend the current selection to the new caret position.

	Ctrl-Left

	This command will move in one of the following ways:

	

	●When the caret is located on a delimiter character the caret is moved to the start of the previous word.

	

	●When the caret is located on a non-delimiter character and not on a white-space character the caret is moved to the start of the current word.

	

	●When the caret is located on the start of the first word, delimiters or white-space of the current line the caret is moved to the start of the last word or delimiters of the previous line.

	Ctrl-Shift-Left

	In addition to the caret movement this command will also extend the current selection to the new position.

	Ctrl-Home

	This command will move the caret to the beginning of the text. When the caret is already at this location nothing happens.

	Ctrl-Shift-Home

	In addition to the caret movement this command will also extend the current selection to the new position.

	Ctrl-End

	This command will move the caret to the end of the text. When the caret is already at this location nothing happens.

	Ctrl-Shift-End

	In addition to the caret movement this command will also extend the current selection to the new position.

	PgUp

	This command will move the caret one view up when it is located on the top line currently in the view. When the caret is not located on the top line of the view, it will be moved there.

	Shift-PgUp

	In addition to the caret movement this command will also extend the current selection to the new position.

	PgDn

	This command will move the caret one view down when it is located on the bottom line currently in the view. When the caret is not located on the bottom line of the view, it will be moved there.

	Shift-PgDn

	In addition to the caret movement, this command will also extend the current selection to the new position.

●Edit commands

	Ctrl-Z

	This command will undo the last change made to the edit control contents. You can undo any number of changes made to the control contents up to the maximum number of undo/redo hops.

	Ctrl-Y

	This command will redo the last change you have undone. You can re-do any number of changes up to the number of changes undone.

	Backspace

	This command will remove the character to the left of the caret. When the caret is located at the start of the line, the characters right of the caret are appended to the previous line and the caret is moved to be positioned between the old line contents and the appended characters.

	Delete

	This command removes the character to the right of the caret. When there are no characters to the right of the caret, the contents of the next line is appended to the current line.

	Return

	This command will split the current line and create a new line of the characters, if any, right of the caret. The caret is moved to the start of the newly created line.

	Ctrl-Delete

	When the caret is located on a word, this command will delete all characters in the word right of the caret position.

	Ctrl-Backspace

	When the caret is located on a word, this command will delete all characters in the word left of the caret position.

	Tab

	This command does one of the two following things:

	

	●When there is a valid text selection, this command will indent the lines covered by the selection right by one tab-stop.

	

	●When there is no text selection, a tab is inserted at the current caret position.

	Shift-Tab

	When there is a valid text selection, this command will indent the lines covered by the selection left by one tab-stop.

	Shift-Ctrl-U

	When there is a valid selection, this command will convert all lower-case characters in the selection to upper-case characters. If there is no valid selection, nothing happens.

	Ctrl-U

	When there is a valid selection, this command will convert all upper-case characters in the selection to lower-case characters. If there is no valid selection, nothing happens.

	Ins

	This command will toggle the current editing mode between overwrite and insert.

●Mark / Clipboard commands

	Ctrl-A

	This command will select all the text.

	Ctrl-V

	This command will, when there is text present in the clipboard, paste the clipboard contents at the current position.

	Ctrl-C

	This command will, when there is a selection, copy the selected text to the clipboard.

	Ctrl-X

	This command will, when there is a selection, copy the selected text to the clipboard and remove the selection from the text.

●Search commands

	Ctrl-F3

	This command will find the next occurrence of the word under the caret. When the next occurrence is found, it is selected.

	F3

	This command will find the next occurrence of the current search pattern. When the search pattern is found, it is selected.

	Shift-F3

	This command will find the previous occurrence of the current search pattern. When the search pattern is found, it is selected.

	Ctrl-G

	This command will show the goto dialog.

	Ctrl-F

	This command will show the find dialog.

	Ctrl-H

	This command will show the replace dialog.

●File commands

	Ctrl-N

	Open a new file in a new tab window.

	Ctrl-O

	Open an existing file in a new tab window.

	Ctrl-W

	Close all files.

	Ctrl-S

	This command will save the current file.

	Ctrl-Shift-S

	Save all files.

	Ctrl-P

	This command will open the print dialog.

	Ctrl-I

	Display the properties for the current file.

	Alt-F4

	Exit the debugger.

●Bookmark commands

	Ctrl-F2

	This command will clear the bookmark on the current line if it is set, or set the bookmark if it is cleared.

	Shift-Ctrl-F2

	This command will clear all bookmarks.

	F2

	This command will place the caret on the next line which has a bookmark set. When there is no next line with a bookmark, the text is searched starting at the first line.

	Shift-F2

	This command will place the caret on the previous line which has a bookmark set. When there is no previous line with a bookmark, the text is searched from the last line up again.

●Breakpoint commands

	Ctrl-F9

	This command will toggle a breakpoint on the current line.

	Ctrl-Shift-F9

	This command will clear all breakpoints.

●Expression evaluation commands

	Alt-F11

Alt-Shift-F11

	Invoke the Evaluate Expression dialog.

Invoke the Evaluate Expression dialog for the current selection. If no text is selected, evaluate the current line.

You can select the result and copy it to the clipboard.

Options:

	/C	If the specified batch file doesn't exist, create it without prompting.

BEEP

	Purpose:	Beep the speaker or play simple music

	Format:	BEEP [frequency duration ...] [asterisk | exclamation | hand | question | ok]

	frequency	The beep frequency in Hertz (cycles per second).

	duration	The beep length in 1/18th second intervals.

	asterisk	Plays the system default "asterisk" sound.

	exclamation	Plays the system default "exclamation" sound.

	hand	Plays the system default "hand" sound.

	question	Plays the system default "question" sound.

	ok	Plays the system default "ok" sound.

See also: the Length and Frequency configuration options.

Usage:

BEEP generates a sound through your computer's speaker. You can use it in batch files to signal that an operation has been completed, or that the computer needs attention.

Because 64-bit versions of Windows do not support playing sounds through the Windows Beep API, TCC x64 uses DirectSound for BEEP.

Because BEEP allows you to specify the frequency and duration of the sound, you can also use it to play simple music or to create different kinds of signals for the user.

You can include as many frequency and duration pairs as you wish. No sound will be generated for frequencies less than 20 Hz, allowing you to use BEEP as a way to create short delays. The default value for frequency is 440 Hz; the default value for duration is 2.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

This batch file fragment runs a program called DEMO, then plays a few notes and waits for you to press a key:

demo

beep 440 4 600 2 1040 6

pause Finished with the demo - hit a key...

The following table gives the frequency values for a five octave range (middle C is 262 Hz):

	 C

	131

	262

	523

	1046

	2096

	 C# / Db

	139

	277

	554

	1108

	2217

	 D

	147

	294

	587

	1175

	2349

	 D# / Eb

	156

	311

	622

	1244

	2489

	 E

	165

	330

	659

	1318

	2637

	 F

	175

	349

	698

	1397

	2794

	 F# / Gb

	185

	370

	740

	1480

	2960

	 G

	196

	392

	784

	1568

	3136

	 G# / Ab

	208

	415

	831

	1664

	3322

	 A

	220

	440

	880

	1760

	3520

	 A# / Bb

	233

	466

	932

	1866

	3729

	 B

	248

	494

	988

	1973

	3951

BREAK

	Purpose:	Enable or disable Ctrl-C and Ctrl-Break

	Format:	BREAK [ON | OFF]

Usage:

BREAK OFF will disable all Ctrl-C and Ctrl-Break handling in TCC (though not necessarily in child processes). In CMD, BREAK OFF doesn't actually do anything, so setting it in TCC will introduce a possible incompatibility with existing batch files.

	BREAKPOINT	Not in LE

	Purpose:	Set a batch debugger breakpoint on the current line

	Format:	BREAKPOINT

Usage:

If the batch debugger is active, BREAKPOINT sets a breakpoint on the current line, stopping a "Step Out" sequence. If the batch debugger is not active, BREAKPOINT is ignored.

CALL

	Purpose:	Execute one batch file from within another.

	Format:	CALL file | :label [p1 [p2 ...]]

	file	The batch file to execute.

	:label	A label in the current batch file.

	p1, p2,...	Parameters for the batch file or subroutine

See also: CANCEL and QUIT.

Usage:

Calling other batch files

CALL allows batch files to call other batch files (batch file nesting). The calling batch file is suspended while the called (second) batch file runs. When the second batch file finishes (without executing the CANCEL command), execution of the original batch file resumes at the next command.

WARNING! If you execute a batch file from inside another batch file without using CALL, the original batch file is terminated before the other one starts. This method of invoking a batch file from another is usually referred to as chaining. Note that if the batch file A.BTM uses CALL B, and B.BTM chains to the batch file C.BTM, on exit from C.BTM (without executing a CANCEL command) processing of batch file A.BTM is resumed as if it had used CALL C.

File A.BTM:

...

call b

echo xxx

File B.BTM:

...

C

File C.BTM:

...

quit

In the example above, after execution of the QUIT command in C.BTM the ECHO xxx command in A.BTM is executed next.

The following batch file fragment compares an input line to wp and calls another batch file if it matches:

input Enter your choice: %%option

if "%option" == "wp" call wp.bat

Batch files may be nested up to 32 levels deep.

The current ECHO state is inherited by a called batch file.

The called batch file should always either return (by executing its last line, or by using the QUIT command), or it should terminate batch file processing with CANCEL. Do not restart or CALL the original batch file from within the called file as this may cause an infinite loop or a stack overflow.

Calling a label

To provide compatibility with CMD, which does not support the GOSUB command for subroutines in the same batch file, you may create a subroutine starting with a label and terminated by any of the following:

●the end of the batch file
●QUIT
●EXIT
●CANCEL

Note that the last two do NOT return control to the CALL command. Do not use the RETURN command!

Parameters passed to the subroutine are accessible as %1, %2, etc., in the same manner as in a batch file.

Exit code

CALL returns an exit code which matches the batch file return code. You can test this exit code with conditional commands (&& and ||).

See also GOSUB and user-defined functions.

CANCEL

	Purpose:	Terminate batch file processing

	Format:	CANCEL [value]

	value	The numeric exit code to return to TCC.

See also: CALL and QUIT.

Usage:

The CANCEL command ends all batch file processing, regardless of the batch file nesting level. Use QUIT to end a nested batch file and return to the previous batch file.

You can CANCEL at any point in a batch file. If CANCEL is used from within an alias it will end execution of both the alias and any batch files which are running at the time.

The following batch file fragment compares an input line to "end" and terminates all batch file processing if it matches:

input Enter your choice: %%option

if "%option" == "end" cancel

If you specify a value, CANCEL will set the ERRORLEVEL or exit code to that value (see the IF command, and the %? variable). Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

CD / CHDIR

	Purpose:	Display or change the current directory

	Format:	CD [/D /N /X] [path | -]

	path	The directory to change to, optionally including a drive letter

	/D(rive)	/X (exclude)

/N(o extended search)

See also: CDD, MD, PUSHD, RD, and Directory Navigation.

Internet: Can be used with FTP Servers.

Usage:

CD and CHDIR are synonyms. You can use either one.

CD lets you navigate through a drive's subdirectory structure by changing the current working directory. If you enter CD and a directory name, the named directory becomes the new current directory. For example, to change to the subdirectory C:\FINANCE\MYFILES:

[c:\] cd \finance\myfiles

[c:\finance\myfiles]

Every disk drive on the system has its own current directory. Specifying both a drive and a directory in the CD command will change the current directory on the specified drive, but will not change the default drive (unless you use the /D option). For example, to change the default directory on drive A:

[c:\] cd a:\utility

[c:\]

Notice that this command does not change to drive A:. Use the /D option, or preferably the CDD command to change the current drive and directory at the same time.

If path contains white space or special characters (which is valid only for an LFN drive), you must enclose it in double quotes.

If path begins with a ~ (tilde), CD will substitute to the user's home directory, as defined by HOME in the environment. (If HOME doesn't exist, TCC will look for %HOMEDRIVE + HOMEPATH.)

You can change to the parent directory with CD ..; you can also go up one additional directory level with each additional .. For example, CD will go up three levels in the directory tree (see Extended Parent Directory Names). You can move to a sibling directory (one that branches from the same parent directory as the current subdirectory) with a command like CD ..\newdir .

If you enter CD with no parameter or with only a disk drive name, it will display the current directory on the default or named drive.

If CD cannot change to the directory you have specified it will attempt to search the CDPATH and the extended directory search database in order to find a matching directory and switch to it. You can disable this default extended search with /N. You can also use wildcards in path to force an extended directory search. Read the section on Directory Navigation for complete details on these and other directory navigation features.

If the TCMD.INI directive EverythingSearch is set, CD will use Everything Search (free at http://www.voidtools.com) instead of JPSTREE.IDX for fuzzy directory searches. Everything Search is slightly faster, but will only work on local NTFS drives. Setting EverythingSearch is the equivalent of setting FuzzyCD=3 (*name*). You must download and install Everything Search yourself; it is not included in the Take Command distribution.

CD saves the current directory before changing to a new directory. You can switch back to the previous directory by entering CD -. (There must be a space between the CD command and the hyphen.) You can switch back and forth between two directories by repeatedly entering CD -. The saved directory is the same for both the CD and CDD commands. Drive changes and automatic directory changes also modify the saved directory, so you can use CD - to return to a directory that you exited with an automatic directory change. TCC recognizes a single hyphen on the command line as an internal alias for CDD -.

Directory changes made with CD are recorded in the directory history list and can be displayed in the directory history window, which allows you to return quickly to a recently-used directory.

You can also use CD to display or change the current directory on an FTP server opened with IFTP. For example:

cd ftp:

ftp://ftp.microsoft.com/

cd ftp:/pub

Note: FTP directory changes use neither the CDPATH feature nor the Extended Directory Searches database.

CD never changes the default drive, unless the /D option is specified. If you change directories on one drive, switch to another drive, and then enter CD -, the directory will be restored on the first drive but the current drive will not be changed.

Options:

	/D	Changes the current drive as well as directory. This option is included only for compatibility with the same option available in some versions of CMD. In most cases you should use CDD, which performs the same function.

	/N	Skips the standard extended directory search when the directory is not found. This option is useful in batch files to force an error (rather than an extended search) if a directory is not found.

	/X	Don't save the current directory to the Directory History list.

CDD

	Purpose:	Change the current disk drive and directory

	Format:	CDD [/A /D[drive ...] /N[J] /S[n][drive ...] /U[n][drive ...] /X] [path | -]

	path	The name of the directory (or drive and directory) to change to.

	drive	A drive or list of drives to include in the extended directory search database.

	/A(ll drives)

	/T (Also change Folders directory)

	/D(elete from JPSTREE.IDX)

	/TO Only change Folders directory)

	/N(o extended search)

	/U(pdate tree)

	/NJ (Skip junctions)

	/X (exclude from directory history)

	/S(earch tree)

	

See also: CD, MD, PUSHD, RD, and Directory Navigation.

Usage:

CDD is similar to the CD command, except that it also changes the default disk drive if one is specified. For example, to change from the root directory on drive A to the subdirectory C:\WP:

[a:\] cdd c:\wp

[c:\wp]

If no drive / path argument is supplied, CDD displays the current drive and directory.

CDD can also be used to create and update the Extended Directory Search database (JPSTREE.IDX).

If path begins with a ~ (tilde), CD will substitute to the user's home directory, as defined by HOME in the environment. (If HOME doesn't exist, TCC will look for %HOMEDRIVE + HOMEPATH.) (Not supported in TCC/LE.)

You can change to the parent directory with CDD ..; you can also go up one additional directory level with each additional [.]. For example, CDD will go up three levels in the directory tree.

CDD can also change to a network drive and directory specified with a UNC name (see File Systems for details).

When you use CDD to change to a directory on an LFN drive, you must quote the path name if it contains white space or special characters.

If CDD cannot change to the directory you have specified it will first search the CDPATH, then the extended directory search database in order to find a matching directory and switch to it. You can disable this default extended search with /N. You can also use wildcards in the path to force an extended directory search. Read the section on Directory Navigation for complete details on these and other directory navigation features.

If the TCMD.INI directive EverythingSearch is set, CDD will use Everything Search (free at http://www.voidtools.com) instead of JPSTREE.IDX for fuzzy directory searches. Everything Search is slightly faster, but will only work on local NTFS drives. Setting EverythingSearch is the equivalent of setting FuzzyCD=3 (*name*). You must download and install Everything Search yourself; it is not included in the Take Command distribution.

CDD saves the current drive and directory before changing to a new directory. You can switch back to the previous drive and directory by entering CDD -. (There must be a space between the CDD command and the hyphen.) You can switch back and forth between two drives and directories by repeatedly entering CDD -. The saved directory is the same for both the CD and CDD commands. Drive changes and automatic directory changes also modify the saved directory, so you can use CDD - to return to a directory that you exited with a drive change or an automatic directory change. TCC recognizes a single hyphen on the command line as an internal alias for CDD -.

Directory changes made with CDD are recorded in the directory history list and can be displayed in the directory history window, which allows you to return quickly to a recently-used directory.

Windows limits the permissible length of the full subdirectory name (see the Directories and Subdirectories topic for information on directory names).

When changing directories, TCC maintains the original case of each path element. This is necessary for a few programs which are case-sensitive in their use of directory names.

Options:

	/A	When CDD is used with this option, it displays the current directory on all drives from C: to the last drive in the system. You cannot move to a new drive and directory and use /A in the same command.

	/D	Removes the specified drives or directory trees from the Extended Directory Search database (JPSTREE.IDX). Uses the same syntax for drive and directory names as /S. For example, to delete the directories under F:\MYDIR from JPSTREE.IDX:

cdd /d f:\mydir

	/N	Skips the standard extended directory search when the directory is not found. This option is useful in batch files to force an error -- rather than an extended search -- if a directory is not found.

	/NJ	Skips junctions when indexing directories (see /S).

	/S	Builds or rebuilds the Extended Directory Search database (JPSTREE.IDX). You cannot move to a new drive and directory and use /S in the same command.

To include all local hard drives in the database, use the command:

cdd /s

To limit or add to the list of drives included in the database, list the drives and network volume names after the /S switch. For example, to include drives C, D, and E, and the sharename \\server\dir1, use this command:

cdd /s c:\ d:\ e:\ \\server\dir1

All non-hidden directories on the listed drives will be indexed. CDD /S will also index the hidden directories if the Complete Hidden Files option is set. Each time you use /S, everything in the previous directory database is replaced by the new database that is created. To update the database see /U below.

You can index specific subdirectories rather than an entire drive. For example, to index all directories on drive C but only the MSSDK directory tree on drive D:

cdd /s c:\ d:\mssdk

If you specify a number after the /S, CDD will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only index the "a", "b", and "c" directories.

	/T	Also change the current directory in the Take Command Folders and List View windows.

	/TO	Change the current directory in the Take Command Folders and List View windows without changing the TCC current directory.

	/U	Updates the Extended Directory Search database (JPSTREE.IDX) with the specified drives and directories instead of rebuilding the whole directory database. Uses the same syntax for drive and directory names as /S. For example, to update the D:\MSSDK tree and all of drive E:

cdd /u d:\mssdk e:\

If you specify a number after the /U, CDD will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only update the "a", "b", and "c" directories.

Note: The TREEEXCLUDE variable can be used to specify which drives and directories should be ignored when updating the directory database.

	/X	Don't save the current directory to the Directory History list.

CHCP

	Purpose:	Display or change the current system code page

	Format:	CHCP [n]

n A system code page number.

Usage:

Code page switching allows you to select different character sets for language support.

If you enter CHCP without a number, the current code page is displayed.

chcp

Active code page: 437

If you enter CHCP plus a code page number, the code page is changed. For example, to set the code page to multilingual:

chcp 850

When you use CHCP under Windows it only affects the current process, and any new programs started from within that process; the active code page in other processes remains unchanged.

	CLIPMONITOR	Not in LE

	Purpose:	Monitor changes in the Windows clipboard

	Format:	CLIPMONITOR [/C]

CLIPMONITOR n command

	n	Number of repetitions (or FOREVER)

	command	Command to execute when the clipboard is modified

/C(lear)

Usage:

If you don't enter any arguments, if CLIPMONITOR is active it will display the repeat count and the command.

The command line will be parsed and expanded before CLIPMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. CLIPMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

Options:

	/C	Remove the clipboard monitor.

CLS

	Purpose:	Clear the window and move the cursor to the upper left corner; optionally change the default display colors

	Format:	CLS [/C /S] [[BRIght] fg ON [BRIght] bg

	fg	The new foreground color

	bg	The new background color

	/C(lear buffer)	/S(croll buffer)

Usage:

CLS can be used to clear the window without changing colors, or to clear the window and change the colors simultaneously, or to clear the entire scrollback buffer. These two examples show how to clear the window to the default colors, and to bright white letters on a blue background:

cls

cls bright white on blue

CLS is often used in batch files before displaying text.

See Colors and Color Names for details about colors.

Options:

	/C	Clears the entire scrollback buffer. If /C is not used, only the visible portion of the window is cleared.

	/S	Clear the screen by scrolling the buffer, rather than filling the screen with blanks (the default method). This saves the text on the screen into the scrollback buffer if it is larger than the visible window. This switch may not give the expected results when the buffer size is less than twice the window size.

COLOR

	Purpose:	Change the default display colors

	Format:	COLOR [BRIght] fg ON [BRIght] bg

	fg	The new foreground color

	bg	The new background color

See also: CLS and Colors and Color Names for details about using colors and the name and numeric codes for colors.

Usage:

COLOR is normally used in batch files before displaying text. For example, to set screen colors to bright white on blue, you can use this command:

color bright white on blue

TCC also supports the CMD syntax:

COLOR bf

In this syntax, b is a hexadecimal digit that specifies the background color and f is a hexadecimal digit that specifies the foreground color.

If you do not specify a new foreground and background color, COLOR will revert the display colors to those used when TCC was started (for compatibility with CMD).

If you have ANSI enabled and StdColors and/or InputColors set, they will override a COLOR command.

COPY

	Purpose:	Copy data between disks, directories, files, or physical hardware devices (such as your printer or serial port)

	Format:	COPY [/I"text"] [/A:... /C /CF /D /E /F /FTP:A /G /H /J /K /L /M /MD /N[dejnst] /O /O:[-]adegnrstu /P /Q /R /S[[+]n] /SX /T /U /UF /V /X /Z] [@file] source [+] ... [/A|/B] [TO:] target [...] [/A|/B]

	source	A file or list of files or a device to copy from

	target	A file, directory, or device to copy to

	@file	A text file containing the names of the source files, one per line (see @file lists for details)

	/A(SCII) copy

	/MD (Create target directory)

	/A:... (Attribute select)

	/N (Disable)

	/B(inary copy)

	/O(nly if no target)

	/C(hanged source files)

	/O:... (order)

	/CF (changed 2s+ resolution)

	/P(rompt)

	/D (Copy encrypted files)

	/Q(uiet)

	/E (No error messages)

	/R(eplace)

	/F (No empty subdirectories)

	/S(ubdirectories)

	/FTP:A (ASCII copy)

	/SX (single target directory)

	/G (Display percentage)

	/T(otals)

	/H (Include hidden files)

	/U(pdate target)

	/I"text" (Match description)

	/UF (update 2s+ resolution)

	/J (Restartable)

	/V(erify)

	/K (Keep read-only attribute)

	/W (one-way sync)

	/L Copy symbolic links

	/X (Clear archive)

	/LD (create link)

	/Y (suppress prompt)

	/M(odified files

	/Z (overwrite)

See also: ATTRIB, MOVE, and REN.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, delayed variable expansion, and include lists. Date, time, size or exclude ranges anywhere on the line apply to all source files. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Internet

Can be used with FTP / FTPS / TFTP / HTTP / HTTPS Servers.

Usage

If you don't specify any arguments, COPY will display its command dialog.

The simplest use of COPY is to make a copy of a file, like this example which makes a copy of a file called FILE1.ABC:

copy file1.abc file2.def

You can also copy a file to another drive and/or directory. The following command copies FILE1 to the \MYDIR directory on drive E:

copy file1 e:\mydir

When you COPY files to or from an LFN drive, you must quote any file names which contain white space or special characters.

If you specify the /C, /CF, /R, /U, or /UF options, COPY will append a ! to the copy specifier if the target exists and is being overwritten. For example:

[d:\] copy file1 file2

file1 =>! file2

To emulate an approach used by some implementations of CMD, see the COPYCMD topic.

COPY sets three internal variables:

	%_copy_dirs	The number of directories created

	%_copy_files	The number of files copied

	%_copy_errors	The number of errors

●Copying Files

You can copy several files at once by using wildcards:

copy *.txt e:\mydir

You can also list several source files in one command. The following command copies 3 specific files from the current directory to the \MYDIR directory on drive E:

copy file1 file2 file3 e:\mydir

COPY also understands include lists, so you can specify several different kinds of files in the same command. This command copies the .TXT, .DOC, and .BAT files from the E:\MYDIR directory to the root directory of drive A:

copy e:\mydir*.txt;*.doc;*.bat a:\

If there is only one parameter on the line, COPY assumes it is the source, and uses the current drive and directory as the destination. For example, the following command copies all the .DAT files from the current directory on drive A to the current directory on the current drive:

copy a:*.dat

If there are two or more parameters on the line separated by spaces, then COPY assumes that the last parameter is the destination and copies all source files to this new location. If the destination is a drive, directory, or device name, the source files are copied individually to the new location. If the destination is a file name, the first source file is copied to the destination, and any additional source files are then appended to the new destination file.

For example, the first of these commands copies the .DAT files from the current directory on drive A individually to C:\MYDIR (which must already exist as a directory); the second appends all the .DAT files together into one large file called C:\DATA (assuming C:\DATA is not a directory):

copy a:*.dat c:\mydir\

copy a:*.dat c:\data

When you copy to a directory, if you add a backslash \ to the end of the name as shown in the first example above, COPY will display an error message if the name does not refer to an existing directory. You can use this feature to keep COPY from treating a mistyped destination directory name as a file name and attempting to append all your source files to a single destination file, when you really meant to copy them individually to a destination directory.

To copy text to or from the clipboard use CLIP: as the device name. Using CLIP: with non-text data will produce unpredictable results. See Redirection for more information on CLIP:.

●Appending Files

A plus sign + tells COPY to append two or more source files to a single destination file. If you list several source files separated with + and don't specify a destination, COPY will use the name of the first source file as the destination, and append each subsequent file to the first file.

For example, the following command will append the contents of MEMO2 and MEMO3 to MEMO1 and leave the combined contents in the file named MEMO1:

copy memo1+memo2+memo3

To append the same three files but store the result in BIGMEMO:

copy memo1+memo2+memo3 bigmemo

If no destination is specified, the destination file will always be created in the current directory even if the first source file is in another directory or on another drive. For example, this command will append C:\MEM\MEMO2 and C:\MEM\MEMO3 to D:\DATA\MEMO1, and leave the result in C:\MEM\MEMO1:

[c:\mem] copy d:\data\memo1+memo2+memo3

You cannot append files to a device (such as a printer); if you try to do so, COPY will ignore the + signs and copy the files individually. If you attempt to append several source files to a destination directory or disk, COPY will append the files and place the copy in the new location with the same name as the first source file.

You cannot append a file to itself.

●FTP Usage

If you have appropriate permissions, you can copy to and from Internet URLs (FTP, TFTP and HTTP). Many FTP servers use case sensitive file systems. For example:

copy ftp://ftp.abc.com/xyz/index index

Files copied to or from FTP/HTTP Servers are normally transferred in binary mode. To perform an ASCII transfer use the /L switch. File descriptions are not copied when copying files to an Internet URL.

COPY supports the special syntax

copy con: ftp:...

to directly copy text from the console to an ftp location.

Wildcard characters such as * and ? will be treated as wildcards in FTP URLs, but will be treated as normal characters in HTTP URLs.

Note: The /G option (percentage copied) may report erratic values during transfer of files larger than 4 Gb (an ftp limitation) and during http downloads.

You can also use the IFTP command to start an FTP session on a server, and then use an abbreviated syntax to specify the files and directories you want. For more information, see Using FTP/HTTP Servers and IFTP.

●NTFS File Streams

COPY supports file streams on NTFS drives. You can copy an individual stream by specifying the stream name, for example:

copy myfile:mystream stream.copy

If no stream name is specified the entire file is copied, including all streams. However, if you copy a file to a drive or device which does not support streams, only the file's primary data is copied; any additional streams are not processed.

See NTFS File Streams for additional details.

●Advanced Features

If your destination has wildcards in it, COPY will attempt to match them with the source names. For example, this command copies the .DAT files from drive A to C:\MYDIR and gives the new copies the extension .DX:

copy a:*.dat c:\mydir*.dx

This feature can give you unexpected results if you use it with multiple source file names. For example, suppose that drive A contains XYZ.DAT and XYZ.TXT. The command:

copy a:*.dat a:*.txt c:\mydir*.dx

will copy A:XYZ.DAT to C:\MYDIR\XYZ.DX. Then it will copy A:XYZ.TXT to C:\MYDIR\XYZ.DX, overwriting the first file it copied.

You can use date, time, and size ranges to further define the files that you want to copy. This example copies every file in the E:\MYDIR directory, which was created or modified yesterday, and which is also 10,000 bytes or smaller in size, to the root directory of drive A:

copy /[d-1] /[s0,10000] e:\mydir* a:\

You can also use file exclusion ranges to restrict the list of files that would normally be selected with wildcards. This example copies every file in the E:\MYDIR directory except backup (.BAK or .BK) files:

copy /[!*.bak *.bk] e:\mydir* a:\

COPY will normally process source files which do not have the hidden or system attribute, and will ignore the read-only and archive attributes. It will always set the archive attribute and clear the read-only attribute of destination files. In addition, if the destination is an existing file with the read-only attribute, COPY will generate an Access Denied error and refuse to overwrite the file. You can alter some of these behaviors with switches:

	/A:..	Forces COPY to process source files with the attributes you specify after the :, or to process all source files regardless of attributes, if /A: is used by itself.

	/H	Forces COPY to process hidden and system source files, as well as normal files. The hidden and system attributes from each source file will be preserved when creating the destination files.

	/K	Retains the read-only attribute from each source file when creating the destination file. See /K below for a special note if you are running under Novell NetWare.

	/Z	Forces COPY to overwrite an existing destination file regardless of its attributes.

You can copy files to multiple destinations with the TO: option. For example, to copy letter.doc to three different directories:

	

		copy letter.doc TO: \save\ f:\backups\ q:\letters\

Note: The wildcard expansion process will attempt to allow both CMD-style "extension" matching (assumes only one extension, at the end of the word) and the advanced TCC string matching (allowing things like *.*.abc) when an asterisk is encountered in the destination of a COPY command.

COPY supports regular expression back references in the target name. If you are using back references, you must also use a regular expression in the source name. The syntax is:

copy ::filename ::target

COPY supports connected web folders. If an HTML file (i.e., with an .htm or .html extension) is copied, COPY will look for a folder in the same directory with the same name and an extension of ".files". If it is found, the .files directory will be copied to the target directory. You can disable connected web folders by setting the registry key:

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\NoFileFolderConnection=0

Options

The /A (ASCII copy) and /B (binary copy) options apply to the preceding filename and to all subsequent filenames on the command line until the file name preceding the next /A or /B, if any. All other options apply to all filenames on the command line, no matter where you put them.

Some options do not make sense in certain contexts, in which case COPY will ignore them. For example, you cannot prompt before replacing an existing file when the destination is a device such as the printer; there's no such thing as an "existing file" on the printer. If you use conflicting output options, like /Q and /P, COPY will generally take a "conservative" approach and give priority to the option which generates more prompts or more information.

	/=	Display the COPY command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A	If you use /A with a source filename, the file will be copied up to, but not including, the first Control-Z (ASCII: 26) character in the file. If you use /A with a destination filename, a Control-Z will be added to the end of the file. /A is the default when appending files, or when the destination is a device like NUL, rather than a disk file.

This option applies to the filename immediately preceding it, and to all subsequent filenames until the file name preceding the next /A or /B option.

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. See the cautionary note under Advanced Features above before using /A: when both source and destination directories contain file descriptions. You must include the colon with this option to distinguish it from the /A switch, above. Do not use /A: with @file lists. See @file lists for details. Hidden or system files selected by this option overwrite hidden or system files.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	If you use /B with a source filename, the entire file is copied; Ctrl-Z characters, if any, in the file are considered ordinary data to be copied. Using /B with a destination filename prevents addition of a Ctrl-Z to the end of the destination file. /B is the default unless source files are appended to the target file, or the target is a device, e.g., NUL.

This option applies to the filename immediately preceding it, and to all subsequent filenames until the file name preceding the next /A or /B option.

	/C	Copy files only if the destination file exists and is older than the source (see also /U). This option is useful for updating the files in one directory from those in another without copying any files not already in the target directory. Before using /C in a network environment, be sure to read the note under /U. Do not use /C with @file lists. See @file lists for details.

	/CF	Copy files only if the destination file exists and is more than 2 seconds older than the source (see also /C and /UF). Do not use /CF with @file lists. See @file lists for details. (Not available in TCC/LE.)

	/D	Force copy of an encrypted file even when the target will be decrypted (for CMD compatibility).

	/E	(No error messages) Suppress all non-fatal error messages, such as File not found or Can't copy file to itself. Fatal error messages, such as Drive not ready, will still be displayed. This option is most useful in batch files and aliases.

	/F	When used with /S, COPY will not create any empty subdirectories.

	/FTP:A	Perform FTP transfers in ASCII mode, instead of the default binary mode.

	/G	Displays the percentage copied, the transfer rate (in Kbytes/second), and the estimated time remaining. Useful when copying large files across a network or via FTP to ensure the copy is proceeding. When /V is also used, reports percentage verified.

	/H	Copy all matching files including those with the hidden and/or system attribute set. See the cautionary note under Advanced Features above before using /H when both source and destination directories contain file descriptions.

	/I"text"	(Match descriptions) Select source files by matching text in their descriptions. See Description Ranges for details.

	/J	Copy the file in restartable mode. The copy progress is tracked in the destination file in case the copy fails. The copy can be restarted by specifying the same source and destination file names. /J will not work with HTTP or FTP files.

	/K	(Keep read-only attribute) To maintain compatibility with CMD, COPY normally maintains the hidden and system attributes, sets the archive attribute, and removes the read-only attribute on the target file. /K tells COPY to also maintain the read-only attribute on the destination file. However, if the destination is on a Novell NetWare volume, this option will fail to maintain the read-only attribute. This is due to the way NetWare handles file attributes, and is not a problem in COPY.

	/L	(Windows Vista or later only) If the source is a symbolic link, copy the link to the target instead of the actual file.

	/LD	When used with /S, if the source is a symbolic or hard link to a directory, COPY will create the link in the target directory instead of copying the subdirectory tree.

	/M	Copy only those files with the archive attribute set, i.e., those which have been modified since the last backup. The archive attribute of the source file will not be cleared after copying; to clear it use the /X switch, or use ATTRIB. Do not use /M with @file lists. See @file lists for details.

	/MD	Create the target directory if it doesn't exist. Note that you *must* either terminate the target directory name with a trailing \ or specify a filename component; otherwise COPY cannot tell what you want for the directory and what you want for the filename.

	/N	Do everything except actually perform the copy. This option is useful for testing what the result of a complex COPY command will be. /N displays how many files would be copied.

A /N with one or more of the following arguments has an alternate meaning:

d Skip hidden directories (when used with /S)

e Don't display errors.

j Skip junctions (when used with /S)

n Don't copy/update the file descriptions

s Don't display the summary.

t Don't update the CD / CDD extended directory search database (JPSTREE.IDX).

	/O	Only copy the source file if the target file doesn't exist.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

The /O:... option saves all of the matching filenames and then performs the copy. This avoids the potential problem of copying files more than once.

	/P	Ask the user to confirm each source file. Your options at the prompt are explained in detail under Page and File Prompts. Note: the Copy Prompt on Overwrite configuration option can be used to force prompting at the command line only. See also: the /Q option below.

	/Q	Don't display filenames, percentage copied, total number of files copied, etc. When used in combination with the /P option above, it will prompt for filenames but will not display the totals. This option is most often used in batch files. See also /T.

	/R	 Prompt the user before overwriting an existing file. Your options at the prompt are explained in detail under Page and File Prompts. See also: the Copy Prompt on Overwrite configuration option. (For compatibility with CMD, a /Y option on the command line is changed to /R.)

	/S	Copy the subdirectory tree starting with the files in the source directory plus each subdirectory below that. The destination must be a directory; if it doesn't exist, COPY will attempt to create it. COPY will also attempt to create needed subdirectories on the tree below the destination, including empty source directories. If COPY /S creates one or more destination directories, they will be added automatically to the extended directory search database.

If you attempt to use COPY /S to copy a subdirectory tree into part of itself, COPY will detect the resulting infinite loop, display an error message and exit. Do not use /S with @file lists. See @file lists for details.

If you specify a number after the /S, COPY will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, COPY will not copy any files until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not copy anything in \a or \a\b. (Not available in TCC/LE.)

	/SX	Copy the subdirectory tree to a single target directory (implies /S). (Not available in TCC/LE.) For example, to copy all of the .EXE files in "c:\files" and all of its subdirectories to the directory "d:\exefiles":

copy /sx c:\files*.exe d:\exefiles\

	/T	Turns off the display of filenames, like /Q, but does display the total number of files copied.

	/U	Copy each source file only if it is newer than a matching destination file or if a matching destination file does not exist (see also /C). This option is useful for keeping one directory matched with another with a minimum of copying. Do not use /U with @file lists. See @file lists for details. When used with file systems that have different time resolutions (such as FAT and NTFS), /U will attempt to use the "coarsest" resolution of the two.

	/UF	Copy each source file only if it is more than 2 seconds newer than a matching destination file or if a matching destination file does not exist (see also /CF and /U). Do not use /UF with @file lists. See @file lists for details. (Not available in TCC/LE.)

	/V	Verify each disk write by performing a true byte-by-byte comparison between the source and the newly-created target file. This option will significantly increase the time necessary to complete a COPY command. /V will not work for FTP, TFTP, or HTTP copies.

	/W	Delete files in the target directory that don't exist in the source directory. (Use this instead of SYNC when you only want to synchronize "one way".)

	/X	Clear the archive attribute from the source file after a successful copy. This option is most useful if you are using COPY to maintain a set of backup files. /X should not be used with multiple targets, because the archive attribute will be cleared after the first copy.

	/Y	If you have the COPY Prompt on Overwrite option set, you can suppress the prompt with /Y.

	/Z	Overwrite destination files regardless of their attributes. Without this option, COPY will fail with an "Access denied error" if the destination file has its read-only attribute set, or (depending on other options) its hidden or system attribute set. Required to overwrite read-only targets regardless of other options. Required to overwrite hidden or system targets unless the source also has the attribute, and either /H or /A: is used to select it.

DATE

	Purpose:	Display and optionally change the system date

	Format:	DATE [/Fn /T /U] [mm -dd -yy]

	mm	The month (1 - 12)

	dd	The day (1 - 31)

	yy	The year (80 - 99 or a 4- digit year)

	/F(ormat)	/U (UTC date)

	/T (Display only)	

See also: TIME.

Usage:

If you simply type DATE without any parameters, you will see the current system date and time, and be prompted for a new date. Press Enter if you don't wish to change the date. If you type a new date, it will become the current system date, which is included in the directory entry for each file as it is created or altered:

date

Thu Aug 18, 2011 9:30:06

Enter new date (mm-dd-yy):

You can also enter a new system date by typing the DATE command plus the new date on the command line:

date 9-16-2011

You can use hyphens, slashes, or periods to separate the month, day, and year entries. The year can be entered as a 2-digit or 4-digit value. Two-digit years between 80 and 99 are interpreted as 1980 - 1999; values between 00 and 79 are interpreted as 2000 - 2079.

DATE adjusts the format it expects depending on your country settings. When entering the date, use the correct format for the country setting currently in effect on your system.

You can also use the international date format yyyy-mm-dd.

Option:

	/F	Date format to use (not available in TCC/LE). The formats are:

0 : Fri Jan 1, 2010

1 : 1/01/10

2 : Fri 1/01/2010

	/T	Displays the current date but does not prompt you for a new date. If a new date is specified in the same command as /T the new date will be ignored.

	/U	Display or enter the UTC date.

	DATEMONITOR	Not in LE

	Purpose:	Monitor the current date and time

	Format:	DATEMONITOR [/C [yyyy-mm-dd hh:mm]]

DATEMONITOR yyyy-m-dd hh:mm n command

	n	Number of repetitions (or FOREVER)

	yyyy-mm-dd	The date to match

	hh:mm	The time to match

	command	Command to execute when the specified date and time matches the current date and time

/C(lear)

Usage:

DATEMONITOR monitors the current date and time, and executes the specified command when the current date and time match the saved date and time. You can use a * in the date fields if you want to run a command at a specific time every day. For example:

datemonitor *-*-* 23:59 forever echo It's almost midnight!

If you want to run a command on the first day of every month:

datemonitor *-*-1 00:01 forever echo It's the beginning of a new month!

If you don't enter any arguments, if DATEMONITOR is active it will display the repeat count and the command.

DATEMONITOR sets two environment variables when the date and time match and the trigger is set:

	_datemonitor	The current date in yyyy-mm-dd format

	_timemonitor	The current time in hh:mm (24-hour) format

The command line will be parsed and expanded before DATEMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. DATEMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

Options:

	/C	Remove date monitors. You can optionally specify a specific date monitor to remove by entering the date and time (which may include wildcards) for that monitor.

	DEBUGMONITOR	Not in LE

	Purpose:	Monitor the OutputDebugString API

	Format:	DEBUGMONITOR [/C]

		DEBUGMONITOR n command

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

/C(lear)

Usage:

DEBUGMONITOR looks for any process calling the Windows OutputDebugString API.

DEBUGMONITOR will set the environment variable _OUTPUTDEBUGSTRING to the value specified in the OutputDebugString call.

The command line will be parsed and expanded before DEBUGMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. DEBUGMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

Options:

	/C	Remove the OutputDebugString monitor.

	DEBUGSTRING	Not in LE

	Purpose:	Write text to the debugger for display

	Format:	DEBUGSTRING string.

Usage:

If the application has no debugger, the system debugger displays the message. If the application has no debugger and the system debugger is not active, DEBUGSTRING does nothing.

	DEFER	Not in LE

	Purpose:	Execute a command after the batch file exits

	Format:	DEFER command

Usage:

A batch file can have multiple DEFER commands. They will be executed in first in, first out order when the batch file exits.

If you have variables on the DEFER command line, they will be expanded before the DEFER command is processed, not when command is executed. To delay variable expansion until command is executed, use single back quotes around the variable names, or double the %'s before the variable names.

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. DEFER will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

DEL / ERASE

	Purpose:	Erase one file, a group of files, or entire subdirectories

	Format:	DEL [ranges] [/A:[[-|+]rhsadecijopt /E /F /I"text" /K /L /N[defjnst] /O:[-]adegnrstu /P /Q /R /S[[+]n] /T /W[n] /X /Y /Z] [@file] file...

	file	 The file, subdirectory, or list of files or subdirectories to erase.

	@file	 A text file containing the names of the files to delete, one per line (see @file lists for details).

	/A: (Attribute select)

	/P(rompt)

	/B (Delete after reboot)

	/Q(uiet)

	/E (No error messages)

	/R(ecycle bin)

	/F(orce delete)

	/S(ubdirectories)

	/I (match descriptions)

	/T(otal)

	/K (no Recycle Bin)

	/W(ipe)

	/L (delete symlinks)

	/X (remove empty subdirectories)

	/N (Disable)

	/Y(es to all prompts)

	/O:... (Order)

	/Z(ap hidden and read-only files)

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Internet

Can be used with FTP/HTTP Servers.

Usage

DEL and ERASE are synonyms. You can use either one. In the description below, every reference to DEL applies equally to ERASE. If you don't specify any arguments, DEL will display its command dialog.

Use the DEL command with caution. The files and subdirectories that you erase may be impossible to recover without specialized utilities and a lot of work.

To erase a single file, simply enter the file name:

del letters.txt

You can also erase multiple files in a single command. For example, to erase all the files in the current directory with a .BAK or .PRN extension:

del *.bak *.prn

When you use DEL on an LFN drive, you must quote any file names which contain white space or special characters.

To exclude files from a DEL command, use a file exclusion range. For example, to delete all files in the current directory except those whose extension is .TXT, use a command like this:

del /[!*.TXT] *

When using exclusion ranges or other more complex options you may want to use the /N switch first, to preview the effects of the DEL without actually deleting any files.

If you enter a subdirectory name, or a filename composed only of wildcards (* and/or ?), DEL asks for confirmation (Y or N) unless you specified the /Y option. If you respond with a Y, DEL will delete all the files in that subdirectory (hidden, system, and read-only files are only deleted if you use the /Z option). NOTE: The Windows command processor, CMD, behaves the same way but does not ask for confirmation if you use /Q to delete files quietly. If you want TCC to follow CMD's approach and skip the confirmation prompt when /Q is used, set the Prompt on Wildcard Deletes configuration option. Use caution if you disable this option, as this will allow DEL /Q to delete an entire directory without prompting for confirmation.

DEL displays the amount of disk space recovered, unless the /Q option is used (see below). It does so by comparing the amount of free disk space before and after the DEL command is executed. This amount may be incorrect if you are using a deletion tracking system which stores deleted files in a hidden directory, or if another program performs a file operation while the DEL command is executing.

Remember that DEL removes file descriptions along with files. Most deletion tracking systems will not be able to save or recover a file's description, even if they can save or recover the data in a file. This applies to the use of DEL with the Windows Recycle Bin, too - the description will be lost.

When a file is deleted without using the Recycle Bin, its disk space is returned to the operating system for use by other files. However, the contents of the file remain on the disk until they are overwritten by another file. If you wish to obliterate a file or wipe its contents clean, use the /W option, which overwrites the file before deleting it. Use this option with caution! Once a file is obliterated, it is impossible to recover. Remember: /W overrides using the Recycle Bin.

DEL returns a non-zero exit code if no files are deleted, or if another error occurs. You can test this exit code with the %_? internal variable, and use it with conditional commands (&& and ||).

Use caution when using wildcards with DEL on LFN drives, because TCC's wildcard matching can match both short and long filenames. This can delete files you did not expect; see LFN File Searches for additional details.

DEL sets three internal variables:

	%_del_dirs	The number of directories deleted

	%_del_files	The number of files deleted

	%_del_errors	The number of errors

●Recycle Bin

When you delete files with DEL, TCC does not move the deleted files to the Windows Recycle Bin by default. You can change this default with the Delete to Recycle Bin configuration option. If you have disabled the recycle bin, you can override the setting and place deleted files in the recycle bin with the /R option:

del /r letters.txt

If you have enabled Recycle Bin support, but want to override the default setting on a one-time basis, and delete some files without placing them in the recycle bin, use the /K option:

del /k letters.txt

You can also exclude files from the Recycle bin, even if Delete to Recycle Bin is enabled, or if the command use the /R option, with the RecycleExclude environment variable.

●FTP Usage

If you have appropriate permissions, you can delete files on FTP servers. For example:

del ftp://ftp.abc.com/index

You can also use the IFTP command to start an FTP session on a server and then use one of the following syntax examples:

del ftp:path/*.txt

del ftp:/path/*.txt

The first syntax will normally be interpreted by the server as relative to the path you specified when you used the IFTP command to start the FTP session. The second syntax, with a slash before the path name, is interpreted as starting from the root.

●NTFS File Streams

DEL supports file streams on NTFS drives. You can delete an individual stream by specifying the stream name, for example:

del streamfile:s1

If no stream name is specified the entire file is deleted, including all streams.

See NTFS File Streams for additional details.

Options

	/=	Display the DEL command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line.

	/A:	Delete only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	If DEL can't delete the file (for example, if access is denied) it will schedule it to be deleted at the next reboot.

	/E	Suppress all non-fatal error messages, such as "File Not Found." Fatal error messages, such as "Drive not ready," will still be displayed. This option is most useful in batch files and aliases.

	/F	This option has the same effect as /Z (see below): it deletes read-only, hidden, and system files as well as normal files.. It is included for compatibility with CMD.

	/I"text"	Select filenames by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]".

	/K	Physically delete files instead of sending them to the Windows Recycle Bin.

	/L	Delete symlinks instead of their contents. (Not available in TCC/LE.)

	/N	Do everything except actually delete the file(s). This is useful for testing the result of a DEL.

A /N with one or more of the following arguments has an alternate meaning:

	d	Skip hidden directories (when used with /S)

	e	Don't display errors

	f	Don't display the bytes freed in the summary

	j	Skip junctions (when used with /S)

	n	Don't update the file descriptions

	s	Don't display the summary

	t	Don't update the CD / CDD extended directory search database (JPSTREE.IDX)

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

 You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Prompt the user to confirm each erasure. Your options at the prompt are explained in detail under Page and File Prompts.

	/Q	Don't display filenames as they are deleted, or the number of files deleted or bytes freed. If Prompt on Wildcard Deletes is disabled then /Q also disables the normal confirmation prompt when performing wildcard deletions (e.g. DEL *), for compatibility with CMD. Use caution if you disable Prompt on Wildcard Deletes, as this will allow DEL /Q to delete an entire directory without prompting for confirmation. See also /T.

	/R	Delete files to the Windows Recycle Bin.

	/S	Delete the specified files in this directory and all of its subdirectories. This is like a GLOBAL DEL, and can be used to delete all the files in a subdirectory tree or even a whole disk. Do not use /S with @file lists. See @file lists for details.

If you specify a number after the /S, DEL will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, DEL will not delete any files until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not delete anything in \a or \a\b. (Not available in TCC/LE.)

	/T	Don't display filenames as they are deleted, but display the total number of files deleted plus the amount of free disk space recovered.

	/W[n]	Overwrite the file contents using the DoD 5220.22-M (E) standard for secure deletion. (This overwrites every byte in the file with different values). You can optionally specify the number of passes (1-999); the default is 3. See also DelWipePasses. Use this option to completely obliterate a file's contents from your disk. Once you have used this option it is impossible to recover the file even if you are using an undelete utility, because the contents of the file are destroyed before it is deleted. /W will override a /R.

	/X	Removes empty subdirectories (only useful when used with /S). If DEL deletes one or more directories, they will be removed automatically from the extended directory search database. DEL will display the directories being removed (with a trailing \).

	/Y	The reverse of /P . It assumes a Y response to everything, including deleting an entire subdirectory tree. TCC normally prompts before deleting files when the name consists only of wildcards or a subdirectory name (see above); /Y overrides this protection and should be used with extreme caution!

	/Z	Delete read-only, hidden, and system files as well as normal files. Files with the read-only, hidden, or system attribute set are normally protected from deletion; /Z overrides this protection, and should be used with caution. Because EXCEPT works by hiding files, /Z will override an EXCEPT command. However, files specified in a file exclusion range will not be deleted by DEL /Z.

For example, to delete the entire subdirectory tree starting with C:\UTIL, including hidden and read- only files, without prompting (use this command with CAUTION!):

del /s /x /y /z c:\util\

	DELAY	

	Purpose:	Pause for a specified length of time

	Format:	DELAY [/B /F /M time]

DELAY UNTIL [yyyy-mm-dd] hh:mm[:ss]

	time	The number of seconds or milliseconds to delay.

	/B(reak enabled)	/M(illiseconds)

/F(lush keyboard)

Usage:

DELAY is useful in batch file loops while waiting for something to occur. For example, to wait for 10 seconds:

delay 10

DELAY is most useful when you need to wait a specific amount of time for an external event, or check a system condition periodically. For example, this batch file checks the battery status (as reported by your Advanced Power Management drivers) every 15 seconds, and gives a warning when battery life falls below 30%:

do forever

 iff %_apmlife lt 30 then

 beep 440 4 880 4 440 4 880 4

 echo Low Battery!!

 endiff

 delay 15

enddo

The maximum time value is limited to about 49 days in Windows XP, and 585 million years in Windows Vista, Windows 2008, Windows 7, and Windows 8. If you don't enter a time, the default is 1 second.

You can optionally wait until the specified date and time. If no date is specified, DELAY defaults to today.

TCC uses the minimum possible processor time during a DELAY, in order to allow other applications full use of system resources.

You can cancel a delay by pressing Ctrl-C or Ctrl-Break.

Options:

	/B	Allows terminating a DELAY by pressing a key.

	/F	Flush the keyboard buffer when DELAY ends. (Not available in TCC/LE.)

	/M	Count by milliseconds instead of seconds. Normally only used for delays of less than 1 second.

DESCRIBE

	Purpose:	Create, modify, or delete file and subdirectory descriptions

	Format:	Creating or modifying descriptions

DESCRIBE [ranges... /I"text"] [/A:atrlst /O:[-]adegnrstu] [@file] file [[/D]"description"]] ...]

Description file updating

DESCRIBE /U [[d:\path\descript.ion] ...]]

	file	The file or files to operate on.

	@file	A text file containing the names of the files to describe, one per line (see @file lists for details).

	"description"	The description to attach to the file.

	/A: (Attribute select)

	/O:... (Order)

	/D(escription follows)

	/U(pdate) descriptions file

	/I (match description)

	

See also: @DESCRIPT, DIR, and SELECT

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage:

DESCRIBE adds descriptions to files and subdirectories. (Volume root directories cannot have descriptions.) The descriptions are displayed by DIR in single-column mode and by SELECT, and can be retrieved using the @DESCRIPT function. Descriptions let you identify your files in much more meaningful ways than you can in a filename alone.

 If you don't specify any arguments, DESCRIBE will display its command dialog.

You enter a description on the command line by typing the DESCRIBE, the filename, and the description in double quotes, like this:

describe memo.txt "Memo to Bob about party"

If you don't put a description on the command line, DESCRIBE will prompt you for it:

describe memo.txt

Describe "memo.txt" : Memo to Bob about party

If you use wildcards or multiple filenames with the DESCRIBE command and don't include the description text, you will be prompted to enter a description for each file. If you do include the description on the command line, all matching files will be given the same description.

When you use DESCRIBE on an LFN drive, you must quote file if it contains white space or special characters.

If you enter a quoted description on the command line, and the text matches the name of a file in the current directory, TCC will treat the string as a quoted file name, not as description text as you intended. To resolve this problem use the /D switch immediately prior to the quoted description (with no intervening spaces). For example, if the current directory contains the files DATA.TST and "Test File", the first of these commands will work as intended, but the second will not (in the second example the string "test file" will be treated as a second file name, when it is intended to be description text):

describe data.tst /D"test file" correct command

describe data.tst "test file" incorrect command

On LFN drives you will not see file descriptions in a normal DIR display, because DIR must leave space for the long filenames. To view the descriptions, use DIR /Z to display the directory in FAT format. See DIR for more details.

Each description can be up to 511 characters long. You can change this limit with the Maximum Length configuration option. In order to fit your descriptions on a single line in a standard DIR display, keep them to 40 characters or less (longer descriptions are wrapped in the DIR output). DESCRIBE can edit descriptions longer than Maximum Length (up to a limit of 511 characters), but will not allow you to lengthen the existing text.

The descriptions are stored either in the NTFS SummaryInformation stream (if you have set the NTFS Descriptions configurtion option), or in each directory in a hidden file called DESCRIPT.ION. Use the ATTRIB command to remove the hidden attribute from this file if you need to copy or delete it. DESCRIPT.ION is always created as a hidden file, but will not be rehidden by TCC if you remove the hidden attribute.

You can change the description file name with the Description Filename configuration option or the SETDOS /D command, and retrieve it with the %_DNAME internal variable. Use caution when changing the description file name, as changing the name from the default will make it difficult to transfer file descriptions to another system.

The description file is modified appropriately whenever you perform an internal command which affects it (such as COPY, MOVE, DEL, or RENAME), but not if you use an external program (such as XCOPY or Explorer). You can disable description processing with the Enable Descriptions configuration option, or with SETDOS /D.

When you COPY, MOVE or REN files between two directories, both of which have descriptions, and you use switches which enable processing of hidden files (or you have removed the hidden attribute from DESCRIPT.ION), you must use caution to avoid overwriting existing file descriptions in the destination directory with the DESCRIPT.ION file from the source directory. See the notes under the Advanced Features sections of COPY and MOVE for additional details.

If you disable descriptions with the SETDOS /D0 option, DESCRIBE will return with an error message.

Descriptions in Take Command

You can also describe directories and files with the List View in Take Command when it is in "Details" view. Double click on the "Description" column, enter or edit the description in the edit box, and press Enter to save.

Options:

	/=	Display the DESCRIBE command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

/D"description"

The quoted string following the /D switch without any separation is used as a description, not a file name, avoiding ambiguity in the meaning of quoted strings. See the Usage section above for details.

/I"text"

Select files by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

	/O:...	Sort the files before processing. You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/U	Update the DESCRIPT.ION file (or the file specified by the Description Filename configuration option), deleting the entries for any nonexistent files. If no filename is supplied, DESCRIBE will process DESCRIPT.ION in the current directory. Otherwise, DESCRIBE will process DESCRIPT.ION in the specified path(s). This option may not be used in conjunction with other DESCRIBE options.

	DESKTOP	Not in LE

	Purpose:	Create or switch desktops

	Format:	DESKTOP [/C [/N] newdesktopname]

		DESKTOP desktopname

	/C(reate)	/N(o activate)

Usage:

DESKTOP will create a new Windows desktop, or switch to an existing desktop.

Option:

	/C	Create a new desktop.

	/N	Don't switch to the new desktop.

	DETACH	Not in LE

	Purpose:	Start a console (character-mode) application in detached mode

	Format:	DETACH [/Q] command

/Q(uiet)

	command	The name of a command to execute, including an optional drive and path specification and any parameters. The name must be enclosed in double quotes if it contains any spaces.

See also: START and TASKEND.

Usage:

When you start a program with DETACH, that program cannot use the keyboard, mouse, or video display. It is "detached" from the normal means of user input and output. However, you can redirect the program's standard I/O to other devices if necessary, using redirection symbols. In most cases, you should only DETACH text-mode programs, since most graphical applications cannot run without a screen or keyboard, or have their input and output redirected.

The command can be an internal command, external command, alias, or batch file. If it is not an external command, TCC will detach a copy of TCC to execute the command.

For example, the following command will detach a copy of TCC to run the batch file XYZ.BTM:

detach xyz.btm

You can also include any parameters or command line switches which the command knows how to interpret:

detach "xyz.btm Monday Nebraska"

If you prefer, you can use the Linux syntax of putting a trailing & on the command line instead of specifying DETACH. (TCC will convert it to a DETACH before executing the command.)

xyz.btm &

Once the program has started, TCC returns to the prompt immediately. It does not wait for a detached program to finish.

The Process ID of the detached program is returned in the _DETACHPID variable.

You can use the TASKEND command to stop a detached program which does not terminate on its own.

Options:

	/Q	Don't display the new process's ID.

DIR

	Purpose:	Display information about files and subdirectories

	Format:	DIR [ranges] [options] [file...]

	ranges	one or more ranges

	options	one or more file selection or report format options

	file	The file, directory, or list of files or directories to display.

	/1

	1 column output

	/L

	Lower case

	/2

	2 column output

	/M

	suppress footer

	/4

	4 column output

	/N[desfhjlv]

	New format or disable options

	/:

	show streams

	/O

	Order

	/A

	Attribute select

	/P

	Pause

	/B

	Bare (name only)

	/Q

	show owner

	/C

	show Compression

	/R

	disable wrap

	/D

	Disable color coding

	/Sn

	show Subdirectories to depth n

	/E

	upper case

	/T

	show aTtribute

	/F

	Full path

	/T:

	time type

	/G[:n]

	allocated size

	/U

	show summary information

	/H

	Hide dots

	/V

	Vertical sort

	/I"text"

	description range

	/W

	Wide

	/J

	Justify names

	/X

	show short names

	/K

	suppress header

	/Z

	use FAT format

See also: ATTRIB, DESCRIBE, PDIR, SELECT, and SETDOS.

File Selection

Supports command dialog, extended wildcards, ranges, multiple file names, and include lists.

Internet: Can be used with FTP servers.

Usage:

DIR can be used to display information about files from one or more directories (local or remote), in a wide range of formats. Depending on the options chosen, you can display the file name, attributes, and size; the time and date of the last change to the file; the file description; and the file's compression ratio. You can also display information in 1, 2, 4, or 5+ columns, sort the files several different ways, use color to distinguish file types, and pause after each full screen.

If you want to produce customized output that will be subsequently parsed by another program or batch file, or if you need a special-purpose directory display, see the PDIR command. DIR and PDIR are related, but they do not have identical switches and they are not intended to produce identical output.

The various DIR displays are controlled through options or switches. The best way to learn how to use the many options available with the DIR command is to experiment. You will soon know which options you want to use regularly. You can select those options permanently by using the ALIAS command.

For example, to display all the files in the current directory, in 2 columns, sorted vertically (down one column then down the next), and with a pause at the end of each page:

dir /2/p/v

To set up this format as the default, using an alias:

alias dir=*dir /2/p/v

When you use DIR on an LFN drive, you must quote any file names which contain white space or special characters.

DIR sets three internal variables:

	%_dir_dirs	The number of directories displayed

	%_dir_files	The number of files displayed

	%_dir_errors	The number of errors

The following sections group DIR's features together in several categories. Many of the sections move from a general discussion to more technical material. If you find some of the information in a category too detailed for your needs, feel free to skip to the beginning of the next section. The sections are:

[image: Onestep] Selecting Files

[image: Onestep] Default DIR Output Format

[image: Onestep] Switching Formats

[image: Onestep] Multiple Column Displays

[image: Onestep] Color-Coded Directories

[image: Onestep] Redirected Output

[image: Onestep] Other Notes

[image: Onestep] Options

[image: Onestep] FTP usage

Selecting Files

DIR can display information about a single file or about several, dozens, hundreds, or thousands of files at once. To display information about a single file, just add the name of the file to the DIR command line:

dir january.wks

The simplest way to view information about several files at once is to use wildcards. DIR can work with the normal wildcard characters (* and ?) and the extended wildcards. For example to display all of the .WKS files in the current directory:

dir *.wks

To display all .TXT files whose names begin with A, B, or C:

dir [abc]*.txt

If you don't specify a filename, DIR defaults to * on LFN drives, and *.* on drives which do not support long file names. This default displays all non-hidden files and subdirectories in the current directory. If you specify a filename for a non-LFN drive which includes some wildcards, and does not include an extension, DIR will append .* to it to match all extensions.

If you link two or more filenames together with spaces, DIR will display all of the files that match the first name and then all of the files that match the second name. You may use a different drive and path for each filename. This example lists all of the .WKS and then all of the .WK1 files in the current directory:

dir *.wks *.wk1

If you use an include list to link multiple filenames, DIR will display the matching filenames in a single listing. Only the first filename in an include list can have a path; the other files must be in the same path. This example displays the same files as the previous example, but the .WKS and .WK1 files are intermixed:

dir *.wks;*.wk1

You can include files in the current or named directory plus all of its accessible subdirectories by using the /S option. This example displays all of the .WKS and .WK1 files in the D:\DATA directory and each of its subdirectories:

dir /s d:\data*.wks;*.wk1

You can also select files by their attributes by using the /A option. For example, this command displays the names of all of the subdirectories of the current directory:

dir /a:d

Finally, with the /I option, DIR can select files to display based on their descriptions (see DESCRIBE for more information on file descriptions). DIR will display a file if its description matches the text after the /I switch. The search is not case sensitive. You can use wildcards and extended wildcards as part of the text. For example, to display any file described as a "Test File" you can use this command:

dir /i"test file"

If you want to display files that include the words "test file" anywhere in their descriptions, use extended wild cards like this:

dir /i"*test file*"

To display only those files which do not have descriptions, use:

dir /I"[]"

In addition, you can use ranges to select or exclude specific sets of files. For example, to display all files modified in the last week, all files except those with a .BAK extension, and all files over 500 KB in size:

dir /[d-7]

dir /[!*.bak]

dir /[s500K]

You can mix any of these file selection techniques in whatever ways suit your needs.

Default DIR Output Format

DIR's output varies based on the type of volume or drive on which the files are stored. If the volume supports long file names, the default DIR format contains 4 columns: the date of the last file modification or write, the time of last write, the file size in bytes, and the file name. The name is displayed as it is stored on the disk, in upper, lower, or mixed case. DIR will wrap filenames from one line to the next if they are too long to fit the width of the display. The standard output format is:

 Volume in drive C is unlabeled Serial number is 3aaf:c891

 Directory of C:\release\version12*

2011-08-30 0:39 <DIR> .

2011-08-30 0:39 <DIR> ..

2011-08-25 11:30 <DIR> tcmd

2011-08-25 23:07 4,801,840 tcmd.exe

(See Switching Formats below for information on changing the standard long filename format to allow room for file descriptions.)

On FAT volumes which do not support long file names, the default DIR format contains 5 columns: the file name, the file size in bytes, the date of the last write, the time of the last write, and the file's description. File names are listed in lower-case; directory names in upper case:

Volume in drive C is C - BOOTUP Serial ...

 Directory of C:*

. <DIR> 8-24-11 12:17

.. <DIR> 8-24-11 12:17

TEST <DIR> 8-01-11 16:21

jpstree.idx 196967 8-28-11 17:57 JP fuzzy directory index

DIR's output is normally sorted by name, with directories listed first. You can change the sort order with the /O option. For example, these two commands sort the output by date. The first command lists the oldest file first; the second command lists the oldest file last:

dir /o:d

dir /o:-d

When displaying file descriptions, DIR wraps long lines to fit on the screen. DIR displays a maximum of 40 characters of text in each line of a description (unless your screen width allows a wider display). If you disable description wrapping with the /R option, the description is truncated at the right edge of the screen, and a right arrow is added at the end of the line to alert you to the existence of additional description text.

DIR's default output is sorted. It displays directory names first, with "<DIR>" inserted instead of a file size, and then filenames. DIR assumes that sequences of digits should be sorted numerically (for example, the file DRAW2 is listed before DRAW03 because 2 is numerically smaller than 03), rather than strictly alphabetically (where DRAW2 would come second because "2" follows "0" in alphanumeric order). You can change the sort order with the /O option. When DIR displays file names in a multi-column format, it sorts file names horizontally unless you use the /V option to display vertically sorted output.

DIR's display can be modified in many ways to meet different needs. Most of the following sections describe the various ways you can change DIR's output format.

Switching Formats

On volumes which support long file names, you can force DIR to use a FAT-like format (file name first, followed by file information) with the /Z option. If necessary, DIR /Z truncates long file names on LFN drives, and adds a right arrow to show that the name contains additional characters.

The standard LFN output format does not provide enough space to show descriptions along with file names. Therefore, if you wish to view file descriptions as part of the DIR listing on a volume which supports long file names, you must use the /Z option.

DIR will display the alternate, short file names for files with long file names if you use the /X option. Used alone, /X causes DIR to display names in 2 columns after the size, time, and date: one column for alternate or short file names and the other for long file names. If a file does not have a short or alternate name which is different from the long filename, the first filename column is empty.

If you use /X and /Z together, DIR will display the short or alternate file names in the FAT-style display format.

If you use the /B option, DIR displays just file names and omits the file size, time stamp, and description for each file, for example:

[c:\] dir w* /b

WINDOWS

WINNT

WINALIAS

WINENV.BTM

.....

There are several ways to modify the display produced by /B. The /F option is similar to /B, but displays the full path and name of each file, instead of just its name. To view the same information for a directory and its subdirectories use /B /S or /F /S. You can use /B /X to display the short name of each file, with no additional information.

Multiple Column Displays

DIR has three options, /2, /4, and /W, that create multi-column displays.

The /2 option creates a 2-column display. On drives which support long filenames, only the name of each file is displayed, with directory names placed in square brackets to distinguish them from file names. On drives which do not support long filenames, or when /Z or /X is used (see below), the display includes the short name, file size, and time stamp for each file.

The /4 option is similar to /2, but displays directory information in 4 columns. On drives which do not support long filenames, or when /Z or /X is used (see below), the display shows the file name and the file size in kilobytes (KB) or megabytes (MB), with "<D>" in the size column for directories.

The /W option displays directory information in 5 or more columns, depending on your screen width. Each entry in a DIR /W display contains either the name of a file or the name of a directory. Directory names are placed in square brackets to distinguish them from file names.

If you use one of these options on a drive that supports long file names, and do not select an alternate display format with /Z or /X, the actual number of columns will be based on the longest name to be displayed and your screen width, and may be less than the number you requested (for example, you might see only three columns even though you used /4). If the longest name is too long to fit in on a single line the display will be reduced to one column, and each name will be wrapped, with "extra" blank lines added so that each name takes the same number of lines.

On LFN drives you can use /Z with any of the multi-column options to create a FAT-format display, with long names truncated to fit in the available space. If you use /X, the FAT-format display is also used, but short names are displayed (rather than truncated long names). The following table summarizes the effects of different options when using TCC on an LFN drive:

	

	 default or /1

	 /2 or /4 columns

	 /W (wide)

	 Normal

	date, time, size, LFN

	 2 - 4 columns, LFNs only

	 No. of columns based on longest LFN

	/Z (FAT)

	truncated LFN, size, date, time

	 2 - 4 columns, truncated LFN plus date, time, size

	 5+ columns, truncated LFNs only

	/X (SFN)

	date, time, size, SFN, LFN

	 2 - 4 columns, SFNs plus date, time, size

	 5+ columns, SFNs only

	/X /Z

	SFN, size, date, time

	 (Same as /X)

	 (Same as /X)

Color-Coded Directories

DIR can display each file name and the associated file information in a different color, depending on the file's extension.

To choose the display colors, you must either use the SET command to create an environment variable called COLORDIR, or use the Directory Colors configuration option. If you use neither the variable nor the configuration option, DIR will use the default screen colors for all files.

If you use the COLORDIR variable, it will override the Directory Colors option. You may find it useful to use the COLORDIR variable for experimenting, then to set permanent directory colors with the Directory Colors option.

The format for both the COLORDIR environment variable and the Directory Colors option is:

ext ... :ColorName; ...

where "ext" is either a file extension (which may include wildcards) or one or more of the following file types:

	type

	files affected

	ARCHIVE

	Files with archive attribute set (modified since the last backup)

	COMPRESSED

	Compressed files

	DIRS

	Directories

	ENCRYPTED

	Encrypted files

	HIDDEN

	Hidden files

	JUNCTION

	Junctions or symbolic links

	NORMAL

	File with no attribute set

	NOTINDEXED

	Files whose content is not indexed

	OFFLINE

	Offline files

	RDONLY

	Read-only files

	SPARSE

	Sparse files

	SYSTEM

	System files

	TEMPORARY

	temporary files

and "ColorName" is any valid color name (see Colors and Color Names for information on color names).

Note that if a file uses one of the reserved file type names shown above as its extension (e.g. xyz.hidden) , that file will receive the color defined for the file type.

Unlike most color specifications, the background portion of the color name may be omitted for directory colors. If you don't specify a background color, DIR will use the current screen background color.

For example, to display .COM and .EXE files in red on the current background, .C and .ASM files in bright cyan on the current background, read-only files in green on white, and everything else in the default color:

set colordir=com exe:red; c asm:bright cyan; rdonly:green on white

Extended wildcards can be used in directory color specifications. For example, to display .BAK, .BAX, and .BAC files in red, and everything else in the default color:

set colordir=BA[KXC]:red

You can combine attribute tests with the .and. / .or. / .xor. / .not. keywords. For example, to display directories that are also hidden in blue:

set colordir=dirs .and. hidden:blue

COLORDIR processes the line from left to right, and does not support parentheses.

Redirected Output

The output of the DIR command, like that of most other internal commands, can be redirected to a file, printer, serial port, or other device. However, you may need to take certain DIR options into account when you redirect DIR's output.

DIR wraps both long file names and file descriptions at the width of your display. Its redirected output will also wrap at the screen width. Use the /R option if you wish to disable wrapping of long descriptions.

If you redirect a color-coded directory to a file or a character device, DIR will remove the color data as it sends the directory information to a file.

To redirect DIR output to the clipboard, use CLIP: as the output device name, for example:

dir *.exe > clip:

FTP Usage

You can display directories on FTP servers. For example:

dir ftp://ftp.microsoft.com/

You can also use the IFTP command to start an FTP session on a server, and then use a simplified syntax to specify the files and directories you want.

Other Notes

If you have selected a specific country code for your system, DIR will display the date in the format for that country. The default date format is U.S. (mm-dd-yy). The separator character in the file time will also be affected by the country code. Thousands and decimal separators in numeric displays are affected by the country code, and by the ThousandsChar and DecimalChar settings selected with the configuration dialogs or in the .INI file.

DIR can generally display any file date between January 1, 1980 and December 31, 2099 if the date is supplied properly by the operating system.

If you are using NTFS disk compression, you can use the /C switch to view the amount of compression achieved for each file. When you do, the compression ratio is displayed instead of the file's description. You can also sort the display by compression ratios with the /O:c switch. Details for both switches are in the Options section below. /C and /O:c will be ignored for uncompressed drives. /C will not display compression ratios on drives that support long file names unless you also use /Z to switch to the old-style short filename format.

If the OFFLINE attribute is set, DIR will display the file size enclosed in parentheses (for compatibility with CMD).

Options:

Options on the command line apply only to the filenames which follow the option, and options at the end of the line apply to the preceding filename only. This allows you to specify different options for different groups of files, yet retains compatibility with the traditional DIR command when a single filename is specified.

	/=	Display the DIR command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/1	Single column display -- display the filename, size, date, and time; also displays the description on drives which do not support long filenames. This is the default. If /T is used the attributes are displayed instead of the description; if /C or /O:c is used the compression ratio is displayed instead of the description. This option is most useful if you wish to override a default /2, /4, or /W setting stored in an alias. In Windows Vista or later on NTFS drives, single column displays will also show the target of symbolic links following the filename.

	/2	Two column display -- display just the name (on LFN drives), or display the filename, size, date, and time on other drives. See Multiple Column Displays above for more details.

	/4	Four column display -- display just the name (on LFN drives); or display the filename and size, in K (kilobytes) or M (megabytes) on other drives, with files between 1 and 9.9 megabytes in size displayed in tenths (i.e., "2.4M"). See Multiple Column Displays above for more details.

	/:	Display file stream names and sizes on NTFS volumes. When combined with the /B or /F options, the size is omitted.

When /: is used in conjunction with /B (Bare), the file name is displayed on the first line, then any streams, indented two spaces, on subsequent lines:

c:\test\myfile.dat

xyz:$DATA

abc:$DATA

When /: is used in conjunction with /F (Full path), the file name is displayed on the first line, then any streams are appended to the filename on subsequent lines:

c:\test\myfile.dat

c:\test\myfile.dat:xyz

c:\test\myfile.dat:abc

	/A[:]	Display only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	Suppress the header and summary lines, and display file or subdirectory names only, in a single column. This option is most useful when you want to redirect a list of names to a file or another program. If you use /B with /S, DIR will show the full path of each file (the same display as /F) instead of simply its name and extension. If you use /B with /X on an LFN drive, DIR will display the short name of each file instead of the long name. /B also sets /H.

/B1 will display relative paths when used with /S. (Normally, /B shows the full pathname for the file.)

	/C	 Display per-file and total compression percentage on NTFS drives with compression enabled. /C only works in single-column mode; it is ignored if /2, /4, or /W is used.

	/D	Temporarily disable directory color coding. May be required when color-coded directories are used and DIR output is redirected to a character device like a serial port (e.g., COM1). /D is not required when DIR output is redirected to a file.

	/E	Display filenames in upper case.

	/F	Display each filename with its drive letter and path in a single column, without other information. If you use /F with /X, the "short" version of the entire path is displayed.

	/G[:n]	Display the allocated disk space instead of the actual size of each file. You can optionally specify the disk cluster size to be used by /G. (DIR will normally query the system for the cluster size on the specified drive, but you can override with /G:n if you know that the returned info is incorrect, or if you want to find the size required if the specified files were moved to another device with a different cluster size.)

	/H	Suppress the display of the "." and ".." directories.

	/I"text"	Select filenames by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]".

The /I option may be used to select files even if descriptions are not displayed (for example, if /2 is used). However, /I will be ignored if /C or /O:c is used.

	/J	Justify (align) filename extensions and display them in the FAT format. If on an LFN drive, you must also specify the /X and /Z options.

	/K	Suppress the header (disk and directory name) display.

	/L	Display file and directory names in lower case.

	/M	Suppress the footer (file and byte count totals) display.

	/N	Use the long filename display format, even if the files are stored on a volume which does not support long filenames. See also /Z.

A /N with one of the following arguments has an alternate meaning:

	d	Skip hidden directories (when used with /S)

	e	Don't display an error message if no files match.

	f	Don't display "bytes free" in the summary

	h	Don't display the header

	j	Skip junctions (when used with /S)

	l	Don't display the link name for symbolic links

	s	Don't display the summary.

	v	Don't display the volume information.

	/O	Set the sorting order. You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	c	Sort by compression ratio (the least compressed file in the list will be displayed first). For single-column directory displays in the short filename format, the compression ratios will be used as the basis of the sort and will also be displayed. For wider displays (/2, /4, and /W) and displays in LFN format, the compression ratios will be used to determine the order but will not be displayed. For information on supported compression systems see /C above.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	i	Sort by file description (ignored if /C or /O:c is also used)

	o	Sort by owner

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

	/Q	Display the file or directory owner (NTFS and remote directories only).

	/R	Forces long descriptions to be displayed on a single line, rather than wrapped onto two or more lines. Use /R when output is redirected to a character device, such as a serial port or the printer; or when you want descriptions truncated, rather than wrapped, in the on-screen display.

	/S	Display file information from the current directory and all of its accessible subdirectories. DIR will only display headers and summaries for those directories which contain files that match the filename(s), ranges, and attributes that you specify on the command line. DIR will display hidden subdirectories for compatibility with CMD.

If you specify a number after the /S, DIR will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, DIR will not display any filenames until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not display the contents of \a or \a\b. (Not available in TCC/LE.)

	/T	Display the filenames and attributes in the format RHSADENTPCOIJ, regardless of volume type:

	R

	Read-only

	A

	Archive

	H

	Hidden

	D

	Subdirectory

	S

	System

	C

	Compressed

	E

	Encrypted

	O

	Offline

	N

	Normal

	I

	Not content-indexed

	T

	Temporary

	L

	Junction or symbolic link

	P

	Sparse file

	

	

Attributes which are set are represented by their letter, unset attributes by the _ (underscore) character.

If you wish to add another option after /T, you must start the next option with a forward slash. If you don't, TCC will interpret the /T as the /T:{acw} time display switch (see below) and the following character as a time selector. For example:

dir /tz incorrect, will display an error

dir /t /z correct

	/T:a|c|w[u]	 Specify which of the date and time fields on a drive which supports long filenames should be displayed and used for sorting:

	a	Last access date and time (on VFAT volumes access time is always midnight).

	c	Creation date and time.

	w	Last modification (write) date and time (default).

If you append a u after the field, DIR will display the file time in UTC.

	/U	Only display the number of files, the total file size, and the total amount of disk space used. Information on individual files is not displayed. /U1 will display summaries for each directory, but no total summary for each parent directory. /U2 displays the grand total only.

	/V	Display the filenames sorted vertically rather than horizontally (use with the /2, /4 or /W options).

	/W	Display filenames only, horizontally across the screen. On drives which do not support long filenames, or when used with /Z or /X, /W displays as many columns as it can fit into TCC window, using 16 characters in each column. Otherwise (i.e., when long filenames are displayed) the number of columns depends on the width of the longest name in the listing. See Multiple Column Displays above for more details.

	/X	Display both the short name (8-character name plus 3-character extension) and the long name of each file on an LFN drive. In normal single-column output the short name is displayed first, followed by the long name. The short name column is left blank if the short name and long name are the same. On NTFS volumes this means case insensitive match, but on VFAT volumes this means case sensitive match (i.e., no lower case letters in the SFN). /X also selects short filenames in the /2, /4, /B, /W , and /Z displays, and short file and path names in the /F display.

	/Z	Display filenames on LFN drives in the old-style format, with the filename on the left and the description (when available) on the right. Long names will be truncated to 12 characters unless /X is also used. If the name is longer than 12 characters, it will be followed by a è "right arrow" symbol to show that one or more characters have been truncated. If a description file exists, /Z defaults to using the name of the . and .. directories as description for those entries

DIRHISTORY

	Purpose:	Display, add to, clear, or read the directory history list

	Format:	DIRHISTORY [/A directory /F /G /L /N /P /R filename /Tn]

	directory

	The name of a directory to be added to the directory history.

	filename

	The name of a file containing entries to be added to the directory history.

	/A(dd)	/N(o duplicates)

	/F(ree)	/P(ause)

	/G(lobal)	/R(ead)

	/L(ocal)	/T (display last n lines)

See also: HISTORY.

File Selection

Supports command dialog.

Usage

Every time you change to a new directory or drive, TCC saves the previous directory in an internal directory history list. The directory history window allows you to use the list to return to a previous directory. See also: directory navigation.

The DIRHISTORY command lets you view and manipulate the directory history list directly. If no parameters are entered, DIRHISTORY will display the current directory history list:

dirhistory

With the options explained below, you can clear the list, add new directories to the list without changing to them, save the list in a file, or read a new list from a file.

The number of directories saved in the directory history list depends on the length of each directory name. The list size can be specified at startup with the Directory History Buffer Size configuration option. The default size is 4,096 characters.

Your directory history list can be stored either locally (a separate history list for each copy of TCC) or globally (all copies of TCC share the same list). For details see the discussion of local and global history lists. If you use global lists, SHRALIAS can save the list when no copy of TCC is active, as long as you do not restart Windows.

You can save the directory history list by redirecting the output of DIRHISTORY to a file. This example saves the history to a file called DIRHIST and reads it back again.

dirhistory > dirhist

dirhistory /r dirhist

Because the directory history stores each name only once, you don't have to delete its contents before reading back the file unless you want to delete the directories that were visited by the intervening commands.

TCC can also load and save the history list automatically if you use the Directory History File configuration option.

Options

	/=	Display the DIRHISTORY command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A	 Add a directory to the directory history list.

	/F	Erase all entries in the directory history list.

	/G	Switch from a local to a global directory history list.

	/L	Switch from a global to a local directory history list.

	/N	Removes duplicate entries (oldest first) from the directory history list.

	/P	Wait for a key after displaying each page of the list. Your options at the prompt are explained in detail under Page and File Prompts.

	/R	Read the directory history from the specified file and append it to the list currently held in memory.

	/Tn	Display the last n lines of the directory history. If n is negative, skip the first -n lines of the directory history. (Not available in TCC/LE.)

DIRS

	Purpose:	Display the current directory stack

	Format:	DIRS [+n -n /Q]

	+n / -n	Rotate the directory stack up or down n entries

/Q(uiet)

See also: PUSHD, POPD, @DIRSTACK and Directory Navigation.

Usage:

The PUSHD command adds the current default drive and directory to the directory stack, a list maintained by TCC. The POPD command removes the top entry of the directory stack and makes that drive and directory the new default. The DIRS command displays the contents of the directory stack, with the most recent entries last (i.e., the next POPD will retrieve the last entry that DIRS displays).

For example, to change directories and then display the directory stack:

[c:\] pushd c:\database

[c:\database] pushd d:\wordp\memos

[d:\wordp\memos] dirs

c:\

c:\database

The directory stack holds 4096 characters, enough for 80+ typical drive and directory entries.

Options

	/Q	Don't display the directory stack (only useful when combined with +n or -n).

	DISKMONITOR	Not in LE

	Purpose:	Monitor free disk space

	Format:	DISKMONITOR [/C [disk]]

DISKMONITOR disk size command

	disk	Disk drive to monitor

	size	Minimum free disk space

	command	Command to execute when condition is triggered

/C(lear)

Usage:

If the free disk space for the drive drops below the specified size, DISKMONITOR will execute the specified command. For example, to send an email when the C: drive has less than 2Gb free:

DISKMONITOR C: 2Gb sendmail bob@bob.com "Disk Status" Drive C: is full!

The drive can also be a sharename. The size format is the same as that used for size ranges (i.e., either a number or a number with an appended k, K, m, M, g, G, t, or T).

The command line will be parsed and expanded before DISKMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. DISKMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

If you don't enter any arguments, DISKMONITOR will display the disk drives it is currently monitoring.

DISKMONITOR will poll the drives it is monitoring once every 10 seconds.

Options:

	/C	If disk is specified, remove the monitor for that disk drive. Otherwise, remove all disk monitors.

DO

	Purpose:	Create loops in batch files

	Format:	DO loop_control

commands

[ITERATE]

commands

[LEAVE [n]]

commands

		ENDDO

Loop_control formats

DO count

DO FOREVER

DO varname = start TO end [BY step] [(command)]

DO WHILE condition [(command)]

DO UNTIL condition [(command)]

DO UNTIL DATETIME date time [(command)]

DO FOR n [SECONDS | MINUTES | HOURS] [(command)]

DO varname IN [range...] /D"directory" [/I:"text" /S[[+]n] /A:[[-|+]rhsadecijopt /O:[-]adegnrstu fileset [(command)]

DO varname IN [/T"delimiters"] /L stringset [(command)]

DO varname IN /C stringset [(command)]

DO varname IN /L stringset [(command)]

DO varname in /P command ... [(command)]

DO varname IN @file [(command)]

	count

	Integer in the range [0, 2147483647], or an internal variable or variable function that evaluates to such a value, specifying the number of times the loop is executed.

	varname

	The environment variable containing the current value of the loop index, or the current filename or string, or the current line from a file. Do not prefix the variable name with %.

	start, end, step

	Integers in the range [-2147483647, 2147483647] or internal variables or variable functions that evaluate to such values, controlling the number of times the loop is executed.

	condition

	A conditional expression to determine whether or not the loop should be executed

	fileset

	A filename or list of filenames, possibly using wildcards

	stringset

	An arbitrary set of strings. Wildcards are not interpreted.

	file

	A file each line of which contains a string the loop is to be executed for

	range

	A date, time, size or exclusion range. At most one of each, in any order.

	commands

	One or more commands to execute each time through the loop. If you use multiple commands, they must be separated by command separators or be placed on separate lines.

	date

	The loop termination date in ISO 8601 format

	time

	The loop termination time in 24-h hh:mm:ss format

	/A:

	Attribute select

	/C

	Loop through each character in expression

	/D"directory"

	Start directory

	/I"text"

	(Match description) Description range.

	/L(iteral)

	Members of set are strings, not filenames

	/O:... (Order)

	Sort order

	/P

	Parse the output of the command, saving the next output line in varname each time the loop is executed.

	/S

	Perform the loop in the current directory and all its subdirectories

Supports extended wildcards, ranges, and include lists for the set. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

DO can be used in batch files, aliases, or at the command prompt. To use them in aliases or at the prompt, you need to define the DO on a single line, and enclose the body of the DO loop in a command group following the DO expression. (There is no ENDDO statement in a single-line DO). For example:

do count=1 to 10 by 1 (echo count=%count)

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. DO will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

DO sets four internal variables:

	%_do_dirs	The number of directories traversed (with /S)

	%_do_files	The number of directory entries (files or subdirectories) processed

	%_do_errors	The number of errors

	%_do_loop	The number of times the DO loop has been executed

Types of DO Loops

DO can be used to create several different kinds of loops.

●DO count, is a counted loop. The batch file lines between DO and ENDDO are repeated count times. TCC does not provide the user with the count of how many times the loop has been executed, though it is possible for the user to create a such a mechanism. For example::

set ct=0

do 5

 beep

 set ct=%@inc[%ct]

enddo

●DO FOREVER creates an endless loop. You must use LEAVE or GOTO to exit such a loop.

●DO varname = start TO end [BY step] is similar to a "for loop" in programming languages like BASIC. DO creates an environment variable, varname, and sets it equal to the value start. If varname already exists in the environment, it will be overwritten. DO then begins the loop process by comparing the value of varname with the value of end. If step is positive or not specified, and varname is less than or equal to end, DO executes the batch file lines up to the ENDDO. Next, DO adds to the value of varname either the value of step if BY step is specified, or 1, and repeats the compare and execute process until varname is greater than end. This example displays the even numbers from 2 through 20:

do i = 2 to 20 by 2

echo %i

enddo

DO can also count down, rather than up. If step is negative, varname will be decreased by the absolute value of step with each loop, and the loop will stop when varname is less than end. For example, to display the even numbers from 2 through 20 in reverse order, replace the first line of the example above with:

do i = 20 to 2 by -2

●DO WHILE condition evaluates condition each time through the loop as a conditional expression before executing the loop, and will execute it only if it is true. If condition is FALSE when the DO is first executed, the loop will never be executed.

●DO UNTIL condition evaluates condition as a conditional expression each time after execution of the loop, and repeats the loop only if it is FALSE. Therefore, the statements within the loop will always be executed at least once.

●DO UNTIL DATETIME date time executes the loop until the current date and time is equal to or greater than the specified date (ISO format) and time (24-hour format). The date and time can be in either YYYY-MM-DD HH:MM:SS or YYYYMMDDHHMMSS format. (The date and/or time can be a variable.)

●DO FOR n SECONDS | MINUTES | HOURS executes the loop for the specified amount of time.

●DO varname IN fileset executes the commands between DO and ENDDO by creating an environment variable, varname, and setting it equal to every filename in the fileset, ignoring items not matching file or directory names. This is similar to the set used in the FOR command, but it can only include file and directory names, not arbitrary text strings. If varname already exists in the environment, it will be overwritten (unlike the control variable in FOR). For example:

do x in *.txt

 ...

enddo

will execute the loop once for every .TXT file in the current directory; each time through the loop the variable x will be set to the name of the next file that matches the file specification. The order of matches is dependent on the file system, and is totally unrelated to any characteristics of the filenames matched.

If, between DO and ENDDO, you create a new file that could be included in the list of files, it may or may not appear in an iteration of the DO loop. Whether the new file appears depends on its physical location in the directory structure, a condition over which TCC has no control.

To use date, time, size, description, or file exclusion ranges for the set place them just before the filename(s), for example:

do x in /[d9-1-2011,9-31-2011] *.txt

●DO varname IN /L stringset executes the commands between DO and ENDDO once for every string literal in stringset, setting varname to each in turn.

●DO varname IN /C stringset executes the commands between DO and ENDDO once for every character in stringset (including whitespace and special characters), setting varname to each in turn.

●DO varname IN @file executes the commands between DO and ENDDO once for every line in file, setting varname to the content of each one in turn. Beware of characters with special meaning to TCC, such as redirection and piping symbols, within the file (use SETDOS /X as needed).

To execute the loop once for each line of text in the clipboard, use CLIP: as the file name (e.g. DO X IN @CLIP:). CLIP: will not return any data unless the clipboard contains text. See Redirection for more information on CLIP:.

Special DO keywords: ITERATE and LEAVE

Two special keywords, ITERATE and LEAVE, may be used inside a DO / ENDDO loop. ITERATE ignores the remaining commands inside the loop and returns to the beginning of loop for another iteration, unless DO determines that the loop is finished. LEAVE exits from the current DO loop and continues with the command following its ENDDO. Both keywords may be repeated as often as desired. Both ITERATE and LEAVE are most often used in an IF or IFF command (group):

do while "%var" != "%val1"

...

if "%var" == "%val2" leave

enddo

LEAVE accepts an optional numeric argument (>=1) which specifies the DO nesting level you want to leave. For example, "LEAVE 2" will exit two nested DO loops. (Not available in TCC/LE.)

Usage Notes

 Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

DO loops can be nested, i.e. you can have a DO / ENDDO loop within another DO / ENDDO loop.

You can exit from all DO / ENDDO loops in a batch file by using GOTO to a line past the corresponding ENDDO. However, be sure to read the cautionary notes about GOTO and DO under the GOTO command before using GOTO in any other way inside any DO loop.

You cannot use RETURN to return from a GOSUB while inside a DO loop.

Note: Do not confuse the DO command with the unrelated optional do keyword of the FOR command.

Options:

	/A:	Select the files in a DO x IN ... by their specified attribute(s). See Attribute Switches for information on the attributes which can follow /A:.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/C	For each loop, assign the next character (including whitespace and special characters) in the expression to the DO variable.

	/D"directory"	Set the start directory (for use with /S).

	/I"text"	Select files in a DO x IN ... by matching text in their descriptions. See Description Ranges for details.

	/L	The parameters following DO x IN /L are strings, not filenames. Each parameter will be assigned in sequence, from left to right, to the loop control variable on consecutive passes through the loop.

	/N	Disable options:

	d	Skip hidden directories (when used with /S)

	j	Skip junctions (when used with /S)

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

The /O:... option saves all of the matching filenames and then performs the requested operation. This avoids the potential problem of processing files more than once. (Not available in TCC/LE.)

	/P	For each loop, assign the next output line from command to the DO variable. (Not available in TCC/LE.)

	/S	Perform the DO loop in the current directory and then on all of its subdirectories. (DO also supports /R as a synonym, for compatibility with FOR.)

If you specify a number after the /S, DO will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, DO will not execute command until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not execute command in \a or \a\b. (Not available in TCC/LE.)

	/T"text"	Specify the delimiters to be used when parsing a string set.

DRAWBOX

	Purpose:	Draw a box on the screen

	Format:	DRAWBOX ulrow ulcol lrrow lrcol style [BRIght] fg ON [BRIght] bg [FILL [BRIght] bgfill] [ZOOm] [SHAdow]

	ulrow	Row for upper left corner

	ulcol	Column for upper left corner

	lrrow	Row for lower right corner

	lrcol	Column for lower right corner

	style	Box drawing style:

	0	No lines (box is drawn with blanks)

	1	Single line

	2	Double line

	3	Single line on top and bottom, double on sides

	4	Double line on top and bottom, single on sides

	fg	Foreground character color

	bg	Background character color

	bgfill	Background fill color (for the inside of the box)

See also: DRAWHLINE and DRAWVLINE.

Usage:

DRAWBOX is useful for creating attractive screen displays in batch files.

For example, to draw a box around the edge of an 80x25 window with bright white lines on a blue background:

drawbox 0 0 24 79 1 bri whi on blu fill blu

See Colors and Color Names for details about colors.

If you use ZOOM, the box appears to grow in steps to its final size. The speed of the zoom operation depends on the speed of your computer and video system.

If you use SHADOW, a drop shadow is created by changing the characters in the row under the box and the 2 columns to the right of the box to normal intensity text with a black background (this will make characters displayed in black disappear entirely).

The row and column values are zero-based, so on a standard 25 line by 80 column display, valid rows are 0 - 24 and valid columns are 0 - 79.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits). DRAWBOX checks for valid row and column values, and displays a "Usage" error message if any values are out of range.

The maximum row value is determined by the current height of the TCC window. The maximum column value is determined by the current virtual screen width (see Resizing the Take Command Window for more information).

If ulrow is set to 999, lrrow is assumed to be the desired height, and the box will be centered vertically. If ulcol is set to 999, lrcol is assumed to be the desired width, and the box will be centered horizontally.

Unlike DRAWHLINE and DRAWVLINE, DRAWBOX does not automatically connect boxes to existing lines on the screen with the proper connector characters. If you want to draw lines inside a box and have the proper connectors drawn automatically, draw the box first, then use DRAWHLINE and DRAWVLINE to draw the lines.

DRAWBOX uses the standard line and box drawing characters in a Unicode or U.S. English extended ASCII character set. If you use an ASCII or raster font which does not include these line drawing characters, the box or lines will not be displayed correctly.

DRAWHLINE

	Purpose:	Draw a horizontal line on the screen

	Format:	DRAWHLINE row column len style [BRIght] fg ON [BRIght] bg

	row	Starting row

	column	Starting column

	len	Length of line

	style	Line drawing style:

	1	Single line

	2	Double line

	fg	Foreground character color

	bg	Background character color

See also: DRAWBOX and DRAWVLINE.

Usage:

DRAWHLINE is useful for creating attractive screen displays in batch files. It detects other lines and boxes on the display, and creates the appropriate connector characters when possible (not all types of lines can be connected with the available characters).

For example, the following command draws a double line along the top row of the display with green characters on a blue background:

drawhline 0 0 80 2 green on blue

The row and column values are zero-based, so on a 25 line by 80 column display, valid rows are 0 - 24 and valid columns are 0 - 79.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits). If either value is out of range, DRAWHLINE displays a "Usage" error message.

The maximum row value is determined by the current height of the TCC window. The maximum column value is determined by the current virtual screen width (see Resizing the Take Command Window for more information).

If row is set to 999, the line will be centered vertically. If column is set to 999, the line will be centered horizontally.

See Colors and Color Names for details about colors.

DRAWHLINE uses the standard line and box drawing characters in a Unicode or U.S. English extended ASCII character set. If you use an ASCII or raster font which does not include these line drawing characters, the box or lines will not be displayed correctly.

DRAWVLINE

	Purpose:	Draw a vertical line on the screen

	Format:	DRAWVLINE row column len style [BRIght] fg ON [BRIght] bg

	row	Starting row

	column	Starting column

	len	Length of line

	style	Line drawing style:

1 Single line

2 Double line

	fg	Foreground character color

	bg	Background character color

See also: DRAWBOX and DRAWHLINE.

Usage:

DRAWVLINE is useful for creating attractive screen displays in batch files. It detects other lines and boxes on the display, and creates the appropriate connector characters when possible (not all types of lines can be connected with the available characters).

For example, to draw a double width line along the left margin of the display with bright red characters on a black background:

drawvline 0 0 25 2 bright red on black

The row and column values are zero-based, so on a 25 line by 80 column display, valid rows are 0 - 24 and valid columns are 0 - 79. Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits). If either value is out of range, DRAWVLINE displays a "Usage" error message.

The maximum row value is determined by the current height of the TCC window. The maximum column value is determined by the current virtual screen width (see Resizing the Take Command Window for more information).

See Colors and Color Names for details about colors.

DRAWVLINE uses the standard line and box drawing characters in a Unicode or U.S. English extended ASCII character set. If you use an ASCII or raster font which does not include these line drawing characters, the box or lines will not be displayed correctly.

ECHO

	Purpose:	Enable or disable batch file or command line echoing, display the echoing status on stdout, or display a message on stdout

	Format:	ECHO [ON | OFF | message]

		

message Text to display.

See also the commands ECHOS, ECHOSERR, ECHOERR, ECHOX, ECHOXERR, SCREEN, SCRPUT, TEXT and VSCRPUT, and the internal variable _ECHO.

Usage:

The ECHO command has two unrelated, independently functioning purposes:

●Command line echoing
●Message display

Command line echoing

When command line echoing is enabled, each command is displayed on stdout after it is fully parsed, aliases, functions, and variables expanded, but before it is executed.

Echoing control

TCC controls command line echoing in batch files and at the interactive prompt independently.

Executing ECHO ON at the command prompt enables, and ECHO OFF disables echoing at the command prompt. ECHO defaults to OFF at the command line. The command-line ECHO is most useful when you are learning how to use advanced features.

Similarly, executing ECHO ON in a batch file enables, and ECHO OFF disables echoing of batch file commands. ECHO defaults to ON in batch files. The current ECHO state is inherited by called batch files. You can change the default setting to OFF with the SETDOS /V0 command, or the Batch Echo configuration option.

Regardless of the relevant echoing state, any command prefixed with the at-sign @ will not be echoed.

Echoing state display

To see the current echoing state, use the ECHO command with no parameters. This displays either the batch file or command line echo state, depending on where the ECHO command is performed. Alternately, you can examine the value of the internal variable _ECHO.

Message display

If the ECHO command has a message (the whole command tail, excluding redirection or piping, if any), and message is neither of the words ON or OFF (though it can include those words), message is fully parsed, then displayed on stdout, regardless of the applicable echoing state. Any display sent to stdout after message has been displayed will start on a new line.

Display rules

●The first space after the command name is ignored.
●Trailing spaces in message are ignored.
●Functions and variables not enclosed between back quotes are evaluated.
●To include special characters, .e.g, < | >, in message, enclose them in double quotes or back quotes (see Parameter Quoting) or precede them with the escape character, or use the /X option of the SETDOS command.
●To display % you may alternately use two % marks for each one to be displayed, e.g., %%
●To display trailing spaces, either enclose them in back quotes, or append a pair of back quotes behind them, e.g., echo trailers ``
●The ASCII NUL character cannot be included in message.
●If stdout is the console, after displaying message on the current line, the cursor will be moved to the beginning of the next line.
●If stdout is a file, the CR LF sequence will be appended to message.

To display a blank line, use one of the forms below:

echo `` (two consecutive back quotes), or

echo. (special syntax for compatibility with CMD).

Examples

This command will display a message:

echo Processing your print files...

The command

echo This text is indented 3 spaces ``

will display 3 leading and 3 trailing spaces.

ECHOERR

	Purpose:	Display a message to the standard error device (stderr)

	Format:	ECHOERR message

	message	Text to display.

See also: ECHO, ECHOS, ECHOSERR, ECHOX, and ECHOXERR.

Usage:

ECHOERR (like ECHO in message display mode) parses and expands message, and displays it on stderr (usually the screen), instead of stdout. Even if stdout of a batch file is redirected or piped, ECHOERR will still display a screen message, unless stderr is redirected or piped (see Redirection). Any display sent to stderr after message has been displayed will start on a new line.

Display rules

●The first space after the command name is ignored.
●Trailing spaces in message are ignored.
●Functions and variables not enclosed between back quotes are expanded.
●To include special characters, .e.g, < | >, in message, enclose them in double quotes or back quotes (see Parameter Quoting) or precede them with the escape character, or use the /X option of the SETDOS command.
●To display % you may alternately use two % marks for each one to be displayed, e.g., %%
●To display trailing spaces, either enclose them in back quotes, or append a pair of back quotes behind them, e.g., echoerr trailers ``
●The ASCII NUL character cannot be included in message.
●If stderr is the console, after displaying message on the current line, the cursor will be moved to the beginning of the next line.
●If stderr is a file, the CR LF sequence will be appended to message.

ECHOS

	Purpose:	Display a message to standard output (stdout) without a trailing carriage return / line feed

	Format:	ECHOS message

		

message Text to display.

See also: ECHO, ECHOERR, ECHOSERR, ECHOX, ECHOXERR, SCREEN, SCRPUT, TEXT, and VSCRPUT.

Usage:

ECHOS, like ECHO in message display mode, parses, expands, and displays message on stdout. However, any display sent to stdout after message has been displayed will continue on the same line.

Display rules

●The first space after the command name is ignored.
●Trailing spaces in message are ignored.
●Functions and variables not enclosed between back quotes are evaluated.
●To include special characters, .e.g, < | >, in message, enclose them in double quotes or back quotes (see Parameter Quoting) or precede them with the escape character, or use the /X option of the SETDOS command.
●To display % you may alternately use two % marks for each one to be displayed, e.g., %%
●To display trailing spaces, either enclose them in back quotes, or append a pair of back quotes behind them, e.g., echo trailers ``
●The ASCII NUL character cannot be included in message.
●ECHOS keeps the cursor on the same line, thus permitting building a line of display using multiple commands

ECHOS is useful for text output when you don't want to add a carriage return / linefeed pair at the end of the line. This is useful if your whole line of text requires more than one command to build, and also for controlling character devices.

ECHOSERR

	Purpose:	Display a message to the standard error device (stderr) without a trailing carriage return / line feed

	Format:	ECHOSERR message

message Text to display.

See also: ECHO, ECHOS, and ECHOERR.

Usage:

ECHOSERR acts as a combination of ECHOS and ECHOERR. It parses and expands message, and displays it on stderr. However, any display sent to stderr after message has been displayed will continue on the same line.

Display rules

●The first space after the command name is ignored.
●Trailing spaces in message are ignored.
●Functions and variables not enclosed between back quotes are evaluated.
●To include special characters, .e.g, < | >, in message, enclose them in double quotes or back quotes (see Parameter Quoting) or precede them with the escape character, or use the /X option of the SETDOS command.
●To display % you may alternately use two % marks for each one to be displayed, e.g., %%
●To display trailing spaces, either enclose them in back quotes, or append a pair of back quotes behind them, e.g., echo trailers ``
●The ASCII NUL character cannot be included in message.
●ECHOSERR keeps the cursor on the same line, thus permitting building a line of display using multiple commands

	ECHOX	Not in LE

	Purpose:	Display a message to standard output (stdout) without performing any variable expansion or redirection.

	Format:	ECHOX message

		

message Text to display.

See also: ECHO, ECHOERR, ECHOSERR, ECHOXERR, SCREEN, SCRPUT, TEXT, and VSCRPUT.

Usage:

ECHOX will echo the message text to STDOUT without doing any of the parser processing (variables, redirection, escaped characters, etc.).

Display rules

●The first space after the command name is ignored.
●Trailing spaces in message are ignored.
●The ASCII NUL character cannot be included in message.

ECHOX is useful for text output when you want to display some text that may have embedded special characters (like %, <. >, or |).

	ECHOXERR	Not in LE

	Purpose:	Display a message to standard error (STDERR) without performing any variable expansion or redirection.

	Format:	ECHOXERR message

		

message Text to display.

See also: ECHO, ECHOERR, ECHOSERR, ECHOX, SCREEN, SCRPUT, TEXT, and VSCRPUT.

Usage:

ECHOXERR will echo the message text to STDERR without doing any of the parser processing (variables, redirection, escaped characters, etc.).

Display rules

●The first space after the command name is ignored.
●Trailing spaces in message are ignored.
●The ASCII NUL character cannot be included in message.

ECHOXERR is useful for text output when you want to display some text that may have embedded special characters (like %, <. >, or |).

EJECTMEDIA

	Purpose:	Eject removable media in the specified drive(s)

	Format:	EJECTMEDIA drive ...

Usage:

EJECTMEDIA will eject removable media, such as CD-ROMs, DVDs, etc. (It is not intended for unmounting USB drives.)

See also LOADMEDIA.

ENDLOCAL

	Purpose:	Restore the saved disk drive, directory, environment, local alias and function lists, and special characters, and exports selected variables

	Format:	ENDLOCAL [/D] [exportvar ...]

/D(ont restore)

See also: SETLOCAL.

Usage:

The SETLOCAL command saves the current disk drive, default directory, all environment variables, the alias and function lists, and the command separator, escape character, parameter character, decimal separator, and thousands separator. It does not save the user-defined function list or array variables. ENDLOCAL restores everything that was saved by the previous SETLOCAL command, except as described below.

For example, this batch file fragment saves everything, removes all aliases so that user aliases will not affect batch file commands, changes the disk and directory, changes the command separator, runs a program, and then restores the original values:

setlocal

unalias *

cdd d:\test

setdos /c~

program ~ echo Done!

endlocal

SETLOCAL / ENDLOCAL may be nested within a single batch file up to 16 levels deep. You can also have multiple, separate SETLOCAL / ENDLOCAL pairs within a batch file, and nested batch files can each have their own SETLOCAL / ENDLOCAL. If you do not provide an ENDLOCAL in the batch file, TCC will do it automatically when the batch file exits.

You can also use SETLOCAL and ENDLOCAL in an alias or at the command line. The maximum nesting level from a command line or alias is 10 levels. Unlike batch files, you are responsible for matching the SETLOCAL / ENDLOCAL calls from an alias or command line; TCC will not perform an automatic ENDLOCAL.

An ENDLOCAL is performed automatically at the end of a batch file, or when returning from a "GOSUB filename". If you invoke one batch file from another without using CALL, the first batch file is terminated, and an automatic ENDLOCAL is performed; the second batch file inherits the settings as they were prior to any SETLOCAL.

●Exporting environment variables

The environment variables whose names are specified in the ENDLOCAL command are exported. This means that their names and values from inside the SETLOCAL / ENDLOCAL will be placed into the restored environment, either adding variables, or possibly modifying them. In the example below, the variable TEST will have the value abcd after the ENDLOCAL is executed, regardless of what its value was, or even if it had not been previously defined:

setlocal

set test=abcd

endlocal test

The list of variables to export may contain wildcards. All variables matching the requested pattern will be exported.

●Exporting current working directory

See option /D below.

Options:

	/D	(Don't restore directory) Export the current directory: the original drive and directory saved by SETLOCAL will not be restored.

ESET

	Purpose:	Edit an environment variable, alias or function definition

	Format:	ESET [/A /D /F /S /U /V] [/C var1 var2] name

	name	The name of an environment variable,function or alias to edit.

	/A(lias)

	/S(ystem variable)

	/C(opy value)

	/U(ser variable)

	/D(efault environment)

	/V(olatile variable)

	/F(unction)

	

See also: ALIAS, FUNCTION, SET, UNALIAS, UNFUNCTION, and UNSET.

Usage:

ESET allows you to edit an environment variable, alias or function definition using line editing commands (see Command Line Editing).

For example, to edit the executable file search path:

eset path

path=c:\;c:\dos;c:\util

To create and then edit an alias:

alias d = dir /d/j/p

eset d

d=dir /d/j/p

Unless a specific data type is specified by one of the option switches /A, /D, /F, /S, /U or /V, ESET will search for name among environment variables first and then among aliases, thus if name is both a variable and an alias, ESET will edit the variable name, and ignore the alias name.

To edit variables defined in the Windows Registry or to edit functions, you must use the appropriate option switch.

Note: You cannot use ESET with GOSUB variables.

If you have enabled global aliases (see ALIAS), any changes made to an alias with ESET will immediately affect all other copies of TCC which are using the same alias list. Similarly, if you have enabled global functions (see FUNCTION), any changes made to a function using ESET /F will immediately affect all other copies of TCC which are using the same function list.

Registry Variables: Default, System, User, and Volatile registry variables can be manipulated with the ESET command's /D, /S, /U and /V switches, respectively. For example, to edit volatile variable myvar from the registry, use:

eset /v myvar

Use caution when directly modifying registry variables as they may be essential to various Windows processes and applications.

Options:

	/A	Edit the named alias even if an environment variable of the same name exists. If you have an alias and an environment variable with the same name, you must use this switch to be able to edit the alias.

	/C	Copy the value from an existing variable, alias, or function. The syntax is:

eset /c var1 var2

where var1 is the variable whose value you want to copy, and var2 is the variable (new or existing) that you want to update.

	/D	Edit a "default" variable in the registry (HKU\.DEFAULT\Environment).

	/F	Edit a user-defined function.

	/S	Edit a "system" variable in the registry (HKLM\System\CurrentControlSet\Control\Session Manager\Environment).

	/U	Edit a "user" variable in the registry (HKCU\Environment).

	/V	Edit a "volatile" variable in the registry (HKCU\Volatile Environment).

	EVENTLOG	Not in LE

	Purpose:	Write a string to the Windows event log

	Format:	EVENTLOG [/S"source" /Cn /E /I /W] message

	message	The text to write.

	source	The source for this message.

	/C(ategory)	/S(ource)

	/E(rror)	/W(arning)

/I(nformational)

See also: HISTORY and LOG.

Usage:

EVENTLOG posts messages to the Windows application event log. You cannot use the command separator character ([&]) or the redirection symbols (| > <) in an EVENTLOG message, unless you enclose the message in quotes or precede the special characters with the escape character.

By default, the text written with EVENTLOG is stored in the event log as informational messages. You can store warning and error messages by using the /W and /E switches.

Messages in the log can be reviewed with the Windows Event Log viewer.

If you do not have proper registry permissions when you execute the EVENTLOG command and/or the key cannot be created, EVENTLOG will fail and display an error. EVENTLOG is primarily intended for use by users with Administrator status. If you are running Windows Vista, 7, or 8, you will also need to be running an elevated session.

Options:

	/=	Display the EVENTLOG command dialog to help you set the command line options. You cannot specify any other arguments on the command line.

	/Cn	Set the event category. The value can be from 0-65535; Windows defines 0-7 as:

	

		 0 - None

		 1 - Devices

		 2 - Disk

		 3 - Printers

		 4 - Services

		 5 - Shell

		 6 - System

		 7 - Network

	/E	Store the message as an error entry in the event log.

	/I	Store the message as an informational entry in the event log. This is the default if no switch is used.

	/S	Specify the event log entry source. If you use the /S option, it must be the first option on the EVENTLOG command line. If the source contains white space, it must be double-quoted. For example:

	

		 eventlog /sCompiling /I Your message here.

	/W	Store the message as a warning entry in the event log.

	EVENTMONITOR	Not in LE

	Purpose:	Monitor event logs

	Format:	EVENTMONITOR [/C [name]]

EVENTMONITOR server name /S"source" /T"type" /D"description" n command

	server	UNC name of the machine with the log file

	name	log name

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

	/C(lear)	/S"source"

	/D"description"	/T"type"

Usage:

If you don't enter any arguments, EVENTMONITOR will display the events it is currently monitoring.

The command line will be parsed and expanded before EVENTMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. EVENTMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

You can specify multiple /D, /S, and /T arguments. If you want to monitor multiple events in a log, put them into a single EVENTMONITOR command. EVENTMONITOR creates a separate thread for each EVENTMONITOR command, so if you have multiple commands you will be wasting CPU time, RAM, and risk having command executed simultaneously in different threads.

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

EVENTMONITOR creates environment variables when an event is triggered that can be queried by command. The variables are deleted after command is executed.

	_eventcomputer	The name of the computer than generated the event

	_eventcount	The number of times the condition has been triggered

	_eventdesc	The event description

	_eventlog	The name of the event log

	_eventsource	The name of the source that wrote the event

	_eventtype	The event type (see /T below)

Options:

	/C	If name is specified, remove the monitor for that event. Otherwise, remove all event monitors.

	/D	Description for the event to be monitored. Only events with a matching description will set the trigger. The description may contain regular expressions.

	/S	Source for the event to be monitored. Only events with a matching source will set the trigger. The source may contain regular expressions.

	/T	Type of event to be monitored. Only events with a matching type will set the trigger. The types of events are:

Success

Error

Warning

Information

Audit_Success

Audit_Failure

	EVERYTHING	Not in LE

	Purpose:	Search for files and/or directories

	Format:	EVERTHING [/C /D /F /M=n /P /R /W @file] filename [...]

	filename	The file or directory name to search for

	@file	A text file containing the names of the files to search for, one per line (see @file lists for details)

	/C(ase sensitive)

	/P(ath names)

	/D(irectories only)

	/R(egular expression)

	/F(iles only)

	/W (match whole word)

	/M=n (maximum files)

	

File Selection

Supports command dialog, extended wildcards, and multiple file names. Date, time, size or exclude ranges anywhere on the line apply to all source files. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage

Search for files and/or directories on local NTFS drives using "Everything Search" (http://www.voidtools.com). EVERYTHING by default does a wildcard search equivalent to "*filename*", and outputs the full pathname of all matching files and/or directories.

You need to install Everything Search and index your local NTFS drives before using EVERYTHING.

Options

	/C	Filename matching is case sensitive

	/D	Only search for directories

	/F	Only search for files

	/M=n	Only return a maximum of n files / directories. (Note that /M determines the total number of matches prior to any additional filtering. If you use /D or /F you will end up with the total minus the number of directories or files you excluded.)

	/P	Match path names

	/R	filename is a regular expression (EVERYTHING will automatically set the regular expression flag if the filename begins with ::)

	/W	Match whole word

EXCEPT

	Purpose:	Perform a command on all available files except those specified

	Format:	EXCEPT [/I"text"] [(@file) | (file ...)] command

	file	The file or files to exclude from the command.

	@file	A text file containing the names of the files to exclude, one per line (see @file lists for details).

	command	The command to execute, including all appropriate parameters and switches.

/I (match description)

See also: ATTRIB and File Exclusion Ranges.

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists. Date, time, size, or file exclusion ranges must appear immediately after the EXCEPT keyword.

Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage:

EXCEPT provides a means of executing a command on a group of files and/or subdirectories, and excluding a subgroup from the operation. The command can be an internal command or alias, an external command, or a batch file.

You may use wildcards to specify the files to exclude from the command. The first example erases all the files in the current directory except those beginning with MEMO, and those whose extension is .WKS. The second example copies all the files and subdirectories on drive C to drive D except those in C:\MSC and C:\TEST, using the COPY command:

except (memo* *.wks) erase *

except (c:\msc c:\test) copy c:* d:\ /s

When you use EXCEPT on an LFN drive, you must quote any file names inside the parentheses which contain white space or special characters. For example, to copy all files except those in the "Program Files" directory to drive E:\:

except ("Program Files") copy /s * e:\

EXCEPT will assume that the files to be excluded are in the current directory, unless another directory is specified explicitly.

EXCEPT prevents operations on the specified file(s) by setting the hidden attribute, performing the command, and then clearing the hidden attribute. If the command is aborted in an unusual way, you may need to use the ATTRIB command to remove the hidden attribute from the file(s). Files which already had the hidden attribute, and are included in the set matching EXCEPT, will not be hidden after EXCEPT is competed. The hidden attribute of files not matching EXCEPT will not be changed.

Caution: EXCEPT will not work with programs or commands that ignore the hidden attribute or which work explicitly with hidden files, including DEL /Z, and the /H (process hidden files) switch available in internal file processing commands.

File exclusion ranges provide a faster and more flexible method of excluding files from internal commands, and do not manipulate file attributes, as EXCEPT does. However, exclusion ranges can only be used with internal commands; you must use EXCEPT for external commands.

Date, time, and size ranges can be used immediately after the word EXCEPT to further qualify which files should be excluded from the command. If the command is an internal command that supports ranges, an independent range can also be used in the command itself. You can also use a file exclusion range within the EXCEPT command; however, this will select files to be excluded from EXCEPT, and therefore included in execution of the command.

You can use command grouping to execute multiple commands with a single EXCEPT. For example, the following command copies all files in the current directory whose extensions begin with .DA, except the .DAT files, to the D:\SAVE directory, then changes the first two characters of the extension of the copied files to .SA:

except (*.dat) (copy *.da* d:\save & ren *.da* *.sa*)

If you use filename completion (see Filename Completion) to enter the filenames inside the parentheses, type a space after the open parenthesis before entering a partial filename or pressing Tab. Otherwise, the command line editor will treat the open parenthesis as the first character of the filename to be completed.

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. EXCEPT will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

Option:

	/I"text"	Select files by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

EXIT

	Purpose:	Exit the current TCC session

	Format:	EXIT [/B] [value]

value The numeric exit code to return.

/B (exit from batch file)

Usage:

EXIT terminates the current copy of the command processor.

To close the session, or to return to the application that started the command processor, type:

exit

If you specify a value, EXIT will return that value to the program that started the command processor. For example:

exit 255

The value is a number you can use to inform the program of some result, such as the success or failure of a batch file. It can range from 0 - 4,294,967,295.

Option:

	/B	Exit the current batch file, rather than the shell. This switch is for compatibility with CMD. The CANCEL and QUIT commands are generally more flexible for use in batch files.

FFIND

	Purpose:	Search for files by name or contents

	Format:	FFIND [/8 /A[[:][-]rhsadecijopt /B /C /D[list] /E["text"] /F /G /H /I /I"text" /K /L /Ln /M /N[dehjs] /O:[-]acdeginorsu /P /R /S[[+]n] /[T|X]"xx" /U /V /W /Y /+n /-n] file...

	list	A list of disk drive letters (without colons).

	file	The file, directory, or list of files or directories to display.

	/[+|-] skip matches

	/L(ine numbers or header/footer lines)

	/8 (UTF-8)

	/M (no footers)

	/A(ttribute select)

	/N(ot)

	/B(are)

	/O(rder)

	/C(ase sensitive)

	/P(ause)

	/D(rive)

	/R(everse search order)

	/E (upper case)

	/S(ubdirectories)

	/E"xx" (regular expression)

	/T"xx" (text search string)

	/F (stop after match)

	/U (summary only)

	/G (goto directory)

	/V (verbose)

	/H (ignore binary files)

	/W (Find dialog)

	/I(gnore wildcards)

	/X["xx"] (hex display / search string)

	/I"text" (match description)

	/Y (prompt to stop after match)

	/K (no headers)

	

File Selection

Supports extended wildcards, ranges, multiple file names, and include lists.

Internet: Can be used with FTP Servers.

Usage:

FFIND is a flexible search command that looks for files based on their names and their contents. Depending on the options you choose, FFIND can display filenames, matching text, or a combination of both in a variety of formats.

If you don't supply a file name, FFIND will read from standard input. (This allows you to pipe or redirect input to FFIND.)

If you want to search for files by name, FFIND works much like the DIR command. For example, to generate a list of all the .BTM files in the current directory, you could use the command

ffind *.btm

The output from this command is a list of full pathnames, followed by the number of files found.

For example, if you want to limit the output to a list of *.BTM files which contain the string color, you could use this command instead:

ffind /t"color" *v.btm

The output from this command is a list of files that contain the string color along with the first line in each file that contains that string. By default, FFIND uses a case-insensitive search, so the command above will include files that contain COLOR, Color, color, or any other combination of upper-case and lower-case letters.

If you would rather see the last line of each file that contains the search string, use the /R option, which forces FFIND to search from the end of each file to the beginning. This option will also speed up searches somewhat if you are looking for text that will normally be at the end of a file, such as a signature line:

ffind /r /t"Sincerely," *.txt

You can use TCC extended wildcards in the search string to increase the flexibility of FFIND's search. For example, the following command will find .TXT files which contain either the string June or July. It will also find Juny and Jule. The /C option makes the search case-sensitive:

ffind /c/t"Ju[nl][ey]" *.txt

If you want to search for text that contains wildcard characters (*, ?, [, or]), you can use the /I option to force FFIND to interpret these as normal characters instead of wildcards. The following command, for example, finds all .TXT files that contain a question mark:

ffind /i/t"?" *.txt

Sometimes you may need to search for data that cannot be represented by ASCII characters. You can use FFIND's /X option to represent the search string in hexadecimal format (this option also changes the output to show hexadecimal offsets rather than text lines). With /X, the search must be represented by pairs of hexadecimal digits separated by spaces (in the example below, 41 63 65 is the hex code for "Ace"):

ffind /x"41 63 65" *.txt

You can also search using regular expressions using the /E option. See Regular Expression Syntax for supported expressions.

When you use FFIND on an LFN drive, you must quote any file names which contain white space or special characters.

FFIND can also find files on FTP servers. For example:

ffind /t"Windows" ftp://ftp.microsoft.com/windows

You can also use the IFTP command to start an FTP session on a server, and then use an abbreviated syntax to specify the files and directories you want. For more information, see Using FTP/HTTP Servers and IFTP.

Note that searching for text in files on FTP servers (as in the command above) will be slow as the data from each file searched must be retrieved from the server and transferred to your computer to be checked for the search string.

FFIND sets three internal variables:

	%_ffind_matches	The number of matches

	%_ffind_files	The number of files found

	%_ffind_errors	The number of errors

Options:

	/8	The file is interpreted as UTF-8. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	Display file names only and omit the text that matches the search. This option is only useful in combination with /T or /X, which normally force FFIND to display file names and matching text.

	/C	Perform a case-sensitive search. This option is only valid with /T, which defaults to a case-insensitive search. It is not needed with a /X hexadecimal search, which is always case-sensitive.

	/D	Search all files on one or more drives. If you use /D without a list of drives, FFIND will search the drives specified in the list of files. If no drive letters are listed, FFIND will search all of the current drive. You can include a list of drives or a range of drives to search as part of the /D option. For example, to search drives C:, D:, E:, and G:, you can use either of these commands:

ffind /dcdeg ...

ffind /dc-eg ...

Drive letters listed after /D will be ignored when processing file names which also include a drive letter. For example, this command displays all the .BTM files on C: and E:, but only the .BAT files on D:

ffind /s /dce *.btm d:*.bat

	/E	Display filenames in upper case.

	/E"text"	Search for a regular expression. The regular expression must be contained in double quotes if it contains spaces, punctuation, or wildcard characters. See also /T.

	/F	Stops the search after the first match.

	/G	Change to the directory where the match was found (must be used with /F).

	/H	Don't search binary files. By default, this includes .exe, .sys, .dll, .zip, and .chm extensions. You can define your own list by setting the "BINARY_FILES" environment variable. For example, to ignore .exe, .sys, and .dll files:

BINARY_FILES=.exe;.sys;.dll

	/I	Only meaningful when used in conjunction with the /T "text" option. Suppresses the recognition of wildcard characters in the search text. This option is useful if you need to search for characters that would normally be interpreted as wildcards: *, ?, [, and].

	/I"text"	Select filenames by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]".

	/K	Suppress the display of the header or filename for each matching text line.

	/L	Include the line number for each text line displayed. FFIND numbers lines beginning with 1. A new line is counted for every CR or LF character (FFIND determines automatically which character is used for line breaks in each file), or when line length reaches the command line length limit, whichever comes first.

	/Ln	The number of leading and trailing lines to display on a match. Each successive group of lines in a file will be separated by a "----" header.

	/M	Suppress the footer (the number of files and number of matches) at the end of FFIND's display.

	/N	Reverse the meaning of the search, i.e., report only files which contain no match. Setting /N will also set /B, i.e. searches are on a file-by-file basis; FFIND cannot search for all lines without match.

A /N with one or more of the following arguments has an alternate meaning:

	d	Skip hidden directories

	e	Don't display errors.

	h	No headers

	j	Skip junctions

	s	Don't display the summary.

	/O	Set the sort order for the files that FFIND displays. (Not available in TCC/LE.)

You may use any combination of the following sorting options; if multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	-	Reverse the sort order for the next option

	a	Sort names and extensions in standard ASCII order, rather than sorting numerically when digits are included in the name or extension

	c	Sort by compression ratio (the least compressed file in the list will be displayed first)

	d	Sort by date and time (oldest first); for drives which support long file names

	e	Sort by extension

	g	Group subdirectories first, then files

	i	Sort by file description (ignored if /O:c is also used)

	n	Sort by filename (this is the default)

	o	Sort by owner

	r	Reverse the sort order for all options

	s	Sort by size

	u	Unsorted

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

	/R	Only meaningful when used in conjunction with the /T "text" or /X options. Searches each file from the end backwards to the beginning. This option is useful if you want to display the last occurrence of the search string in each file instead of the first (the default). It may also speed up searches for information that is normally at the end of a file, such as a signature.

	/S	Display matches from the current directory and all of its subdirectories. By default, FFIND processes only those subdirectories without the Hidden or System attributes. To view hidden or system subdirectories use /A along with /S.

If you specify a number following the /S, FFIND will limit the subdirectory recursion to the number specified. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only go to the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, FFIND will not search for files until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not find anything in \a or \a\b. (Not available in TCC/LE.)

	/T"text"	Specify the text search string. /T must be followed by a text string in double quotes (e.g., /t"color"). FFIND will perform a case-insensitive search unless you also use the /C option. For a hexadecimal search and/or hexadecimal display of the location where the search string is found, see /X. You can specify a search string with either /T or /X, but not both.

	/U	Display only the summary.

	/V	Show every matching line. FFIND's default behavior is to show only the first matching line, then to the next file. This option is only valid with /E, /T and /X.

	/W	Display the Take Command Find Files dialog. This option allows you to select the search options in a dialog instead of entering them on the command line. You cannot combine /W with any other FFIND options. (Not available in TCC/LE.)

	/X["xx.."]	Specify hexadecimal display and an optional hexadecimal search string.

If /X is followed by one or more pairs of hexadecimal digits in quotes (e.g., /x"44 63 65"), FFIND will search for that exact sequence of characters or data bytes without regard to the meaning of those bytes as text. If those bytes are found, the offset is displayed (in both decimal and hexadecimal). A search of this type will always be case-sensitive.

If /X is not followed by a hexadecimal search string it must be used in conjunction with /E or /T, and will change the output format to display offsets (in both decimal and hexadecimal) rather than actual text lines when the search string is found. For example, this command uses /T to display the first line in each BTM file containing the word "hello":

ffind /t"hello" *.btm

c:\test.btm:

echo hello

1 line in 1 file

If you use the same command with /X, the offset is displayed instead of the text:

ffind /t"hello" /x *.btm

c:\test.btm:

Offset: 1A

1 line in 1 file

You can specify a search string with either /T or /X, but not both.

	/Y	Prompt to stop searching after each match. This option is most useful when you are using FFIND to search for one specific file, and don't want to display all files which include a particular search string.

	/[+|-]n	"/+n" causes FFIND to skip the first n matches. "/-n" causes FFIND to stop after n matches.

	FIREWIREMONITOR	Not in LE

	Purpose:	Monitor FireWire device connection and disconnection

	Format:	FIREWIREMONITOR [/C [name]]

FIREWIREMONITOR name CONNECTED | DISCONNECTED n command

	name	Device name

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

/C(lear)

Usage:

The FireWire device name can include wildcards. You can use either the device ID or the "friendly" name for the device.

The command line will be parsed and expanded before FIREWIREMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. FIREWIREMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

If you don't enter any arguments, FIREWIREMONITOR will display the FireWire devices it is currently monitoring.

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

FIREWIREMONITOR creates three environment variables when a device is connected or disconnected that can be queried by command. The variables are deleted after command is executed.

	_firewiredeviceid	The device ID (this may have special characters like & in the name, so you may need to use double quotes around the variable name to prevent TCC from parsing the special characters)

	_firewirename	The "friendly" name of the device

	_firewirecount	The number of times the condition has been triggered

Options:

	/C	If name is specified, remove the monitor for that FireWire device. Otherwise, remove all FireWire monitors.

	FOLDERMONITOR	Not in LE

	Purpose:	Monitor folder and/or file creation, modification, and deletion

	Format:	FOLDERMONITOR [/C [folder]]

FOLDERMONITOR /S folder /I"file" /E"file" /U CREATED DELETED MODIFIED RENAMED n command

	folder	Folder (directory) or file name

	CREATED	Execute the command if the folder or file is created

	DELETED	Execute the command if the folder or file is deleted

	MODIFIED	Execute the command if the folder or file is modified

	RENAMED	Execute the command if the folder or file is renamed

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

	/C(lear)	/S(ubdirectories)

	/E(xclude)	/U(nlocked file)

/I(include)

Usage:

If you don't enter any arguments, FOLDERMONITOR will display the folders and files it is currently monitoring, in the format:

folder (include/exclude) condition (n) command

The command line will be parsed and expanded before FOLDERMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

The MODIFIED condition is set if the file's size, attributes, or last access date and time are changed.

If you want to monitor multiple conditions for a file or folder, put them into a single FOLDERMONITOR command. FOLDERMONITOR creates a separate thread for each FOLDERMONITOR command, so if you have multiple commands you will be wasting CPU time, RAM, and risk having command executed simultaneously in different threads.

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. FOLDERMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

When the condition is triggered, the command will be executed immediately in the separate thread. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

FOLDERMONITOR creates several environment variables when a file or folder is created, deleted, modified, or renamed that can be queried by command. The variables are deleted after command is executed.

	_folderaction	The type of change to the file or folder. The possible values are:

CREATED

DELETED

MODIFIED

RENAMED

	_foldercount	The number of times the condition has been triggered

	_foldername	The name of the folder being monitored

	_folderfile1	The name of the file or folder that was created/deleted/modified/renamed. If the file was renamed, folderfile1 is the old name.

	_folderfile2	If a file was renamed, folderfile2 is the new name

For example, to monitor your d:\results directory and copy any new or modified files to a web page:

foldermonitor d:\results created modified forever copy "%%_folderfile1" "http://mycompany.com/results/"

Options:

	/C	If name is specified, remove the monitor for that folder. Otherwise, remove all folder / file monitors. /C cannot be combined with any other options.

	/E	Filename to be excluded. If you want to exclude multiple files, use multiple /E options. If you want to exclude a file in a specific subdirectory, the filename should include the relative path from the folder name. The name can include wildcards.

	/I	Filename to be included. If you want to include multiple files, use multiple /I options. If you want to include a file in a specific subdirectory, the filename should include the relative path from the folder name. The name can include wildcards.

	/S	Include subdirectories.

	/U	Don't set the trigger until the file is unlocked.

	FONT	Not in LE

	Purpose:	Change the console font

	Format:	FONT [/Ffamily /Nname /Wn /Xn /Yn]

	/F(ont family)	/X (width)

	/N (face name)	/Y (height)

/W(eight)

Usage:

This command is only available in Windows Vista and later, and will only affect stand-alone TCC console windows. (You can change the font in Take Command tab windows using Configure Take Command / Tabs.)

Options:

	/F	The font family:

decorative

dontcare

modern

roman

script

swiss

	/N	The font face name.

	/W	The font weight (100 - 1000, on multiples of 100). The normal weight is 400; bold is 700.

	/X	The maximum width of a character, in logical units.

	/Y	The maximum height of a character, in logical units.

FOR

	Purpose:	Repeat a command for several values of a variable

	Format:	File and string mode

FOR [range...] [/I"text"] [/A:[[-|+]rhsadecijopt /D /F ["options"] /H /Nj /O:[-]adegnrstu /R [path] [/T"delimiters"] /W] %var IN ([@]set) DO command | (command ... [LEAVEFOR])

Counted mode

FOR /L %var IN (start, step, end) DO command | (command ... [LEAVEFOR])

	options	Parsing options for a "file parsing" FOR.

	range	One or more range specifications

	path 	The starting directory for a "recursive" FOR.

	%var 	The variable to be used in the command ("FOR variable").

	set 	A set of values for the variable.

	start 	The starting value for a "counted" FOR.

	step 	The increment value for a "counted" FOR.

	end 	The limit value for a "counted" FOR.

	command	A command or group of commands to be executed for each value of the variable.

	/A: (Attribute select)

	/N (defaults)

	/D(irectories only)

	/O:... (Order)

	/F(ile parsing)

	/R(ecursive)

	/H(ide dots)

	/T (delimiter list)

	/I description range

	/W(ildcards)

	/L (counted loop)

	

File Selection

Supports attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Ranges must appear immediately after the FOR keyword after alias expansions (if any), and only affect the selection of files specified using wildcards.

Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage:

FOR begins by creating a set. It then executes a command for every member of set. The command can be an internal command, an alias, an external command, or a batch file. The members of set can be a list of file names, text strings, a group of numeric values, or text read from a list of files.

When set is made up of text or several separate file names (not an include list), the elements must be separated by spaces, tabs, or commas.

FOR includes a large number of options, some of which duplicate functions available in other internal commands. It also supports additional conventions not found in our other commands, included for compatibility with CMD.

The first three sections below (Working with Files, Working with Text, and Retrieving Text from Files) describe the FOR command and the enhancements to it which are included in TCC. The sections on Parsing Text from Files and Counted FOR Loops describe features added for compatibility with CMD. The sections Directory Recursion and Output Redirection warn of special considerations. The section entitled Other Notes contains information you may need if you use any aspect of the FOR command extensively.

FOR sets two internal variables:

	%_for_files	The number of files processed

	%_for_errors	The number of errors

Working with Files

Normally, set is a list of files specified with wildcards. For example, if you use this line in a batch file:

for %x in (*.txt) list %x

Then LIST will be executed once for each file in the current directory with the extension .TXT. The FOR variable %x is set equal to each of the file names in turn, then the LIST command is executed for each file. (You could do the same thing more easily with a simple LIST *.TXT. We used FOR here so you could get a feel for how it operates, using a simple example. Many of the examples in this section are constructed in the same way.)

Set can include multiple files and include lists, like this:

for %x in (d:*.txt;*.doc;*.asc e:\test*.txt;*.doc) type %x

FOR supports wildcards and extended wildcards, as well as extended parent directory names, e.g., ...*.txt to process all of the .TXT files that are contained in the directory 2 levels above the current directory.

By default those members of set that include wildcards match only files, not directories.

When you use FOR on an LFN drive, you must quote any file names within set which contain white space or special characters. The same restriction may apply to names returned in the FOR variable, if you pass them to TCC internal commands, or other commands which require quoting filenames with white space. FOR does not quote returned names automatically, even if you included quotes in set.

If set includes filenames, the file list can be further refined by using date, time, size, description and file exclusion ranges. The range or ranges must be placed immediately after the word FOR. Ranges affect only those members of set which contain wildcards. For example, the FOR below will process all of the *.TXT files that were created or updated on December 4, 2010, and of the file ABC.LST regardless of its timestamp:

for /[d12-4-2010,+0] %x in (*.txt abc.lst) ...

If command is an internal command that supports ranges, an independent range can also be used in command itself.

You can also refine the list by limiting it with the /A: option to select only files that have specific attributes.

When you use wildcards to specify set, FOR scans the directory and finds each file which matches the wildcard name(s) you specified. If, during the processing of the FOR command, you create a new file that could be included in set, it may or may not appear in a some later iteration of the same FOR command. Whether or not the new file appears depends on its physical location in the directory structure. For example, if you use FOR to execute a command for all .TXT files, and the command also creates one or more new .TXT files, those new files may or may not be processed during the current FOR command, depending on where they are placed in the physical structure of the directory. This is a Windows constraint over which TCC has no control. Therefore, in order to achieve consistent results you should construct FOR commands which do not create files that could become part of set for the current command.

Working with Text

Set can also be made up of text instead of file names. For example, to create three files named file1, file2, and file3, each containing a blank line:

for %suffix in (1 2 3) echo. > file%suffix

You can also use the names of environment variables as the text. This example displays the name and content of several variables from the environment (see the general discussion of the Environment for details on the use of square brackets when expanding environment variables):

for %var in (path prompt comspec) echo %var=%[%var]

Retrieving Text from Files

If the name of a file in set is prefixed with @ ("at" sign), it is considered as an @file list. FOR extracts each line from the file and places it in the FOR variable.

Warning: if the line contains characters which are syntactically significant for TCC, for example, one of the characters <"[]|>, it may have undesirable effects. You may use the /X option of SETDOS to mitigate them.

If you use @CON as the filename, FOR will read from standard input (typically a redirected input file) or from a pipe. If you use @CLIP: as the filename, FOR will read any text available from the Windows clipboard. See Redirection and Piping for more information on these features.

See @file list for additional details.

Parsing Text from Files

Another method of working with text from files is to have FOR parse each line of each file for you. To begin a file-parsing FOR, you must use the /F option and include one or more file names in set. When you use this form of FOR, the variable name must be a single letter, for example, %a.

This method of parsing, included for compatibility with CMD, can be cumbersome and inflexible. For a more powerful method, use FOR with @filename as the set to retrieve each line from the file, as described in the previous section, and use variable functions like @FIELD, @INSTR, @LEFT, @RIGHT, and @WORD to parse the line (see Variable Functions for information on variable functions).

By default, FOR will extract the first word or token from each line and return it in the variable. For example, to display the first word on each line in the file FLIST.TXT:

for /f %a in (flist.txt) echo %a

You can control the way FOR /F parses each line by specifying one or more parsing options in a quoted string immediately after the /F. The available options are:

skip=n: FOR /F will skip n lines at the beginning of each file before parsing the remainder of the file.

tokens=n, m, ...: By default, FOR /F returns just the first word or token from each parsed line in the variable you named. You can have it return more than one token in the variable, or return tokens in several variables, with this option.

This option is followed by a list of numbers separated by commas. The first number tells FOR /F which token to return in the first variable, the second number tells it which to return in the second variable, etc. The variables follow each other alphabetically starting with the variable you name on the FOR command line. This example returns the first word of each line in TEST.TXT in %d, the second in %e, and the third in %f:

for /f "tokens=1,2,3" %d in (test.txt) ...

You can also indicate a range of tokens by separating the numbers with a hyphen -.

eol=c: If FOR /F finds the character c in the line, it will assume that the character and any text following it are part of a comment and ignore the rest of the line.

delims=xxx..: By default, FOR /F sees spaces, tabs and commas as word or token delimiters. This option replaces those delimiters with all of the characters following the equal sign to the end of the string. This option must therefore be the last one used in the quoted options string.

usebackq : Duplicates the awkward CMD syntax. A back quoted string is executed as a command; a single quoted string is a literal string; and double quotes quote filenames in the file set. We don't recommend usebackq for batch files written for TCC, as TCC has much more elegant ways of doing the same things.

You can also use FOR /F to parse a single string instead of each line of a file by using the string, in quotes, as set. For example, this command will assign variable A to the string this, B to is, etc., then display this:

for /f "tokens=1,2,3,4" %a in ("this is a test") echo %a

"Counted" FOR Loop

The "counted FOR" loop is included for compatibility with CMD. In most cases, you will find the DO command more useful for performing counted loops.

In a counted FOR command, the set is made up of numeric values instead of text or file names. To begin a counted FOR command, you must use the /L option and then include three values, separated by commas, in set. These are the start, step, and end values. During the first iteration of the FOR loop, the variable is set equal to the start value. Before each iteration, the variable is increased by the step value. The loop ends when the variable exceeds the end value. This example will print the numbers from 1 to 10:

for /l %val in (1,1,10) echo %val

This example will print the odd numbers from 1 to 10 (1, 3, 5, 7, and 9):

for /l %val in (1,2,10) echo %val

The step value can be negative. If it is, the loop will end when the variable is less than the end value.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

WARNING! You must not have white space between start and the subsequent comma, nor between step and its subsequent comma. White space after the comma is accepted.

Directory Recursion

By default, FOR works only with files in the current directory or a specified directory. Option switch /R specifies that the search should recursively process subdirectories. If you specify a directory name immediately after /R, FOR will start in that directory and then search each of its subdirectories. If no directory is specified after the /R, the search starts in the current default directory. If you do specify a directory, and its name includes any special characters, it must be enclosed in double quotes. For example, it must be quoted if it is specified with the aid of an environment variable, e.g., %windir\command.

There are two differences in the invocation of command caused by directory recursion:

●The loop control variable contains the full name of the matching file
●command is executed with the default directory set to the directory in which the file was found

This example processes all .TXT files in the current directory and its subdirectories:

for /r %x in (*.txt) ...

This example works with all of the .BAK files on drive D:

for /r d:\ %x in (*.bak) ...

Output Redirection

The default output redirection (i.e., for ... > filename) creates a new output file in each iteration. If filename does not include an absolute file path, it will be created relative to the then current default directory. If you use directory recursion, this path will change for each directory processed. The simplest way to force a single target file is to enclose the whole command in parentheses, e.g.,:

(for %x in (set) command) > filename

Other Notes

●You can use either % or %% in front of the variable name (var) in the command. Either form will work, whether the FOR command is typed from the command line or is part of an alias or batch file. (CMD which requires a single % if FOR is used at the command line, but requires %% if FOR is used in a batch file.) Note that you must have at least one % sign present.
●The variable name can be up to 80 characters long.
●If the FOR command is an alias, e.g., alias for=*for /h, range specifications will be ignored.
●The word DO is unnecessary but accepted. Do not confuse it with the completely unrelated DO command.
●If the name of the FOR variable var is a single character, for compatibility with CMD, it is created in the environment in a special way that does not overwrite an existing environment variable with the same name. Wherever command contains the % sign immediately followed by the character which is the name of the FOR variable, it is replaced by its value, regardless of any characters following it. For example, the following command tries to add a: and b: to the end of PATH, but will not work as intended:

for %p in (a: b:) path %path;%p

path

b:ath;b:

The %p in %path was interpreted as the FOR variable %p followed by the text ath, not what was intended. To get around this, use a different letter or a longer name for the FOR variable, or use square brackets around the variable name, as shown in the examples below, any one of which accomplishes the original goal:

for %p in (a: b:) path %[path];%p

for %x in (a: b:) path %path;%x

for %px in (a: b:) path %path;%px

●If the name of the FOR variable contains more than one character, it is created in the environment, and erased when FOR is completed, whether or not a variable by that name existed before the FOR. It cannot be modified with the SET, ESET, or UNSET commands. If you already had a variable with that name, it will no longer be accessible. For example, a command that begins

for %path in ...

will write over your current PATH setting, then erase the PATH variable completely when FOR is done.

●Command may also use the FOR variable with the special syntax of CMD described in Special syntax for CMD compatibility.

●The following example uses FOR with variable functions to delete the .BAK files for which a corresponding .TXT file exists in the current directory (this should be entered on one line):

for %file in (*.txt) del %@name[%file].bak

The above command may not work properly on an LFN drive, because the returned FILE variable might contain white space. To correct this problem, you need two sets of quotes, one for DEL and one for %@NAME:

for %file in (*.txt) del "%@name["%file"].bak"

●You can use command grouping to execute multiple commands for each element in set. For example, the following command copies each .WKQ file in the current directory to the D:\WKSAVE directory, then changes the extension of each file in the current directory to .SAV:

[for %file in (*.wkq) (copy %file d:\wksave\ & ren %file *.sav)

or (in a batch file):

for %file in (*.wkq) (

copy %file d:\wksave\

ren %file *.sav

)

●In a batch file you can use GOSUB to execute a subroutine for every element in set. Within the subroutine, the FOR variable can be used just like environment variable. This is a convenient way to execute a complex sequence of commands for every element in set without CALLing another batch file.

●One unusual use of FOR is to execute a collection of batch files or other commands with the same parameter. For example, you might want to have three batch files all operate on the same data file. The FOR command could look like this:

for %cmd in (filetest fileform fileprnt) %cmd datafile

This line will expand to three separate commands:

filetest datafile

fileform datafile

fileprnt datafile

●FOR statements can be nested.

LEAVEFOR

The special keyword LEAVEFOR can be used inside a FOR command group. LEAVEFOR terminates the current FOR processing and continues with the line following the FOR command, in a manner similar to that of the LEAVE keyword in a DO command.

for %i in (*) (

...

if "%i" == "xyz.abc" leavefor

 ...

)

Options:

	/A:	Process only those files that have the specified attribute(s). /A: will be used only when processing wildcard file names in set. It will be ignored for filenames without wildcards or other items in set. See Attribute Switches for information on the attributes which can follow /A:.

For example, to process only those files with the archive attribute set:

for /a:a %f in (*) echo %f needs a backup!

Default: /A:-D-H-S, i.e. include only files without the hidden and system attributes.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/D	Only return subdirectories, excluding "." and ".." .

	/F	Return one or more words or tokens from each line of each file in set. The /F option can be followed by one or more options in a quoted string which control how the parsing is performed. See Parsing Text From Files.

	/H	Suppresses the assignment of the "." and ".." directories to the FOR variable when directories are explicitly included using the /A: option.

	/I"text"	Select filenames by matching text in their descriptions. See Description Ranges.

	/L	Interpret the three values in set as the start, step, and end values of a counted loop. See Counted FOR Loops.

	/Nj	Don't recurse into symlinks or junctions (see /R).

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

The /O:... option saves all of the matching filenames and then performs the requested operation. This avoids the potential problem of processing files more than once. (Not available in TCC/LE.)

	/R [path]	Look in the current directory and all of its subdirectories for files in set. If the /R is followed by a directory name, look for files in that directory and all of its subdirectories. Warning: if the directory name includes special characters, including "%" to indicate an environment variable, it must be enclosed in double quotes (").

	/T"text"	Specify the delimiters to be used when parsing a string set.

	/W	The FOR set is to be processed as filenames, even if no wildcards are detected. (This is useful if you want to use regular expressions with FOR.)

FREE

	Purpose:	Display the total disk space, total bytes used, and total bytes free on the specified (or default) drive(s)

	Format:	FREE [drive: ...]

	drive	One or more drives to include in the report.

See also: MEMORY.

Usage:

A colon [:] is required after each drive letter. This example displays the status of drives A and C:

 free a: c:

If the volume serial number is available, it will appear after the drive label or name.

FREE supports OpenAFS names.

FTYPE

	Purpose:	Modify or display the command used to open a file of a type specified in the Windows registry

	Format:	FTYPE [/P /R[filename] | filetype[=[command]]

	filename	One or more input files to read file type definitions from.

	filetype	A file type stored in the Windows registry.

	command	The command to be executed when a file of the specified type is opened.

	/P(ause)	/U(ser)

/R(ead from file)

See also: ASSOC, and Executable Extensions.

Usage

FTYPE allows you to display or update the command used to open a file of a specified type stored in the Windows registry.

FTYPE modifies the behavior of Windows file associations stored under the registry handle HKEY_CLASSES_ROOT, and discussed in more detail under Windows File Associations. If you are not familiar with file associations be sure to read about them before using FTYPE.

The entry modified by FTYPE is the Shell\Open\Command entry for the specified file type, which defines the application to execute when a file of that type is opened. The open action is generally invoked by selecting Open on the popup menu for a file from the Windows Explorer. Note that opening a file and double-clicking its icon (or selecting the icon and pressing Enter) may not be the same thing. Double-clicking or pressing Enter invokes the default action for the file type, which may or may not be Open.

If you invoke FTYPE with no parameters, it will display the current file types and associated shell open commands. Use the /P switch to pause the display at the end of each page. If you include a filetype, with no equal sign or command, FTYPE will display the current command for that file type.

If you include the equal sign and command, FTYPE will create or update the shell open command for the specified file type. The command generally includes an application name, including full path, plus parameters. The specific syntax required depends on the internal operation of both Windows and the application involved, and is beyond the scope of this help file. You can learn about typical syntax by reviewing appropriate Windows and application documentation, and / or by checking through the current contents of your registry. If the value contains the percent mark character %, the value stored will be type REG_EXPAND_SZ, otherwise it will be type REG_SZ.

To remove the shell open command for a file type, use a command like FTYPE filetype=, with no command parameter. This will not delete the shell open command entry from the registry; it simply sets the command to an empty string.

FTYPE should be used with caution, and only after backing up the registry. Improper changes to file associations can prevent applications and / or the operating system from working properly.

Options

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

	/R	This option loads a list of file types and associated shell open commands. If no filename is specified and the input is redirected, FTYPE will read from stdin. The format of the file is the same as that of the FTYPE display.

You can insert comments in the file by prefixing the line with a colon (:).

	/U	Display or set the association in HKCU\Software\Classes.

	FUNCTION	Not in LE

	Purpose:	Create, modify or display user-defined variable functions

	Format:	Display mode:

FUNCTION [/G /L /P] [wildname]

Direct definition mode:

FUNCTION [/G /L] name[=]definition

Definition file mode:

FUNCTION [/G /L /O] /R [file...]

	file	One or more input files to read function definitions from.

	wildname	Name of function whose definition is to be displayed (may contain * and ? wildcards)

	name	The name of the function you want to define.

	definition	The value or definition of what the function should return.

	/G(lobal)	/P(ause)

	/L(ocal)	/R(ead file)

See also: UNFUNCTION and ESET.

Usage:

[image: Onestep] Overview

[image: Onestep] Displaying Functions

[image: Onestep] Defining Functions

[image: Onestep] Deleting Functions

[image: Onestep] Local and Global Functions

[image: Onestep] Saving and Reloading Your Functions

[image: Onestep] Warnings

Overview

FUNCTION allows you to create or display user-defined variable functions that can be used anywhere Variable Functions can be used. User-defined functions are powerful alternatives to subroutines.

Displaying Functions

If you invoke the FUNCTION command with no parameters, it will display the current function list (the local function list if you have set local functions in TCMD.INI or the TCC startup command line; otherwise the global function list):

function

If you include a wildname, which may include wildcards (* or ?), with no equal sign and no definition, FUNCTION will display the current values, if any, of all functions matching wildname, .e.g.:

function *dx*

will display all functions which contain dx in their name.

You can use the /P option to control display scrolling when displaying functions.

Defining Functions

If you include the equal sign and definition, FUNCTION will create or update the function referred to by name. Any previous definition associated with name is discarded. Instead of the = sign, you may use one or more spaces or tab characters to separate name and definition.

Once a function is defined, the definition may be edited using ESET /F.

A function can optionally use references to parameters numbered from %0 to %511 which will be replaced with the matching parameter value when the function is called. %0 refers to the function name, %1 to the first parameter, etc. For example, the function

function leftmost=`%@left[1,%1]`

will return the leftmost character in its parameter, e.g. %@leftmost[xyz] will return x.

The parameter %n$ has a special meaning. TCC interprets it to mean "all arguments, from parameter n to the end." If n is not specified, it has a default value of 1, so %$ means "all arguments passed to the function."

The parameter %-n$ means "the arguments from parameter 1 to n - 1".

The special variable reference %# expands to the number of parameters passed to the function.

A function definition need not reference any parameters at all. For example:

function tomorrow=`%@makedate[%@inc[%@date[%_date]]]`

could be simply invoked as %@tomorrow[].

To use the function name you invoke is as %@name[parameters],where you must specify enough parameters to assign a value to the highest numbered parameter referenced in the function definition. It may have more parameters, which will be silently ignored.

The Colors, Color Names and Codes topic shows a simple example of the use of a function in a batch file.

Deleting Functions

The normal method is to use the UNFUNCTION command. However, it is also possible to delete a function by redefining it without a definition, e.g., the command

function fs=

deletes the function fs.

Local and Global Functions

Functions can be stored in either a local or global list.

With a local function list, any changes made to the functions will only affect the current copy of TCC. They will not be visible in other shells or other sessions.

With a global function list, all copies of TCC will share the same function list, and any changes made to the functions in one copy will affect all other copies. This is the default in TCC.

You can control the type of function list with the Local Functions configuration option, with the /L and /LF options of the START command, and with the /L and /LF startup options.

There is no fixed rule for determining whether to use a local or global function list. Depending on your work style, you may find it most convenient to use one type, or a mixture of types in different sessions or shells. We recommend that you start with the default approach, then modify it if you find a situation where the default is not convenient.

Whenever you start a second copy of TCC which uses a local function list, it inherits a copy of the functions from the previous shell. However, any changes to the functions made in the second shell will affect only that shell. If you want changes made in the second shell to affect the previous shell, use a global function list in both shells.

Saving and Reloading Your Functions

You can save your functions to a file (e.g., FUNCTIONS.LST) this way:

function > function.lst

You can then reload all the function definitions in the file the next time you start up with the command:

function /r function.lst

This is much faster than defining each function individually in a batch file. If you keep your function definitions in a separate file which you load when TCC starts, you can edit them with a text editor, reload the edited file with FUNCTION /R, and know that the same function list will be loaded the next time you start TCC.

When you define functions in a file that will be processed by the FUNCTION /R command, you do not need back quotes around definition, even if back quotes would normally be required when defining the same function at the command line or in a batch file.

Warnings

When you define a function in the command line (i.e., without using the /R option), variables and functions not protected by back quotes or doubled % signs are immediately evaluated, and the result becomes part of the function definition.

Syntax errors in a function definition are not detected until it is used.

Options:

	/G	Switch from a local to a global function list.

	/L	Switch from a global to a local function list.

	/O	Don't overwrite existing values (only valid in combination with /R).

	/P	Wait for a key to be pressed after each screen page before continuing the display.

	/R	This option loads a list of functions from a file. If no filename is specified and input is redirected, /R will read from stdin. The format of the file is the same as that of the FUNCTION display:

name=definition

where name is the name of the function and definition specifies how to determine its value. You may use the equal sign = or whitespace to separate name and definition. Back-quotes are not required.

You can add comments to the file by starting each comment line with a colon :.

You can load multiple files with one FUNCTION /R command by placing the names on the command line, separated by spaces:

function /r func1.lst func2.lst

Each definition in a FUNCTION /R file can be up to 32,767 characters long. The definitions can span multiple lines in the file if each line, except the last, is terminated with an Escape Character.

If there is no filename parameter and input is redirected, FUNCTION /R will read from stdin.

GLOBAL

	Purpose:	Execute a command in the current directory and its subdirectories

	Format:	GLOBAL [/H /I /J /N /P /Q /S[+]n] command

	command	The command to execute, including parameters and switches.

	/H(idden directories)	/P(rompt)

	/I(gnore exit codes)	/Q(uiet)

	/J (only junctions)	/S(ubdirectory depth)

/N(o junctions)

Usage:

GLOBAL performs command first in the current directory. Then it makes every subdirectory under the current directory the current working directory in turn, and performs command in that directory. Command can be an internal command, an alias, an external command, or a batch file. When command is executed, it may be necessary to utilize one of the variable functions which convert a relative path to an absolute one, e.g., @truename[], @full[], etc to make sure that files of the same name in different directories are correctly handled.

If you don't specify any arguments, GLOBAL will display its command dialog.

The example below copies the files in every directory on drive A to the directory C:\TEMP:

[a:\] global copy * c:\temp

If a specific filename is found in more than one directory on A:, assuming COPY is the default internal command, the one found last will be left in C:\TEMP. Which one of multiple, identically named files is found last is unpredictable!

If you use the /P option, GLOBAL will prompt for each subdirectory before performing command. You can use this option if you want to perform command in most, but not all subdirectories of the current directory.

You can use command grouping to execute multiple commands in each subdirectory. For example, the following command copies each .TXT file in the current directory and all of its subdirectories to drive D. It then changes the extension of each of the copied files to .SAV:

global (copy *.txt d: & ren *.txt *.sav)

Output Redirection

The default output redirection (i.e., global command > filename) creates a new output file named filename as each directory visited. If filename does not include an absolute file path, these files will be created relative to the currently visited directory. If filename does include an absolute file path, that file will be overwritten as each directory is visited, and only the data from the last visited directory will survive.

The simplest way to force a single target file is to enclose the whole command line in parentheses, e.g.,:

(global command) > filename

Options:

	/=	Display the GLOBAL command dialog to help you set the command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/H	Forces GLOBAL to look for hidden directories. If you don't use this switch, hidden directories and their subdirectories are ignored without error indication.

	/I	If this option is not specified, GLOBAL will terminate if command returns a non-zero exit code. Use /I if you want command to continue in additional subdirectories even if it returns an error in one subdirectory. GLOBAL will normally halt execution if TCC receives a Ctrl-C or Ctrl-Break even if you use /I.

Without this option, if GLOBAL is unable to change to a directory (for example, if user does not have access rights), GLOBAL will stop with an error message. With this option set, GLOBAL will ignore that directory, and all of its subdirectories, and continue in the next accessible directory.

	/J	Forces GLOBAL to only recurse through Junctions, not subdirectories.

	/N	Forces GLOBAL to ignore Junctions and only recurse through subdirectories.

	/P	 Forces GLOBAL to prompt with each directory name before it performs command in that directory. Your options at the prompt are explained in detail under Page and File Prompts.

	/Q	Do not display the directory names as each directory is processed.

	/S	GLOBAL will limit the subdirectory recursion to the number specified. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only go to the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, GLOBAL will not execute command until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not execute command in \a or \a\b. (Not available in TCC/LE.)

GOSUB

	Purpose:	Execute a subroutine in the current batch file

	Format:	GOSUB ["filename"] label [variables]

	filename	The file containing the subroutine

	label	The batch file label at the beginning of the subroutine.

	variables	Optional GOSUB variables.

See also: CALL, GOTO, and RETURN.

Usage:

GOSUB can only be used in batch files.

TCC allows subroutines in batch files. A subroutine must start with a label (a colon [:] followed by a label name) which appears on a line by itself, and cannot be included a command group. Case differences are ignored when matching labels. The subroutine must end with a RETURN statement.

The subroutine is invoked with a GOSUB command from another part of the batch file. After the RETURN, processing will continue with the command following the GOSUB command. For example, the following batch file fragment calls a subroutine which displays the directory and returns:

echo Calling a subroutine

gosub subr1

echo Returned from the subroutine

quit

:subr1

dir /a/w

return

GOSUB begins its search for the label on the line of the batch file immediately after the GOSUB command. If the label is not found between the current position and the end of the file, GOSUB will restart the search at the beginning of the file. If the label still is not found, the batch file is terminated with the error message "Label not found".

You can define GOSUB variables by placing them after the label name on the GOSUB line. For example:

Gosub Sub1 abc 15 "Hello World"

The variable names are defined on the label line. For example:

:Sub1 [str n world]

defines three variables - %str (set to "abc"), %n (set to 15), and %world (set to "Hello World"). Note that the square brackets are required on the label line. GOSUB variables are only defined for the duration of the subroutine. They are not inherited by nested GOSUBs, and are destroyed by the RETURN call.

If you define GOSUB variables on the label but do not supply them on the GOSUB line, they will be set to an empty string.

GOSUB calls with variables are limited to a maximum of 22 levels deep. There is no limit on normal GOSUB calls.

GOSUB variables are placed in the environment in a special form for the duration of the subroutine, and will "mask" any environment variables of the same name that existed before the subroutine was called. GOSUB variables can be referenced like normal environment variables, but are not stored in the same way, cannot be modified with the SET, ESET, or UNSET commands, and cannot be used with the DEFINED test of IF, IFF, or @IF.

You cannot use SET within a subroutine to change the value of a GOSUB variable. If you attempt to do so, the SET command will set the standard environment variable of the same name, not the GOSUB variable, but this value will be "masked" by the GOSUB variable and will remain inaccessible until the subroutine ends.

You can call a subroutine in another file by specifying filename (the name must be enclosed in double quotes, and the file cannot have been compressed with BATCOMP). This allows you to create libraries of subroutines, without having to duplicate them in each batch file. For example:

gosub "c:\library\batlib.btm" Evaluate [%1 %2 %3]

GOSUB saves the IFF and DO states, so IFF and DO statements inside a subroutine won't interfere with statements in the part of the batch file from which the subroutine was called. If the subroutine has executed a SETLOCAL without a matching ENDLOCAL, an ENDLOCAL will be executed before returning to the calling batch file.

You cannot RETURN from a GOSUB while inside a DO loop.

If TCC reaches the end of the batch file while inside a subroutine, it will automatically return to the command after the GOSUB, just as if an explicit RETURN command had been included as the last line of the file.

Subroutines can be nested.

See also: user-defined functions.

GOTO

	Purpose:	Branch to a specified line inside the current batch file

	Format:	GOTO [/I] label

	label	The batch file label to branch to.

/I(FF and DO continue)

See also: GOSUB, CALL.

Usage:

GOTO can only be used in batch files.

After a GOTO command in a batch file, the next line to be executed will be the one immediately following the label. The label must begin with a colon [:] and appear on a line by itself, and cannot be included a command group. The colon is required on the line where the label is defined, but is not required in the GOTO command itself. Case differences are ignored when matching labels.

This batch file fragment checks for the existence of the file CONFIG.SYS. If the file exists, the batch file jumps to C_EXISTS and copies all the files from the current directory to the root directory on A:. Otherwise, it prints an error message and exits.

if exist config.sys goto C_EXISTS

echo CONFIG.SYS doesn't exist - quitting.

quit

:C_EXISTS

copy * a:\

GOTO begins its search for the label on the line of the batch file immediately after the GOTO command. If the label is not found between that position and the end of the file, GOTO will restart the search at the beginning of the file. If the label is still not found, the batch file is terminated with the error message "Label not found."

To avoid errors in the processing of nested statements and loops, GOTO cancels all active IFF statements and DO / ENDDO loops unless you use /I. This means that a normal GOTO (without /I) may not branch to any label that is between an IFF and the corresponding ENDIFF or between a DO and the corresponding ENDDO.

For compatibility with CMD, the command

GOTO :EOF

will end processing of the current batch file if the label :EOF does not exist. However, this is less efficient than using the QUIT or CANCEL command to end a batch file.

Option:

	/I	Prevents GOTO from canceling IFF statements and DO loops. Use this option only if you are absolutely certain that your GOTO command is branching entirely within any current IFF statement and any active DO / ENDDO block. Using /I under any other conditions will cause an error later in your batch file.

You cannot branch into another IFF statement, another DO loop, or a different IFF or DO nesting level, whether you use the /I option or not. If you do, you will eventually receive an "unknown command" error (or execution of the UNKNOWN_CMD alias or plugin) on a subsequent ENDDO, ELSE, ELSEIFF, or ENDIFF statement.

	GZIP	Not in LE

	Purpose:	Create or update .gz (GZIP) archives

	Format:	GZIP [/A:[[-][+]rhsdaecjot] /A /En /Ln /M /O:[-]adegnrstu /Q /V] gziparchive [@file] file

	gziparchive	The gzip file to work with

	file	The files to be added to the gzip file

	/A:... (attribute switch)	M(ove)

	/A(dd)	/O:... (sort order)

	
/E (method)	/Q(uiet)

	/Ln (compression level)	/V(iew)

File Selection

Supports attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Usage:

GZIP is compatible with the archives created by the Linux / UNIX gzip utility, and supports RFC 1952. GZIP is normally used for compressing a single file. If you need to compress multiple files, you should use the ZIP or TAR commands.

You can specify a pathname for gziparchive. If you don't provide an extension, and the filename as entered doesn't exist, GZIP adds ".gz". If you don't specify an operation, GZIP will default to Add.

Option:

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/A	Add the specified file to the archive. (This is the default.)

	/En	Set the compression method (0=deflate, 1=lzw). The default is 0.

	/Ln	Set the compression level (1 - 6, where 6=maximum compression). The default is 4.

	/M	Delete the file from the disk after adding them to the gzip file.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the files will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/Q	Don't display the file being compressed.

	/V	View the contents of the .gz file (date, time, and filename). If the file was compressed with lzw, it will not have a header, so it cannot be viewed.

	HEAD	Not in LE

	Purpose:	Display the beginning of the specified file(s)

	Format:	HEAD [/A:[[-][+]rhsadecijopt] /B /Cn /I"text" /N[+]n /O:[-]adegnrstu /P /Q /V] [@file] file...

	file	The file or list of files that you want to display.

	@file	A text file containing the names of the files to display, one per line (see @file lists for details).

	/A: (Attribute select)

	/O:... (Order)

	/B(ell)

	/P(ause)

	/C (number of bytes)

	/Q(uiet)

	/I"text" (match description)

	/V(erbose)

	/N(umber of lines)

	

See also: LIST, TAIL, and TYPE.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Internet: Can be used with FTP/HTTP Servers, e.g.

head "http://jpsoft.com/notfound.htm"

Usage:

The HEAD command displays the first part of a file or files. It is normally only useful for displaying ASCII text files (i.e. alphanumeric characters arranged in lines separated by CR/LF). Executable files (.EXE) and many data files may be unreadable when displayed with HEAD because they include non-alphanumeric characters or unusual line separators.

You can press Ctrl-S to pause HEAD's display and then any key to continue.

The following example displays the first 15 lines of the files MEMO1 and MEMO2:

head /n15 memo1 memo2

To display text from the clipboard use CLIP: as the file name. CLIP: will not return any data if the clipboard does not contain text. See Highlighting and Copying Text for additional information on CLIP:.

HEAD sets two internal variables:

	%_head_files	The number of files displayed

	%_head_errors	The number of errors

FTP Usage

HEAD can also display files on FTP/HTTP Servers. For example:

head ftp://ftp.microsoft.com/index

NTFS File Streams

HEAD supports file streams on NTFS drives. You can type an individual stream by specifying the stream name, for example:

head streamfile:s1

Options:

	/=	Display the HEAD command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line.

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	Ignore bell (ASCII 7) characters.

	/C: 	Display the specified number of bytes. /C accepts a b, k, or m modifiers at the end of the number. b is the number of 512-byte blocks, k is the number of kilobytes, and m the number of megabytes.

	/I"text"	Select files by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

	/N+n	Skip the first n lines.

	/N n	Display n lines. The default is 10.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Pause and prompt after displaying each page.

	/Q	Do not display a header for each file. This is the default behavior, but an explicit /Q may be needed to override an alias that forces /V.

	/V	Display a header for each file.

HELP

	Purpose:	Display help for internal commands

	Format:	HELP [topic]

topic A help topic (internal command, variable or function).

See also: The Online Help System.

Usage:

Online help is available for all of TCC's internal commands, variables, and other features.

The TCC help system (tcmd.chm) uses Microsoft's HTML Help Viewer (HH.EXE) included in all versions of Windows.

If you type the command HELP by itself (or press F1 when the command line is empty), an introductory page (Overview) is displayed. If you type HELP plus a topic name, that topic is displayed. For example:

help copy

displays information about the COPY command and its options. All internal commands, internal variables, variable functions, and key mapping directives have their own topic.

You can also invoke help for the word immediately above (or immediately to the left of) the cursor by pressing Ctrl-F1 (this can be useful when you need the syntax for a variable function).

HISTORY

	Purpose:	Display or modify the history list

	Format:	HISTORY [/A command /F["..."] /G /L /N /P /Rn filename /Tn /V]

	command	A command to be added to the history list.

	filename	The name of a file containing entries to be added to the history list.

	/A(dd)

	/P(ause)

	/F["..."] f(ree)

	/R(ead)

	/G(lobal)

	/T (display last n lines)

	/L(ocal)

	/V (display in reverse order)

	/N(o duplicates)

	

See also: DIRHISTORY, HistoryExclude and LOG.

Usage:

TCC keeps a list of the commands you have entered on the command line. See Command History and Recall for information on command recall, which allows you to use the history list to repeat or edit commands you have previously executed.

The HISTORY command lets you view and manipulate the command history list directly. If no parameters are entered, HISTORY will display the current command history list.

With the options explained below, you can clear the list, add new commands to the list without executing them, save the list in a file, or read a new list from a file.

The number of commands saved in the history list depends on the length of each command line. The history list size can be specified at startup from 4,000 to 500,000 characters (see the Command History Buffer Size configuration option). The default size is 20,000 characters.

Your history list can be stored either locally (a separate history list for each copy of TCC) or globally (all copies of TCC share the same list). For full details see local and global history.

You can use the HISTORY command as an aid in writing batch files by redirecting the HISTORY output to a file and then editing the file appropriately. However, it is easier to use the LOG /H command for this purpose.

You can disable the history list or specify a minimum command line length to save with the Minimum Length configuration option. You can prevent any command line from being saved in the history by beginning it with an "at" sign (@).

You can exclude specific commands from the History List with the HistoryExclude variable.

You can control whether duplicate entries will be saved in the history list with the Duplicates configuration option.

You can save the history list by redirecting the output of HISTORY to a file. This example saves the command history to a file called HISTFILE and reads it back again immediately. If you leave out the HISTORY /F command on the second line, the contents of the file will be appended to the current history list instead of replacing it:

history > histfile

history /f

history /r histfile

If you need to save your command history at the end of each day's work, you might use the first of these commands in your TCSTART.BTM or other startup file, and the second in TCEXIT.BTM:

if exist c:\histfile history /r c:\histfile

history > c:\histfile

This restores the previous history list if it exists, and saves the history when TCC exits.

TCC can also load and save the history list automatically if you use the History File configuration option.

Options:

	/=	Display the HISTORY command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A	Add a command to the history list. This performs the same function as the Ctrl-K key at the command line.

	/F["..."]	 Erase entries in the command history list. You can have multiple /F"..." arguments, and they can contain wildcards. If you don't include the optional quoted argument, /F will erase the entire list.

	/G	Switch from a local to a global history list.

	/L	Switch from a global to a local history list.

	/N	Removes duplicate entries (oldest first) from the history list.

	/P	Wait for a key after displaying each page of the list. Your options at the prompt are explained in detail under Prompts.

	/Rn	Read the command history from the specified file and append it to the history list currently held in memory.

If you are creating a HISTORY /R file by hand, and need to create an entry that spans multiple lines in the file, you can do so by terminating each line, except the last, with an escape character. However, you cannot use this method to exceed the command line length limit.

If you try to load a file that is larger than the history list size, HISTORY will only load the last part of the file that will fit.

You can optionally specify whether HISTORY should ignore duplicates and HistoryExclude and always append the lines by specifying /R1. (This will be considerably faster for large history lists.)

	/Tn	Display the last n lines of the history. If n is negative, skip the first -n lines of the history. (Not available in TCC/LE.)

	/V	Display the history in reverse order. This cannot be combined with /T. (Not available in TCC/LE.)

IF

	Purpose:	Execute a single command if a condition is true

	Format:	IF [/I] condition command

IF [/I] condition (command1) ELSE (command2)

	condition

	A conditional expression

	command

	The command to execute if condition is TRUE.

	command1

	The command to execute if condition is TRUE.

	command2

	The command to execute if condition is FALSE.

/I(gnore case)

See also: Conditional expressions, IFF, @IF.

Usage:

IF is most often used only aliases and batch files. It is always followed by a condition (see Conditional expressions), and then a command. First condition is evaluated, and if it is TRUE, command is executed. Otherwise, command is ignored.

If the condition is FALSE, IF returns a non-zero result, so it can be evaluated by one of the conditional command operators (II or &&).

The IF ... ELSE ... syntax of CMD is also supported:

IF [/I] condition (command1) ELSE (command2)

The commands to be executed must be enclosed in parentheses (as in a command group). If condition is TRUE, command1 is executed, if FALSE, command2 is executed. Note: this syntax is much less powerful than the IFF command, which is recommended.

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. IF will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

When an IF test fails, the remainder of the command is discarded. Whether TCC continues with the next command on the line, or discards the rest of the line and goes to the next line is dependent upon the Duplicate CMD Bugs configuration option. CMD will discard all remaining commands on the line when an IF test fails, including those after a command separator or pipe character. If you do not want to reproduce CMD.EXE's behavior of an IF affecting all commands on a line, set DuplicateBugs to No in the .INI file. The IF behavior is different when DuplicateBugs is YES in a command group in a batch file. If there are multiple command lines in the command group, a failed IF will only ignore the remainder of the commands on that line. The commands on the subsequent lines in the command group will still be executed.

For example, if Duplicate CMD Bugs is enabled (the default), the following command will display nothing, because the second ECHO command is discarded along with the first when the condition fails. If Duplicate CMD Bugs is disabled, it will display "hello":

	

	[c:\] if 1 == 2 echo Wrong! & echo hello

Option:

	/I	This option is included only for compatibility with CMD. It has no effect in TCC, since all string comparisons are case-insensitive unless you specify a case-sensitive test (EQC).

IFF

	Purpose:	Perform one of several alternate sets of commands based on the values of conditional expressions

	Format:	IFF condition1 THEN

commandset1

[ELSEIFF condition2 THEN

commandset2]

...

[ELSE

commandset3]

ENDIFF

	condition1,2,3

	Conditional expressions

	commandset1

	One or more commands to execute if condition1 is TRUE

	commandset2

	One or more commands to execute if condition1 is FALSE, but condition2 is TRUE.

	commandset3

	One or more commands to execute if both condition1 and condition2 are FALSE.

See also: IF and @IF.

Usage:

IFF is similar to IF, but it can perform one commandset when a conditional expression is true and a different commandset when it is false. Repeated use of the optional ELSEIFF clause permits IFF to sequentially evaluate multiple, independent conditional expressions, and execute the commandset associated with the first TRUE conditional expression, or, if none are true, the commandset associated with the optional ELSE clause. After execution of any one of the commandsets the command after the ENDIFF clause will be executed.

You must start a new line or include a command separator :

●after each THEN
●before each ELSEIFF
●both before and after the ELSE.

The individual commands in each commandset may be separate lines of a batch file, or they may be separated by command separators, in any combination. A commandset may also be empty, The individual commands in a commandset may include any internal command, alias, external command, or batch file.

IFF statements can be nested, i.e., a commandset may include another IFF / ENDIFF group. You must make sure that each individual command / commandset is syntactically correct. If an "inner" IFF / ENDIFF group is in error, it may not be detected until after the "outer" ENDIFF has been executed.

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. IFF will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

Notes

Be sure to read the cautionary notes about GOTO and IFF under the GOTO command before using a GOTO inside an IFF statement.

If you pipe data to an IFF, the data will be passed to the command(s) following the IFF, not to IFF itself.

Example

The alias in this example checks to see if the parameter is a subdirectory. If so, the alias deletes the subdirectory's files and removes it (enter this on one line):

alias prune `iff isdir %1 then & del /s /x /z %1 & else & echo %1 is not a directory! & endiff`

	IFTP	Not in LE

	Purpose:	Open or close an FTP / FTPS / SFTP session

	Format:	IFTP [/= /S command /C /EP /IPv6 /N /Pn /PR="n" /Q /R /V /Z[n]] ["ftp://[user[:password]@]server[/path][:port]"]

	user	The user name to login to the FTP site

	password	The password to login to the FTP site.

	server	The FTP server name.

	path	The default directory on the server for this session.

	port	Port number.

	/C(lose)

	/Q(uiet)

	/EP (extended passive)

	/R(econnect)

	/IPv6

	/S(end)

	/N(o paths)

	/V(erbose)

	/P(assive)

	/Zn (zlib)

	/PR="n" (port range)

	

Usage:

Most file processing commands and functions in TCC can access files on FTP servers in the same manner as files on local hard drives and a local network. Normally, each time you use the FTP feature of one of these commands or functions, it repeatedly starts an FTP session, performs an individual operation, and closes the FTP session, until the command or function is finished.

IFTP starts an FTP session which remains open until you close it or it is closed by the remote server. There are several advantages to using IFTP: the FTP connection remains open so commands execute more quickly, the syntax for accessing files on the server is shorter, and you can specify a default directory on the server for file operations.

For example, to open an FTP connection using IFTP:

iftp ftp://user:pwd@ftp.myserver.com/dir1

For an FTPS connection, use something like:

iftp ftps://user:pwd@ftp.myserver.com/dir1

This command tells IFTP to open an FTP/FTPS session with the server myserver.com, send user as the login username and password as the login password, and to establish the directory /dir1 as the default directory for this session. The user name and password are optional; if they are not used, IFTP will attempt to log in anonymously. Double quotes are required if there are spaces or special characters in the filename. If you specify a password of *, you will be prompted to enter the password (which will appear on the screen as asterisks).

Note that in the example above dir1 is a subdirectory of the FTP "root" directory -- the home directory for the named FTP user. In most server configurations this is not the same as the FTP server's physical root directory.

Note: If you enter IFTP with no parameters while a connection is active, the current server name and directory will be displayed.

If you enter IFTP with only the /Q or /V switch, you change the amount of information displayed without disturbing the existing connection (if any).

Once you have established an FTP session with IFTP, you can refer to files on the server by using ftp: (or ftps:) but leaving out the user name, password, and URL of the server. On most servers, file and path names which begin ftp: are relative to the default directory, if any, that you specified when you opened the IFTP session; file and path names which begin ftp:/ are relative to the root directory for the login name.

The difference can be seen in these four DIR commands, assuming the IFTP session started above:

1. dir "ftp:*.txt"

2. dir "ftp:dir2/*.txt"

3. dir "ftp:/*.txt"

4. dir "ftp:/dir2/*.txt"

The first command lists the .TXT files in the default session directory, dir1. The second command lists the .TXT files in /dir1/dir2 because it interprets the path dir2/*.txt to be relative to the default directory. The quotes could be omitted from example 1 because it contains no forward slash that could be mistaken as an option switch. The third and fourth commands above, because they include a / immediately following the ftp: designator, are relative to the root directory. Command 3 lists the .TXT files in the root directory and command 4 lists the files in the dir2 subdirectory of the root directory.

Note: If an ftp file or path specification begins with a ~ (tilde), TCC will not attempt to build a full directory name but will instead pass the entire string to the remote server.

You can only have one IFTP connection open at a time within a TCC tab window. However, while you have an IFTP connection open, you can still use a complete FTP URL to perform an operation on a different server. For example, while the session above is open, you can use this command to display all files in the root directory of microsoft.com:

dir "ftp://ftp.microsoft.com/*"

An IFTP session remains open until you explicitly close it with this command:

iftp /c

Most FTP servers "time out" after a period of inactivity. TCC will attempt to detect if the connection has been closed by the server, and reconnect if you reference the IFTP session again. You should not assume that an IFTP connection will continue to function if you leave it open but unused for a significant period of time. You can determine if the connection is still active with the _iftp and _iftps variables.

IFTP and the other FTP features of TCC rely on the server's compliance with Internet FTP standards. If your server is not fully compliant, or does not operate in the manner that TCC expects, commands may not work as you intend. We urge you to test each server you use with nondestructive commands like DIR before you try to copy or delete files, create or remove directories, etc.

Before you can use IFTP, you must establish the necessary connection to the Internet.

Options:

	/=	Display the IFTP command dialog to help you set the command line options. You cannot specify any other arguments on the command line.

	/C	Use this switch, with no URL, to close an IFTP session (see the example above).

	/EP	Use Extended Passive mode. (Works with FTP and FTPS, but not SFTP.)

	/IPv6	By default, IFTP expects an IPv4 address for the local and remote host, and will create an IPv4 socket. The /IPv6 option tells IFTP to use IPv6 instead. (Works with FTP, FTPS, and SFTP connections.)

	/N	Pass both source and target names to the server "as is" without any attempt at expanding the paths. This option should be used with caution and only for "non standard" servers for which the default processing fails to build a suitable name.

	/P	/P0 disables passive mode; /P1 enables it.

	/PR="n"	When using active mode, IFTP uses any available port to listen to incoming connections from the server. You can override this behavior by setting /PR (PortRange) to a value containing the range of ports the class will be listening to. The range is provided as start-end, for instance: "1024-" stands for anything higher than 1024, "1024-2048" stands for ports between 1024 and 2048 inclusive, "4000-4010, 50000-50010" stands for ports between 4000 and 4010 or between 50000 and 50010. (Works with FTP and FTPS, but not SFTP.)

	/Q	Turn off the display of the conversation with the FTP server.

	/R	Automatically reconnect if the FTP server times out.

	/S	Allows you to send commands directly to an FTP server. The connection must have already been opened by a previous IFTP command.

	/V	Display the dialog with the FTP server while opening the connection. This can be useful for debugging connection problems.

	/Zn	Use Zlib compression. You can optionally set the compression level (0-9; the default is 7). Zlib compression must be enabled on the server, and will only work with FTP and FTPS connections (not SFTP).

See FTP Servers for additional information on formatting and usage of FTP and FTPS references.

INKEY

	Purpose:	Get a single keystroke from the user and store it in an environment or array variable

	Format:	INKEY [/C /D /E"n" /K"keys" /P /M /Wait /X] [prompt] %%varname

	prompt	Optional text that is displayed as a prompt.

	varname	The variable that will hold the user's keystroke.

	wait	Time to wait for a keystroke, in seconds

	/C

	Clear buffer

	/P

	Password

	/D

	Digits only

	/W

	Wait

	/K

	valid keystrokes

	/X

	no carriage return

	/M

	Mouse buttons

	

	

See also: INPUT.

Usage:

INKEY optionally displays a prompt, then it waits for a specified time (or indefinitely) for a keystroke, and places the keystroke into an environment or array variable. It is normally used in batch files and aliases to get a menu choice or other single-key input. Along with the INPUT command, INKEY allows great flexibility in reading input from within a batch file or alias.

If prompt is included in an INKEY command, it is displayed while INKEY waits for input.

The following batch file fragment prompts for a character and stores it in the variable NUM:

inkey /D Enter a number from 1 to 9: %%num

INKEY reads standard input for the keystroke, so it will accept keystrokes from a redirected file or from KEYSTACK. You can supply a list of valid keystrokes with the /K option.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

A standard keystroke is stored directly in the environment variable. An extended keystroke (for example, a function key or a and cursor key) is stored as a string, consisting of a leading @, followed by its scan code as a decimal number, e.g., the F1 key is stored as @59. The Enter key is stored as an extended keystroke @28. See ASCII, Key Codes, and ANSI X3.64 Commands for scan codes.

When the /M option enables recognition of mouse buttons, (and /W is not specified), the variable is set to a single character with one of the codes below:

	button

	code

	left

	240

	middle

	498

	right

	497

You can get the screen position of the last mouse click with the _xmouse and _ymouse internal variables.

To test for a non-printing value returned by INKEY use the @ASCII function to get the numeric value of the key, or convert the expected value of the code to a code using @CHAR. For example, to test for Esc, which has an ASCII value of 27 or a left mouse button:

inkey Enter a key: %%key

if "%@ascii[%key]" == "27" echo Esc pressed

if %key EQ %@char[240] echo Left mouse button clicked

If you press Ctrl-C or Ctrl-Break while INKEY is waiting for a key, execution of an alias will be terminated, and execution of a batch file will be suspended while you are asked whether to cancel the batch job. A batch file can handle Ctrl-C and Ctrl-Break with the ON BREAK command.

INKEY works within the command line window. If you prefer to use a dialog for user input, see the MSGBOX and QUERYBOX commands.

Options:

	/C	Clears the keyboard buffer before INKEY accepts keystrokes. If you use this option, INKEY will ignore any keystrokes which you type, either accidentally or intentionally, before it is ready to accept input.

	/D	Only accept numbers from 0 to 9.

	/K"keys"	Specifies the permissible keystrokes. The list of valid keystrokes should be enclosed in double quotes. For alphabetic keys the validity test is not case sensitive. You can specify extended keys by enclosing their names in square brackets (within the quotes), for example:

inkey /k"ab[Ctrl-F9]" Enter A, B, Ctrl-F9 %%var

See Keys and Key Names for a complete listing of the key names you can use within the square brackets, and a description of the key name format.

If an invalid keystroke is entered, TCC will echo the keystroke if possible, beep, move the cursor back one character, and wait for another keystroke.

	/M	Accept mouse button clicks. This is enabled only if Windows' Quick Edit is disabled (alt-space -> Properties -> Options).

	/P	Prevents INKEY from echoing the character.

	/W	Time-out period, in seconds, to wait for a response. If no keystroke is entered by the end of the time-out period, INKEY returns with the variable unchanged. This allows you to continue the batch file if the user does not respond in a given period of time. You can specify /W0 to return immediately if there are no keys waiting in the keyboard buffer. If /W is specified, mouse buttons are ignored.

For example, the following batch file fragment waits up to 10 seconds for a character, then tests to see if a "Y" was entered:

set netmon=N

inkey /K"YN" /w10 Network monitor (Y/N)? %%netmon

iff "%netmon" == "Y" then

 rem Commands to load the monitor program

endiff

	/X	Prevents INKEY from displaying a carriage return and line feed after the user's entry.

INPUT

	Purpose:	Get a string from the keyboard and save it in an environment or array variable

	Format:	INPUT [/C /D /E["default"] /K"keys" /Ln /N /P /Wn /X] [prompt] %%varname

	prompt	Optional text that is displayed as a prompt.

	varname	The variable that will hold the user's input.

	/C(lear buffer)	/N(o colors)

	/D(igits only)	/P(assword)

	/E(dit)	/W(ait)

	/K(eys)	/X (no carriage return)

	/L(ength)	

See also: SET, INKEY, KEYSTACK, MSGBOX, and QUERYBOX.

Usage:

INPUT optionally displays a prompt, then waits for your entry and stores it in an environment or array variable. INPUT is normally used in batch files and aliases to get multi-character input (for single keystroke input, see INKEY).

INPUT works within the command line window. If you prefer to us a dialog for user input, see the MSGBOX and QUERYBOX commands.

If prompt text is included in an INPUT command, it is displayed while INPUT waits for input. Standard command line editing keys may be used to edit the input string as it is entered. If you use the /P password option, INPUT will echo asterisks instead of the keys you type.

INPUT returns when you press carriage return. All characters entered up to, but not including, the carriage return are stored in the variable.

The following batch file fragment prompts for a string and stores it in the variable FNAME:

input Enter the file name: %%fname

INPUT reads standard input, so it will accept text from a redirected file or from the KEYSTACK.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

If you press Ctrl-C or Ctrl-Break while INPUT is waiting for input, execution of an alias will be terminated, and execution of a batch file will be suspended while you are asked whether to cancel the batch job. A batch file can handle Ctrl-C and Ctrl-Break itself with the ON BREAK command.

You can pipe text to INPUT, but it will set the variable in the "child" process used to handle the right hand side of the pipe. This variable will not be available in the original copy of TCC used to start the pipe.

Options:

	/C	Discard any keystrokes pending in the keyboard buffer before INPUT begins accepting characters.

	/D	Only accept numbers from 0 to 9.

	/E	Allows you to edit an existing value. If there is no existing value for varname, INPUT proceeds as if /E had not been used, and allows you to enter a new value. If there is no existing value and you provide an optional default value, INPUT will display the default value for editing (not available in TCC/LE).

	/K"keys"	Specifies the permissible keystrokes (not available in TCC/LE). The list of valid keystrokes should be enclosed in double quotes. For alphabetic keys the validity test is not case sensitive.

 For example:

input /k"[0-9]-()" Enter your phone number: %%var

You can specify extended keys by enclosing their names in square brackets (within the quotes), See Keys and Key Names for a complete listing of the key names you can use within the square brackets, and a description of the key name format.

If an invalid keystroke is entered, TCC will beep and wait for another keystroke.

	/Ln	Sets the maximum number of characters which INPUT will accept to n. If you attempt to enter more than this number of characters, INPUT will beep and prevent further input (you will still be able to edit the characters typed before the limit was reached).

	/N	Disables the use of input colors defined in the Colors configuration options, and forces INPUT to use the default display colors.

	/P	Tells INPUT to echo asterisks, instead of the characters you type.

	/W	Time-out period, in seconds, to wait for a response. If no keystroke is entered by the end of the time-out period, INPUT returns with the variable unchanged. This allows you to continue the batch file if the user does not respond in a given period of time. If you enter a key before the time-out period, INPUT will wait indefinitely for the remainder of the line. You can specify /W0 to return immediately if there are no keys waiting in the keyboard buffer.

	/X	Prevents INPUT from adding a carriage return and line feed after the user's entry.

	JABBER	Not in LE

	Purpose:	Send an IM via the JABBER network

	Format:	JABBER [/= /S"server" /U"user" / P"password" /Tn /V] /B target[@server] /F"filename" message

	message	 The message to send

	/B(uddy)	/Tn (port)

	/F(ile)	/U(sername)

	/P(assword)	/V(erbose)

/S(erver)

Usage:

If /S, /U, and/or /P are not specified, JABBER will use the default values defined in the .INI file (JabberServer, JabberUser, and JabberPassword). If you don't specify any arguments, JABBER will display its command dialog.

JABBER is intended to send single short messages on an event (for example, when a large series of file transfers is completed), not as a general replacement for an interactive IM client.

Before using JABBER, you will need to create an account on a JABBER network server. See www.jabber.org for more information on the JABBER network and for open JABBER servers.

The JABBER command supports SSL, so it can talk with SSL XMPP servers (like talk.google.com).

Options:

	/=	Display the JABBER command dialog to help you set the command line options. You cannot specify any other arguments on the command line.

	/B	Address where the message will be sent

	/F	Send a file to another user

	/P	Logon password on the JABBER server

	/S	JABBER server to log onto

	/T	Server port (default 5222)

	/U	User logon name on the JABBER server

	/V	Display verbose (debugging) output

KEYBD

	Purpose:	Set the state of the keyboard toggles Caps Lock, Num Lock, and Scroll Lock, or enable/disable the keyboard.

	Format:	KEYBD [/Cn /K[0|1] /Nn /Sn]

n can be either 0 to toggle the key off or 1 to toggle the key on.

	/C(aps lock)

	/N(um lock)

	/K(eyboard lock)

	/S(croll lock)

Usage:

Most keyboards have 3 toggle keys, the Caps Lock, Num Lock, and Scroll Lock. KEYBD lets you turn any toggle key on or off. It is most useful in batch files and aliases if you want the keys set a particular way before collecting input from the user.

For example, to turn off the Num Lock and Caps Lock keys, you can use this command:

keybd /c0 /n0

If you use the KEYBD command with no switches, it will display the present state of the toggle keys.

The toggle key state is typically the same for all sessions, and changes made with KEYBD in one session will therefore affect all other sessions.

Options:

	/C	Turn the Caps Lock key on or off.

	/K	Disable (0) or enable (1) the keyboard. You can also reenable a disabled keyboard with Ctrl-Alt-End. (Not available in TCC/LE.)

	/N	Turn the Num Lock key on or off.

	/S	Turn the Scroll Lock key on or off.

KEYS

	Purpose:	Enable, disable, or display the history list

	Format:	KEYS [ON | OFF | LIST]

See also: HISTORY.

Usage

This command is provided for compatibility with KEYS command in CMD, which controls the history list in Windows. The same functions are available by setting the Command History Minimum Length configuration option, and by using the HISTORY command. (CMD's KEYS command no longer has an effect, because command line editing is always enabled.)

The history list collects the commands you type for later recall, editing, and viewing. You can view the contents of the list through the history list window or by typing any of the following commands:

history

history /p

keys list

The first command displays the entire history list. The second displays the entire list and pauses at the end of each full screen. The third command produces the same output as the first, except that each line is numbered.

You can disable the collection and storage of commands in the history list by typing:

keys off

You can turn the history back on with the command:

keys on

If you issue the KEYS command without any parameters, TCC will show you the current state of KEYS.

KEYSTACK

	Purpose:	Send keystrokes to a program or command automatically

	Format:	KEYSTACK [/R filename] [/Wx] ["abc"] [keyname[n]] ...

	/Wx	Delay in clock ticks before next insertion into the keystack.

	"abc"	Literal characters to be placed in the Keystack.

	keyname	Name of a key whose code is to be placed in the Keystack or its ASCII.

	n	Number of times to repeat the immediately preceding named key.

	/R(ead file)	 /W(ait)

Usage:

Operation

KEYSTACK takes a series of keystrokes and feeds them to a program or command as if they were typed at the keyboard. When the program has used all of the keystrokes in the keystack buffer, it will begin to read the keyboard for input, as it normally would.

KEYSTACK will send the keystrokes to the currently active window. If you want to send keystrokes to another program (rather than have them function with TCC itself), you must start the program or ACTIVATE its window so it can receive the keystrokes. You must do this before executing the KEYSTACK command.

KEYSTACK is most often used for programs started from batch files. In order for KEYSTACK to work in a batch file, you must start the program with the START command, then use the KEYSTACK command. If you start the program directly (without using START) the batch file will wait for the application to complete before continuing and running the KEYSTACK command, and the keystrokes will not appear in the target program.

If you use KEYSTACK in an alias executed from the prompt, the considerations are essentially the same, but depend on whether or not the Wait for External Apps configuration option is set. If it is not set (the default), you can use KEYSTACK immediately after an application is started. However, if Wait for External Apps is set, TCC will not execute any other operation until the program has finished, including the KEYSTACK command, and instead of the target program, the keystrokes will be sent to whatever program is running in the active window when KEYSTACK is executed.

You may not be able to use KEYSTACK effectively if you have programs running in the background which change the active window (for example, by popping up a dialog box). If a window pops up in the midst of your KEYSTACK sequence, keystrokes stored in the KEYSTACK buffer may go to that window, and not to the application you intended.

Keystroke Interpretation

Characters entered within double quotes (for example, "abc") will be sent to the target program as is. The only items allowed outside the quotes are key names, the /W option, and a repeat count. If you want to enter a double quote, use two double quotes. Do not prefix or append the two double quotes to a string argument.) For example, to insert the string abc "def"

keystack "abc " "" "def" ""

If keyname is a single letter, it is inserted in the keystack buffer as if it had been quoted, without any spaces. For example, you could enter the string abc as a b c, instead of the quoted string method described above.

If keyname is a number, it is interpreted as a virtual key code (0 - 255).

Repetition. To send keyname several times, follow it with a space, left bracket [, the repetition count, and a right bracket]. For example, the command below will send the Enter key 4 times:

keystack enter [4]

The repeat count works only with an individual keyname. It cannot be used with quoted strings. You must have a blank space between the keyname and the repetition count.

See Keys and key names for a complete listing of key names and a description of the key name and numeric key code format.

Note

You may need to experiment with your programs and insert delays (see the /W option) to find the window activation and keystroke sequence that works for a particular program.

Example

To start Word and open the last document you worked on, you could use the command:

start word & keystack /w54 alt-f "1"

This starts Word, delays about three seconds (54 clock ticks at 1/18 second each) for Word to get started, places the keystrokes for Alt-F (File menu), and 1 (open the most recently used file) into the buffer. Word receives these keystrokes and performs the appropriate actions. Notice that the two commands, START and KEYSTACK are issued on a single command line. This ensures that the keystrokes are sent to Word's window, not back to TCC.

Option:

	/R	Read the KEYSTACK input from a file. (You can only read a single line.)

	/W	Delay the next keystroke in the KEYSTACK buffer by a specified number of clock ticks. A clock tick is approximately 1/18 second. The number of clock ticks to delay should be placed immediately after the W, and must be between 1 and 65535 (65,535 ticks is about 1 hour). Do not use the Thousands Separator in the number! You can use the /W option as many times as desired and at any point in the string of keystrokes except within double quotes. Some programs may need the delays provided by /W in order to receive keystrokes properly from KEYSTACK. The only way to determine what delay is needed is to experiment.

LIST

	Purpose	Display a text file, with forward and backward paging and scrolling

	Format	LIST [range...] [/8 /A:[[-|+]rhsadecijopt /B[-]n /C /Etext" /F /H /I /L[-]n /N /O:[-]adegnrstu /R /S /T"text" /U /W /X[s]] [@file] [file...]

	file	 A file or list of files to display.

	@file	 A text file containing the names of the files to view, one per line (see @file lists for details).

	range	 A file selection range (date, description, exclusion, size, time)

	/8 (UTF-8)

	

	/A: (Attribute select)

	/N (line numbers)

	/B(yte offset)

	/O:... (Order)

	/C (separate console)

	/R(everse)

	/E (regular expression)

	/S(tandard input)

	/F (console screen buffer)

	/T (search for Text)

	/H(igh bit off)

	/U (Ruler)

	/I(gnore wildcards)

	/W(rap)

	/L(ine offset)

	/X (heXadecimal display mode)

See also: VIEW, HEAD, TAIL, and TYPE.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Internet

Can be used with FTP/HTTP Servers.

Usage

(See the VIEW command for an updated and enhanced LIST replacement.)

LIST provides a fast and flexible way to view a file, without the overhead of loading and using a text editor.

For example, to display a file called MEMO.DOC:

list memo.doc

Note: LIST is primarily intended for displaying the contents of ASCII and Unicode text files (i.e. alphanumeric characters arranged in lines separated by CR/LF). It can be used for other files which contain non-alphabetic characters or unusual line separators, but you may need to use hexadecimal mode (see below) to display or search these files. Lines longer than 32,767 characters will be truncated unless you're in Wrap or Hex modes.

LIST displays files in the TCC window. If you resize the TCC window or the Take Command window when TCC is running in a tab window, LIST will automatically resize its display.

LIST recognizes the following keys and buttons:

	Key (Button)	Meaning

	Home	Display the first page of the file

	End	Display the last page of the file

	Esc (ListExit)	Exit the current file

	Ctrl-C (Quit)	Quit LIST

	Ctrl-PgUp	Display previous file

	Ctrl-PgDn	Display next file

	Up Arrow	Scroll up one line

	Down Arrow	Scroll down one line

	Left Arrow	Scroll left 8 columns

	Right Arrow	Scroll right 8 columns

	Ctrl Left Arrow	Scroll left 40 columns

	Ctrl Right Arrow	Scroll right 40 columns

	Del 	Prompt whether to delete the file

	Ins 	Prompt whether to save the pipe or file to a new name

	Tab 	Prompt for a new default tab size

	F1	Display online help

	F5 (ListRefresh)	Refresh the display

	B (ListPrevious)	Go back to the previous file in the current group of files

	Ctrl-B (ListClipboard)	Copy the current filename to the clipboard

	C (ListContinue)	Continue with the next file

	e 	Edit the file with the editor associated with that filetype. If there is no association, LIST will use the editor defined in the Editor configuration option. If no editor is defined, LIST will use Notepad. If LIST is displaying a pipe, the contents are saved to the clipboard and the editor is started. (You will need to manually paste the clipboard contents.)

	F (Find)	Prompt and search for a string or a sequence of hexadecimal values

	Ctrl-F	Prompt and search for a string, searching backward from the end of the file

	G (Goto)	Go to a specific line or, in hex mode, to a specific hexadecimal offset

	H (High)	Toggle the "strip high bit" (/H) option

	I (Info)	Display information on the current file (the full name, size, date, and time)

	L(ine numbers)	Toggle the line numbering option

	N (ListNext)	Find next matching string

	Ctrl-N	Find previous matching string in the file

	O (ListOpen)	Open a new file

	Ctrl-O	Open a new file

	P (Print)	Print selected pages or the entire file (make your selection in the Windows "Print" dialog)

	R ListFindRegex)	Prompt and search for a regular expression

	Ctrl-R	Prompt and search backwards for a regular expression

	U (ListUnicode)	Toggle the Unicode display mode

	W (Wrap)	Toggle the "line wrap" (/W) option

	X (Hex)	Toggle the hex-mode display (/X) option

Text searches performed with F, N, Ctrl-F, and Ctrl-N, or with the corresponding buttons, are not case-sensitive unless you check the Match case box in the search dialog. LIST remembers the search strings you have used in the current session; to select a previous string, use the drop-down arrow to the right of the string entry field (the N key and the Next button search for the top item in this drop-down list).

When the search string is found LIST displays the line containing the string at the top of the window, and highlights the string it found. Any additional occurrences of the string on the same display page are also highlighted. Highlighting is intended for use with text files. In binary files, the search string will be found but may not be highlighted properly.

If the display is currently in hexadecimal mode and you press F or Ctrl-F, you will be prompted for whether you want to search in hexadecimal mode. If so, you should then enter the search string as a sequence of 2-digit hexadecimal numbers separated by spaces, for example 41 63 65 (ASCII values for the string "Ace"). Hexadecimal searches are case-sensitive, and search for exactly the string you enter.

LIST saves the search string used by F, N, Ctrl-F, and Ctrl-N so you can LIST multiple files and search for the same string simply by pressing N in each file, or repeat your search the next time you use LIST.

You can use extended wildcards in the search string. For example, you can search for the string to*day to find the next line which contains the word to followed by the word day later on the same line, or search for the numbers 101 or 401 with the search string [14]01. If you begin the search string with a back-quote `, or enclose it in back-quotes, wildcard characters in the string will be treated as normal text with no special wildcard meaning.

You can use the /T switch to specify search text for the first file. When you do so, LIST begins a search as soon as the file is loaded. Use /I to ignore wildcards in the initial search string, and /R to make the initial search go backwards from the end of the file. When you LIST multiple files with a single LIST command, these switches affect only the first file; they are ignored for the second and subsequent files.

You can also search using Regular Expressions using the R and Ctrl-R keys. See Regular Expression Syntax for supported expressions.

You can use the G key to go to a specific line number in the file (or to a specified hexadecimal offset in hex mode). LIST numbers lines beginning with 1. A new line is counted for every CR or LF character (LIST determines automatically which character is used for line breaks in each file), or when line length reaches 32,767 characters, whichever comes first.

LIST normally allows long lines in the file to extend past the right edge of the screen. You can use the horizontal scrolling keys (see above) to view text that extends beyond the screen width. If you use the W command or /W switch to wrap the display, each line is wrapped when it reaches the right edge of the screen, and the horizontal scrolling keys are disabled.

To view output from another command simply pipe the output of the command to LIST, for example:

dir | list

Normally LIST will detect input from a pipe automatically, but if it does not, use /S to explicitly specify piped input. Your ability to navigate backward through the displayed output (e.g. with PgUp) may be limited when viewing a large amount of data through a pipe, due to the way Windows handles piped output.

To view text from the clipboard, use CLIP: as the file to be listed. CLIP: will not return any data unless the clipboard contains text. See Redirection for more information on CLIP:.

If you print the file which LIST is displaying, the print format will match the display format. If you have switched to hexadecimal or wrapped mode, that mode will be used for the printed output as well. If you print in wrapped mode, long lines will be wrapped at the width of the display. If you print in normal display mode without line wrap, long lines will be wrapped or truncated by the printer, not by LIST. Regardless of the display mode, LIST will bring up a standard Windows print dialog which allows you to print selected text, the current page, or the entire file.

●FTP/HTTP Usage

LIST can display files on FTP servers as well as the contents of HTTP/HTTPS URLs. For example:

list ftp://ftp.microsoft.com/index

list http://jpsoft.com/notfound.htm

You can also use the IFTP command to start an FTP session on a server, and then use an abbreviated syntax to specify the files and directories you want. For more information, see Using FTP/HTTP Servers and IFTP.

●NTFS File Streams

LIST supports file streams on NTFS drives. You can list an individual stream by specifying the stream name, for example:

list streamfile:s1

If no stream name is specified the file's primary data is displayed.

See NTFS File Streams for additional details.

●Advanced Features

If you specify a directory name instead of a filename as a parameter, LIST will display each of the files in that directory.

If no filename is specified (and stdin is not redirected), LIST will open the common Windows "open file" dialog.

Most of the LIST keystrokes can be reassigned with key mapping directives.

By default, LIST sets tab stops every 8 columns. You can change this behavior with the Tabs Width configuration option.

Options

	/=	Display the LIST command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/8	The file is interpreted as UTF-8. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B[-]n	Start at byte n. If n is preceded by a minus sign -, start n bytes from the end of the file. The /B option will only display the file from the offset to the end; you cannot go back to a point before the offset.

	/C	Display the file in a separate screen buffer and restore the original buffer upon exiting LIST. /C only works in stand-alone TCC windows, not in Take Command tab windows.

	/E	Search for a regular expression in the first file. This option is the same as pressing R, but it allows you to specify the search text on the command line. The regular expression must be contained in double quotes if it contains spaces, punctuation, or wildcard characters. See also /T.

	/F	Display the contents of the console screen buffer. (Not available in TCC/LE.)

	/H	Strip the high bit from each character before displaying. This is useful when displaying files created by some word processors that turn on the high bit for formatting purposes. You can toggle this option on and off from within LIST with the H key or the tool bar.

	/I	Only meaningful when used in conjunction with the /T "text" option. Directs LIST to interpret characters such as *, ?, [, and] as literal characters instead of wildcard characters. /I affects only the initial search started by /T, not subsequent searches started from within LIST.

	/I"text"	Select files by matching text in their descriptions. See Description Ranges for details.

	/L[-]n	Start at line n. If n is preceded by a minus sign -, start -n lines from the end of the file. The /L option only affects the initial page display; it does not prevent you from subsequently scrolling back to the start of the file.

	/N	Display line numbers. You can toggle the line numbers with the L key.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/R	Only meaningful when used in conjunction with the /T "text" option. Directs LIST to search for text from the end of the file instead of from the beginning of the file. Using this switch can speed up searches for text that is normally near the end of the file, such as a signature. /R affects only the initial search started by /T, not subsequent searches started from within LIST.

	/S	Read from standard input rather than a file. This allows you to redirect command output and view it with LIST. Normally, LIST will detect input from a redirected command and adjust automatically. However, you may find circumstances when /S is required. For example, to use LIST to display the output of DIR you could use either of these commands:

dir | list

dir | list /s

	/T	Search for text in the first file. This option is the same as pressing F, but it allows you to specify the search text on the command line. The text must be contained in double quotes if it contains spaces, punctuation, or wildcard characters. For example, to search for the string TC in the file README.DOC, you can use this command:

list /t"Take Command" readme.doc

The search text may include wildcards and extended wildcards. For example, to search for the words Hello and John on the same line in the file LETTER.DAT:

list /t"Hello*John" letter.dat

When you display multiple files with a single LIST command, /T only initiates a search in the first file. It is ignored for the second and subsequent files. See also: /I and /R.

	/U	Display a ruler on the second line.

	/W	Wrap the text at the right edge of the screen. This option is useful when displaying files that don't have a carriage return at the end of each line. The horizontal scrolling keys do not work when the display is wrapped. You can toggle this option on and off from within LIST with the W key or the Wrap button on the tool bar.

	/X	Display the file in hexadecimal (hex) mode. This option is useful when displaying executable files and other files that contain non-text characters. Each byte of the file is shown as a pair of hex characters. The corresponding text is displayed to the right of each line of hexadecimal data. You can toggle this mode on and off from within LIST with the X key or the heX button on the tool bar.

You can display spaces rather than periods for non-printable characters by specifying the /XS option. You can also toggle between spaces and periods with the S key while displaying a file in hex mode.

	LOADBTM	Not in LE

	Purpose:	Switch a batch file to or from BTM mode

	Format:	LOADBTM [ON | OFF]

Usage:

TCC recognizes three kinds of batch files: .CMD, .BAT, and .BTM. Batch files with a .BTM extension will run faster than .BAT or .CMD files, as they are loaded into memory at startup and do not open and close the batch file for each line (as do .BAT and .CMD files).

The LOADBTM command turns BTM mode on and off. It can be used to switch modes in a batch file. If you use LOADBTM with no parameter, it will display the current batch mode: LOADBTM ON or LOADBTM OFF.

Using LOADBTM to repeatedly switch modes within a batch file is not efficient. In most cases the speed gained by running some parts of the file in BTM mode will be more than offset by the speed lost through repeated loading of the file each time BTM mode is invoked.

LOADBTM can only be used within a batch file. It is most often used to convert a .BAT or .CMD file to BTM mode without changing its extension.

There is no functional difference between .BAT and .CMD files.

LOADMEDIA

	Purpose:	Close the door of a removable media drive(s)

	Format:	LOADMEDIA drive ...

Usage:

LOADMEDIA will close the drive door (if the device allows it) of removable media, such as CD-ROMs, DVDs, etc.

See also EJECTMEDIA.

LOG

	Purpose:	Save a log of commands to a file

	Format:	LOG [/A /E /H /W file] [ON | OFF | text]

	file	The name of the file to hold the log.

	text	An optional message that will be added to the log.

	ON	Turns on logging

	OFF	Turns off logging

	/A(ll)	/H(istory log)

	/E(rrors)	/W(rite to)

See also: HISTORY.

Usage:

The LOG command provides independent controls for two different methods of logging TCC activity:

●Command Log
●History Log
●Output Log

You can only specify one of the /A, /E, and /H options in a single LOG command.

Command Log

Command logging creates a record of each internal and external command executed either from the command prompt or from a batch file in the format below:

[date time][id] command

where the date and time are formatted according to the country code set for your system, id is the process ID, and command is the actual command after any alias or variable expansion.

The default command log filename is TCCommandLog.

History Log

History log creates a record of each command executed from the command prompt exactly as it was entered, before aliases and variables are expanded, without any additional information.

Output Log

The Output log saves all everything that TCC writes to the console window. It does not log output written by external applications.

Notes

The LOG /H output can be used as the basis for writing batch files. Start LOG /H, then execute the commands that you want the batch file to execute. When you are finished, turn LOG /H off. The resulting file can be turned into a batch file that performs the same commands with little or no editing.

Options:

	/A	 This option saves all output to the log all file. The default filename is TCLogAll.

	/E	This option saves all error messages to the error log. The default filename is TCErrorLog. See also: the Error Logging configuration option.

	/H	This option saves the commands to the history log. The default history log name is TCHistoryLog. For example, to turn on history logging and write to the file C:\LOG\HLOG:

log /h /w c:\log\hlog

	/W	This switch specifies a different filename for the LOG output. It also automatically performs a LOG ON command. For example, to turn command logging on and write the log to C:\LOG\LOGFILE:

log /w c:\log\logfile

Once you select a new file name with the LOG /W or LOG /H /W command, LOG will use that file until you issue another LOG /W or LOG /H /W command, or until you terminate your TCC session. Turning LOG or LOG /H off or on does not change the file name.

MD / MKDIR

	Purpose:	Create a subdirectory

	Format:	MD [/C /D /N[et] /S] path...

or

MKDIR [/C /D /N[et] /S] path...

path The name of one or more directories to create.

	/C(ompressed)	 /N(o update)

	/D (change directory)	/S(ubdirectories)

See also: RD.

Internet: Can be used with FTP Servers.

Usage:

MD and MKDIR are synonyms. You can use either one. If you don't specify any arguments, MD will display its command dialog.

MD creates a subdirectory anywhere in the directory tree. To create a subdirectory from the root, start the path with a backslash [\]. For example, this command creates a subdirectory called MYDIR in the root directory:

md \mydir

If no path is given, the new subdirectory is created in the current directory. This example creates a subdirectory called DIRTWO in the current directory:

md dirtwo

To create a directory from the parent of the current directory (that is, to create a sibling of the current directory), start the pathname with two periods and a backslash [..\].

Windows limits the maximum length of the subdirectory name. See Directories and Subdirectories for details.

When creating a directory on an LFN drive, you must quote any path which contains white space or special characters.

If MD creates one or more directories, they will be added automatically to the extended directory search database unless the /N option is specified.

You can create directories on FTP servers. For example:

md ftp://ftp.abc.com/data/index

MD sets two internal variables:

	%_md_dirs	The number of directories created

	%_md_errors	The number of errors

Options:

	/=	Display the MD command dialog to help you set the directory and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/C	Create a compressed subdirectory. (Not available in TCC/LE.)

	/D	Change to the newly created subdirectory. (Not available in TCC/LE.)

	/N	If /N has no additional options, do not update the CD / CDD extended directory search database, JPSTREE.IDX. This is useful when creating a temporary directory which you do not want to appear in the extended search database. /N takes two optional arguments:

	e	Don't display errors. (Note that a /Ne alone will still update the extended directory search database.)

	t	Don't update the extended directory search database. (This is the same as /N with no options.)

	/S	Allows you to create more than one directory at a time. For example, if you need to create the directory C:\ONE\TWO\THREE and none of the named directories exist, you can use /S to have MD create all of the necessary subdirectories in a single command (without the /S, this command will fail because the parent directory C:\ONE\TWO does not exist):

md /s \one\two\three

For compatibility with CMD, /S becomes the default if you enable TCC extensions with the /X switch on the TCCstartup command line. See Command Line Options for details on /X.

MEMORY

	Purpose:	Display TCC and Windows memory status

	Format:	MEMORY

Usage:

MEMORY lists the percentage "memory load" as reported by Windows, the total and available physical RAM, the total and available page file size, the total and available virtual memory, the total and free alias space, the total and free function space (except in TCC/LE), and the total history space. The memory load is a figure returned by the operating system which gives an overall sense of memory utilization. It is not a precise indicator of system load or memory usage. The total page file figure shows the total number of bytes that can be stored in the file, but may not reflect the actual size of the current file on disk.

MKLINK

	Purpose:	Create NTFS symbolic, hard, and soft links

	Format:	MKLINK [/A /D /H /J /Q /X] Link Target

	Link	The new symbolic link name

	Target	The pathname (full or relative) that the new link refers to

	/A	Create a link with an absolute path.

	/D	Create a directory symbolic link. (The default is to create a file symbolic link.)

	/H	Create a hard link (like MKLNK).

	/J	Create a junction.

	/Q 	Don't display results.

	/X 	Delete directory link.

Usage:

Due to Windows file system restrictions, creating symbolic links with MKLINK requires an NTFS volume and Windows Vista or later.

The file/directory names in Link and Target can be fully or partially qualified. MKLINK will also copy an existing description to the link. If you don't specify any arguments, MKLINK will display its command dialog.

MKLINK sets two internal variables:

	%_mklink_files	The number of links created

	%_mklink_errors	The number of errors

See also MKLNK.

Option:

	/=	Display the MKLINK command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A	Create a link with an absolute (full expanded) pathname. For CMD compatibility, MKLINK creates relative links if you don't specify a full pathname.

	/D	Create a directory symbolic link. (The default is to create a file symbolic link.)

	/H	Create a hard link instead of a symbolic link.

	/J	Create a junction rather than a symbolic link.

	/Q	Don't display the result.

	/X	Delete a directory link.

MKLNK

	Purpose:	Create or delete an NTFS hard or soft link

	Format:	Create or update a link:

MKLNK [/A:[[-]rhsadecijopt]] parm1 [parm2]

Delete a link

MKLNK /D parm1

	parm1	Name of an existing file (hard link) or directory (for soft link).

	parm2	Name of the new directory entry (a file or directory reference) to be created.

	/A:	(Attribute select)

	/D	Delete a link

See also MKLINK.

File Selection

MKLNK supports the command dialog. For hard links, MKLNK supports attribute switches, extended wildcards, ranges, multiple file names, and include lists. Date, time, size, or file exclusion ranges anywhere on the line apply to all source files. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Usage:

Due to operating and file system restrictions, this command requires an NTFS volume.

The file/directory names in parm1 and parm2 can be fully or partially qualified, and may contain wildcards (hard links only). MKLINK will also copy an existing description to the link. If you don't specify any arguments, MKLNK will display its command dialog.

If a single argument is specified and it is a junction, MKLNK will display the directory name linked to the junction.

MKLNK sets two internal variables:

	%_mklnk_files	The number of links created

	%_mklnk_errors	 The number of errors

Hard Links

If parm1 is a file, and parm2 does not exist, MKLNK will create a hard link. If parm2 exists, MKLNK reports an error.

MKLNK (and the underlying Windows API) may fail if the current directory is on a subst or net use drive, or a UNC volume.

Soft Links

If parm1 is a directory, and parm2 does not exist, MKLNK will create a soft link, also known as a "directory junction" or "reparse point". If parm2 exists, and it is a soft link, MKLNK updates it.

A soft link is an indirect or symbolic reference (parm2) to a directory that physically resides in another location (parm1). Note: deleting files from a soft link is equivalent to deleting the files from the original directory.

Note: Other operating systems, such as Linux, may also support "hard links" and "soft links", but the Windows implementation of these concepts may not behave in the same manner even though the names might be similar.

Option:

	/=	Display the MKLNK command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set (hard links only). See Attribute Switches for information on the attributes which can follow /A:.

	/D	Remove an existing hard or soft link. For hard links, if no more links remain /D will not delete the file.

MOVE

	Purpose:	Move files to a new directory (and optionally drive)

	Format:	MOVE [/A:[[-]rhsadecijopt /B /C /CF /D /E /G /H /I"text" /J /K /L /LD /M /MD /N[dejnst] /O /O:[-]adegnrstu /P /Q /R /S[[+]n] /SX /T /U /UF /V /W /Y /Z] [@file] source... destination

	source	A file or list of files to move.

	destination	The new location for the files.

	@file	A text file containing the names of the source files to move, one per line (see @file lists for details).

	/A: (Attribute select)

	/O (don't move if target exists)

	/B (Move after reboot)

	/O:... (Order)

	/C(hanged)

	/P(rompt)

	/CF (changed 2s+ resolution)

	/Q(uiet)

	/D(irectory)

	/R(eplace)

	/E (No error messages)

	/S(ubdirectory tree)

	/G (display percent copied)

	/SX (single target directory)

	/H(idden and system)

	/T(otal)

	/I"text" (match description)

	/U(pdate)

	/J (copy in restartable mode)

	/UF (updated 2s+ resolution)

	/K (delete to recycle bin)

	/V(erify)

	/L (ASCII FTP transfer)

	/W(ipe)

	/LD (create link)

	/Y (force move of encrypted files)

	/M(odified files)

	/Z (overwrite)

	/MD (Create target directory)

	

	/N (Disable)

	

See also COPY, DEL and RENAME.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, delayed variable expansion, and include lists. Date, time, size, or file exclusion ranges anywhere on the line apply to all source files. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Internet: Can be used with FTP/TFTP/HTTP/HTTPS Servers.

Usage:

The MOVE command moves one or more files from one directory to another, whether the directories are on the same drive or not. It has the same effect as copying the files to a new location and then deleting the originals. Like COPY and RENAME, MOVE works with single files, multiple files, and sets of files specified with an include list. If you don't specify any arguments, MOVE will display its command dialog.

The simplest MOVE command moves a single source file to a new location and, optionally, gives it a new name. These two examples both move one file from drive C: to the root directory on drive A:

[c:\] move myfile.dat a:\

[c:\] move myfile.dat a:\savefile.dat

In both cases, MYFILE.DAT is removed from drive C: after it has been copied to drive A:. If a file called MYFILE.DAT in the first example, or SAVEFILE.DAT in the second example, already existed on drive A:, it would be overwritten. (This demonstrates the difference between MOVE and RENAME. MOVE will move files between drives and will overwrite the destination file if it exists; RENAME will not.)

When you move a single file, the destination can be a directory name or a file name. If it is a directory name, and you add a backslash [\] to the end of the name, MOVE will display an error message if the name does not refer to an existing directory. You can use this feature to keep MOVE from treating a mistyped destination directory name as a file name, and attempting to move the source file to that name.

If you MOVE multiple files, the destination must be a directory name. MOVE will move each file into the destination directory with its original name. If the destination is not a directory, MOVE will display an error message and exit. For example, if C:\FINANCE\MYFILES is not a directory, this command will display an error; otherwise, the files will be moved to that directory:

move *.wks *.txt c:\finance\myfiles

The /D option can be used for single or multiple file moves; it checks to see whether the destination is a directory, and will prompt to see if you want to create the destination directory if it doesn't exist.

If MOVE creates one or more destination directories, they will be added automatically to the extended directory search database; see Extended Directory Searches for details.

Be careful when you use MOVE with the SELECT command. If you SELECT multiple files and the destination is not a directory (for example, because of a misspelling), MOVE will assume it is a file name. In this case each file will be moved in turn to the destination file, overwriting the previous file, and then the original will be erased before the next file is moved. At the end of the command, all of the original files will have been erased and only the last file will exist as the destination file.

You can avoid this problem by using square brackets with SELECT instead of parentheses (be sure that you don't allow the command line to get too long; watch the character count in the upper left corner while you're selecting files). MOVE will then receive one list of files to move instead of a series of individual filenames, and it will detect the error and halt. You can also add a backslash [\] to the end of the destination name to ensure that it is the name of a subdirectory (see above).

When you specify a single subdirectory source and a single subdirectory target, the source directory tree will be moved to a subdirectory of the target directory. If the source is a subdirectory and the target doesn't exist, the target subdirectory will be created and the source tree moved to it. (These are both for compatibility with CMD.)

If you specify the /C, /CF, /R, /U, or /UF options, MOVE will append a ! to the move specifier if the target exists and is being overwritten. For example:

[d:\] move file1 file2

file1 ->! file2

MOVE sets three internal variables:

	%_move_dirs	The number of directories created

	%_move_files	The number of files moved

	%_move_errors	The number of errors

●FTP Usage:

You can move files to and from Internet URLs (FTP, TFTP and HTTP). For example:

move ftp://ftp.abc.com/f1.txt c:\text\

Files moved to or from FTP servers are normally transferred in binary mode. To perform an ASCII transfer use the /L switch. File descriptions are not copied when moving files to an Internet URL.

Wildcard characters such as [*] and [?] will be treated as wildcards in FTP URLs, but will be treated as normal characters in HTTP URLs.

Note: The /G option (percent moved) may report erratic values during transfer of files larger than 4 Gb (an FTP limitation) and during http downloads.

●NTFS File Streams:

MOVE supports file streams on NTFS drives. You can move an individual stream by specifying the stream name, for example:

move streamfile:s1 file2

If no stream name is specified the entire file is moved, including all streams. However, if you move a file to a drive or device which does not support streams, only the file's primary data is moved; any additional streams are not processed and their data will be lost.

See NTFS File Streams for additional details.

●Advanced Features and Options

If MOVE must physically copy the files and delete the originals (rather than renaming them), then some disk space may be freed on the source drive. The free space may be the result of moving the files to another drive, or of overwriting a larger destination file with a smaller source file. MOVE displays the amount of disk space recovered unless the /Q option is used (see below). It does so by comparing the amount of free disk space before and after the MOVE command is executed. However, this amount may be incorrect if you are using a deletion tracking system which retains deleted files for later recovery, or if another program performs a file operation while the MOVE command is executing.

Use caution with the /A: and /H switches (both of which can allow MOVE to process hidden files) when you are physically moving files, and both the source and destination directories contain file descriptions. If the source file specification matches the description file name (normally DESCRIPT.ION), and you tell MOVE to process hidden files, the DESCRIPT.ION file itself will be moved, overwriting any existing file descriptions in the destination directory. For example, if the C:\DATA directory contains file descriptions, this command would overwrite any existing descriptions in the D:\SAVE directory:

[c:\data] move /h d* d:\save\

(If you remove the hidden attribute from the DESCRIPT.ION file the same caution applies even if you do not use /A: or /H, as DESCRIPT.ION is then treated like any other file.)

Note: The wildcard expansion process will attempt to allow both CMD-style "extension" matching (only one extension, at the end of the word) and the advanced TCC string matching (allowing things like *.*.abc) when an asterisk is encountered in the destination of a MOVE command.

MOVE supports regular expression back references in the target name. If you are using back references, you must also use a regular expression in the source name. The syntax is:

move ::filename ::target

MOVE supports connected web folders. If an HTML file (i.e., with an .htm or .html extension) is copied, MOVE will look for a folder in the same directory with the same name and an extension of ".files". If it is found, the .files directory will be moved to the target directory. You can disable connected web folders by setting the registry key:

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\NoFileFolderConnection=0

Options:

	/=	Display the MOVE command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. See the cautionary note under Advanced Features and Options above before using /A: when both the source and destination directories contain file descriptions. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	If MOVE can't move the file (i.e., access denied), it will schedule it to be moved at the next reboot.

	/C	Move files only if the destination file exists and is older than the source (see also /U). This option is useful for updating the files in one directory from those in another without moving any newly-created files. Do not use /C with @file lists. See @file lists for details.

	/CF	Move files only if the destination file exists and is more than 2 seconds older than the source (see also /U and /UF). Do not use /CF with @file lists. See @file lists for details. (Not available in TCC/LE.)

	/D	Requires that the destination be a directory. If the destination does not exist, MOVE will prompt to see if you want to create it. If the destination exists as a file, MOVE will fail with an "Access denied" error. Use this option to avoid having MOVE accidentally interpret your destination name as a file name when it's really a mistyped directory name.

	/E	Suppress all non-fatal error messages, such as "File Not Found." Fatal error messages, such as "Drive not ready," will still be displayed. This option is most useful in batch files and aliases.

	/G	Displays the percentage of the file moved, the transfer rate (in Kbytes/second), and the estimated time remaining. This is useful when copying large files across networks or via FTP to show whether the move is proceeding. /G will also display the % moved even if Windows is doing a rename (which may be a copy & delete internally).

	/H	Move all files, including hidden and system files. See the cautionary note under Advanced Features and Options above before using /H when both source and destination directories contain file descriptions.

	/I"text"	Select source files by matching text in their descriptions. The text can include wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

	/J	Copy the file in restartable mode. The copy progress is tracked in the destination file in case the move fails. The copy can be restarted by specifying the same source and destination file names.

	/K	If the MOVE is to a different drive, move the source file to the recycle bin instead of deleting it.

	/L	Perform FTP transfers in ASCII mode, instead of the default binary mode.

	/LD	When used with /S, if the source is a symbolic or hard link to a directory, MOVE will create the link in the target directory instead of moving the subdirectory tree.

	/M	Move only files that have the archive bit set. The archive bit will remain set after the MOVE. Do not use /M with @file lists. See @file lists for details.

	/MD	Create the target directory if it doesn't exist. (Note that you *must* either terminate the target directory name with a trailing \ or specify a filename component; otherwise MOVE cannot tell what you want for the directory and what you want for the filename!)

	/N	Do everything except actually move the file(s). This option is most useful for testing what a complex MOVE command will do. /N displays how many files would be moved. /N does not prevent creation of destination subdirectories when it is used with /S.

A /N with one or more of the following arguments has an alternate meaning:

	d	Skip hidden directories (when used with /S)

	e	Don't display errors.

	j	Skip junctions (when used with /S)

	n	Don't update the file descriptions

	s	Don't display the summary.

	t	Don't update the CD / CDD extended directory search database (JPSTREE.IDX).

	/O	Don't move the file(s) unless the target doesn't exist, i.e. do not overwrite an existing target..

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Prompt the user to confirm each move. Your options at the prompt are explained in detail under Prompts.

	/Q	Don't display filenames, the total number of files moved, the percentage moved, or the amount of disk space recovered, if any. When used in combination with the /P option above, it will prompt for filenames but will not display the totals. This option is most often used in batch files. See also /T.

	/R	Prompt for a Y or N response before overwriting an existing destination file.

	/S	Move an entire subdirectory tree to another location. MOVE will attempt to create the destination directories if they don't exist, and will remove empty subdirectories after the move. When /D is used with /S, you will be prompted if the first destination directory does not exist, but subdirectories below that will be created automatically by MOVE. If MOVE /S creates one or more destination directories, they will be added automatically to the JPSTREE.IDX database. If you attempt to use /S to move a subdirectory tree into part of itself, MOVE will detect the resulting infinite loop, display an error message, and exit. You cannot combine multiple /S options (including /S, /Sn, /S+1, or /SX) in a single command, or use any /S option with @file lists. See @file lists for details.

If you specify a number after the /S, MOVE will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, MOVE will not move any files until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not move anything in \a or \a\b. (Not available in TCC/LE.)

MOVE will display the empty source subdirectories it is removing (unless you use the /Q option).

	/SX	Move the subdirectory tree to a single target directory (implies /S). (Not available in TCC/LE.) MOVE will remove empty subdirectories after the move. You cannot combine multiple /S options (including /S, /Sn, /S+1, or /SX) in a single command, or use any /S option with @file lists. For example, to move all of the .EXE files in c:\files and all of its subdirectories to the directory d:\exefiles:

copy /sx c:\files*.exe d:\exefiles\

	/T	Don't display filenames as they are moved, but display the total number of files moved.

	/U	Move each source file only if it is newer than a matching destination file or if a matching destination file does not exist (also see /C). This option is useful for moving new or changed files from one directory to another. Do not use /U with @file lists. See @file lists for details. When used with file systems that have different time resolutions (such as FAT and NTFS), /U will attempt to use the "coarsest" resolution of the two.

	/UF	Move each source file only if it is more than 2 seconds newer than a matching destination file or if a matching destination file does not exist (also see /C and /CF). Do not use /UF with @file lists. See @file lists for details. (Not available in TCC/LE.)

	/V	Verify each disk write by performing a true byte-by-byte comparison between the source and the newly-created target file. This option may significantly increase the time necessary to complete a MOVE command. /V will not work for FTP, TFTP, or HTTP moves.

	/W	If the MOVE is to a different drive, after the move overwrite the source file contents using the DoD 5220.22-M (E) standard for secure deletion. (This overwrites every byte in the file three times with different values). Use this option to completely obliterate a file's contents from your disk. Once you have used this option it is impossible to recover the file even if you are using an undelete utility, because the contents of the file are destroyed before it is deleted.

	/Y	(XP+ Only) Force copy of an encrypted file even when the target will be decrypted (for CMD compatibility).

	/Z	Overwrite read-only destination files. Without this option, MOVE will fail with an "Access denied" error if the destination file has its read-only attribute set. This option allows MOVE to overwrite read-only files without generating any errors.

MSGBOX

	Purpose:	Display a Windows message box

	Format:	MSGBOX [/1["text"] /2["text"] /3["text"] /4["text"] /Dn /H /I /L /M /N /O /Px,y /Q /R /S /Tn /V /W] buttontype ["title"] prompt

	buttontype	One of OK, OKCANCEL, YESNO, YESNOCANCEL, RETRYCANCEL, ABORTRETRYIGNORE, CANCELTRYCONTINUE, or CONTINUEABORT

	title	Text for the title bar of the message box.

	prompt	Text that will appear inside the message box.

	/1 (st button)	/N (no sound)

	/2 (nd button)	/O (topmost window)

	/3 (rd button) 	/P (screen coordinates)

	/4 (th button)	/Q(uestion icon)

	/D(isable temporarily)	/R(ight justify buttons)

	/H(elp button)	/S(top icon)

	/I(nformation icon)	/T(imeout)

	/L(imit width)	/V(ista style)

	/M (system modal)	/W(arning icon)

See also: INKEY, INPUT, QUERYBOX, and TASKDIALOG.

Usage:

MSGBOX can display one of eight kinds of message boxes and wait for the user's response. You can use title and prompt to display any text you wish. TCC will automatically size and center the message box on the screen. The message box has up to three response buttons (plus an optional Help button), depending on its type, as shown below.

	buttontype

	button 1

	button 2

	button 3

	OK

	OK

	

	

	OKCANCEL

	OK

	Cancel

	

	YESNO

	Yes

	No

	

	YESNOCANCEL

	Yes

	No

	Cancel

	RETRYCANCEL

	Retry

	Cancel

	

	ABORTRETRYIGNORE

	Abort

	Retry

	Ignore

	CANCELTRYCONTINUE

	Cancel

	Try Again

	Continue

	CONTINUEABORT

	Continue

	Abort

	

If the standard message box types don't meet your needs, you can create a custom message box with up to four buttons (plus an optional Help button), specifying the text that appears on each button.

The button the user chooses is indicated using the internal variable %_?. Be sure to save the return value in another variable or test it immediately; because the value of %_? changes with every internal command. The following list shows the value returned for each selection:

	response

	%_?

	Yes or OK

	10

	No

	11

	Cancel

	12

	Retry

	13

	Try Again

	14

	Continue

	15

	Ignore

	16

	Abort

	17

	Help

	18

	timeout

	20

	custom button 1

	21

	custom button 2

	22

	custom button 3

	23

	custom button 4

	24

If you define custom buttons, the button type argument will be ignored.

If there is an error in the MSGBOX command itself, %_? will be set as described in its documentation (see _?).

For example, to display a Yes or No message box and take action depending on the result, you could use commands like this:

msgbox yesno "Copy" Copy all files to A:?

if %_? == 10 copy * a:

Since MSGBOX doesn't write to standard output, it disables redirection and piping to allow you to enter the redirection characters (<, >, and |) in your prompt text.

MSGBOX creates a popup dialog box. If you prefer to retrieve input from the command line, see the INKEY and INPUT commands.

Options:

	/1	If there is a text string following the option, set the custom text for the first button. Otherwise, set the first button as the default.

	/2 	If there is a text string following the option, set the custom text for the second button. Otherwise, set the second button as the default.

	/3	If there is a text string following the option, set the custom text for the third button. Otherwise, set the third button as the default.

	/4	If there is a text string following the option, set the custom text for the fourth button. Otherwise, set the fourth button as the default.

	/Dn	Disable the message box buttons for n seconds at startup.

	/H	Display a help button.

	/I	Display an icon consisting of a lower case "i" in a circle in the message box.

	/L	Limit the maximum message box width to no more than 1/3 the screen width (unless the button text requires more). (Not available in TCC/LE.)

	/M	The message box window will be displayed on top of all other windows.

	/N	Don't play the default sound.

	/O	 The message box is created as a topmost window.

	/Px,y	The initial x,y screen coordinates. If you don't use this option, MSGBOX will center its window in the TCC tab window.

	/Q	Display a question mark icon in the message box.

	/R	The buttons will be right-justified (as in XP Explorer).

	/S	Display a stop sign icon in the message box.

	/Tn	MSGBOX will wait a maximum of n seconds for a response (and then close). If the time limit expires, %_? will be set to 20. The time remaining before the window closes will be displayed in the default button.

	/V	Display the message box in the Windows 7 / 8 style (the message background will be the current window color, the buttons will be right-justified and slightly bigger, and the position of icon and message will be adjusted.) This is the default in Vista and later. (Not available in TCC/LE.)

	/W	Display an exclamation point icon in the message box.

	NETMONITOR	Not in LE

	Purpose:	Monitor network connection and disconnection

	Format:	NETMONITOR [/C [name]]

NETMONITOR name CONNECTED | DISCONNECTED n command

	name	Network name

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

/C(lear)

Usage:

The network name can be either LAN (for a local area network), WAN (dialup network), or the name of a wireless network. The network name can include wildcards.

The command line will be parsed and expanded before NETMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. NETMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

If you don't enter any arguments, NETMONITOR will display the networks it is currently monitoring.

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

NETMONITOR creates environment variables when a network is connected that can be queried by command. The variable is deleted after command is executed.

	_netname	The name (SSID) of the network

	_netcount	The number of times the condition has been triggered

Options:

	/C	If name is specified, remove the monitor for that network. Otherwise, remove all network monitors.

ON

	Purpose:	Execute a command in a batch file when a specific condition occurs

	Format:	ON BREAK [command]

ON CLOSE [command]

ON CONDITION [condition command]

ON DBLCLICK [command]

ON ERROR [command]

ON ERRORLEVEL n [command]

ON ERRORMSG [command]

ON LOGOFF [command]

ON LBUTTON [command]

ON MBUTTON [command]

ON RBUTTON [command]

ON RESUME [command]

ON SHUTDOWN [command]

ON SUSPEND [command]

command command to execute when the event occurs

Usage:

ON sets a watch that remains in effect for the duration of the current batch file, or until replaced by another ON command of the same type. Whenever a break or error condition occurs after ON has been executed, the corresponding command is automatically executed. You can have multiple ON commands active at a time, as long as no two are the same type. (For example, you can have an ON BREAK and an ON CLOSE, but not two ON LBUTTON.)

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. ON will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

Activation of ON BREAK

ON BREAK will execute command if the user presses Ctrl-C or Ctrl-Break.

Activation of ON CLOSE

ON CLOSE will execute command when the TCC tab is closed.

Activation of ON CONDITION

ON CONDITION will execute command when condition is true. condition can be any test that is valid in IF. The test will be done after each command is executed. If you are executing a loop (DO or FOR), the test will be done each time through the loop. (Not available in TCC/LE.)

Activation of ON DBLCLICK

ON DBLCLICK will execute command when the left mouse button is double clicked when TCC is the active window. (Note that if you also have an ON LBUTTON command, it will be executed on the first click.)

Activation of ON ERROR and ON ERRORMSG

ON ERROR or ON ERRORMSG will execute command after any critical error, operating system error (such as a disk write error) or internal command error (such as a COPY command that fails to copy any files, or the use of an invalid command option).

ON ERROR executes command immediately after the error occurs, without displaying any TCC error message (Windows errors may still be displayed).

ON ERRORMSG first displays the appropriate error message, then executes command.

If both are specified, ON ERROR will take precedence, and ON ERRORMSG will be ignored.

Activation of ON ERRORLEVEL

ON ERRORLEVEL n will execute command when the internal ERRORLEVEL variable is equal to the integer specified by n. You can also use the IF ERRORLEVEL tests; for example:

ON ERRORLEVEL EQ 37 ...

Activation of ON LBUTTON

ON LBUTTON will execute command when the left mouse button is clicked.

Activation of ON LOGOFF

ON LOGOFF will execute command when the user logs off.

Activation of ON MBUTTON

ON MBUTTON will execute command when the middle mouse button is clicked when TCC is the active window.

Activation of ON RBUTTON

ON RBUTTON will execute command when the right mouse button is clicked when TCC is the active window.

Activation of ON RESUME

ON RESUME will execute command when the system resumes after sleeping or hibernating. (Not available in TCC/LE.)

Activation of ON SHUTDOWN

ON SHUTDOWN will execute command when the system is being shut down.

Activation of ON SUSPEND

ON SUSPEND will execute command when the system is going to sleep or hibernation. In Vista or later, the system will continue suspending after a maximum of 2 seconds. (Not available in TCC/LE.)

Scope

Each time an ON statement is defined, it defines a new command to be executed for that event, and any prior command is discarded.

If you do not specify a command, TCC restores the default handler.

An ON statement only affects the current batch file. When the batch file containing ON is exited for any reason, whether temporarily (e.g., by a CALL to another batch file) or permanently, the TCC default break and error handlers become effective. A CALLed batch file may then use ON to define its own handlers. When control returns to the calling batch file, its break and error handlers that had been in effect at the CALL are reactivated.

Operation

The command can be any command that can be used on a batch file line by itself. Frequently, it is a GOTO or GOSUB command. For example, the following fragment traps any user attempt to end the batch file by pressing Ctrl-C or Ctrl-Break. It scolds the user for trying to end the batch file and then continues:

on break gosub gotabreak

do i = 1 to 1000

echo %i

enddo

quit

:gotabreak

echo Hey! Stop that!!

return

You can use a command group as the command if you want to execute multiple commands, for example:

on break (echo Oops, got a break! & quit)

ON assumes that you want to continue executing the batch file. After the command is executed, control automatically returns to the command in the batch file immediately after the one that was interrupted by the event. To avoid continuing the batch file after the event at the next command perform one of the following in command:

●transfer control with GOTO,
●end the batch file with QUIT or CANCEL
●chain to another batch file (without using CALL).

When handling an error condition with ON ERROR[MSG], you may find it useful to use internal variables, particularly %_? and %_SYSERR, to help determine the cause of the error.

To force TCC to ignore break or error, use the REM command as your command.

Limitations

ON can only be used in batch files.

The ON ERROR[MSG] command will not be invoked if an error occurs while reading or writing redirected input, output, or a pipe.

Caution: If a break or error occurs while the command specified in ON BREAK, ON ERROR, ON ERRORLEVEL, or ON ERRORMSG is executing, the command will be restarted. This means you must use caution either to avoid or to handle any possible errors in the commands invoked by ON, since such errors can cause an infinite loop.

OPTION

	Purpose:	Modify or display TCC configuration

	Formats:	Invoking the OPTION dialog:

OPTION

Check for updates:

OPTION /U

Temporarily changing an option:

OPTION //directive=value ...

Temporarily changing a list of options:

OPTION @filename

Displaying the current value of an option:

OPTION directive

	directive	Name of a directive to set, modify, or display.

	value	A new value for that directive.

	filename	A file containing directives to be immediately activated.

See also: .INI file, SETDOS

Usage:

Invoking the OPTION Dialog

OPTION without parameters displays a property sheet which allows you to modify most of the configuration options stored in the INI file.

When you exit from the property sheet, you can select Save to save your changes in the .INI file for use in the current session and all future sessions, or select Cancel to discard the changes. See Configuration Dialogs for more information.

In some cases, changes you make in the Startup section of the OPTION dialogs will only take effect when you restart TCC. Other changes take effect as soon as you exit the dialogs with Apply or OK. However, not all option changes will appear immediately, even if they have taken effect. For example, some color changes will only appear after a CLS command.

OPTION handles most standard directives. The Key Mapping Directives and Advanced Directives cannot be modified with the OPTION dialogs. These settings must be manually edited .INI file.

OPTION does not preserve inline comments when saving modified settings in the .INI file. To be sure .INI file comments are preserved, put them on separate lines in the file.

Check for Updates

The /U option will invoke the updater to check http://jpsoft.com for updates to Take Command / TCC.

Setting Individual Options Temporarily

If you follow the OPTION command with one or more sequences of a double slash mark //, each followed by a new directive=value, the new settings will take effect immediately, and will be in effect for the current session only. This example turns off batch file echo and changes the input colors to bright cyan on black:

 option //BatchEcho=No //InputColors=bri cya on bla

Option values may contain white space. However, you cannot enter an option value that contains the // string. If you do not specify a value, OPTION will reset the value for that directive to the default.

This feature is most useful for testing settings quickly, and in aliases or batch files that depend on certain options being in effect.

Changes made with // are temporary. They will not be saved in the .INI file.

Setting Many Options Temporarily

The command OPTION @filename allows you to temporarily modify multiple directive settings. The file specified by filename must be in the same format as an .INI file. Changes made with @filename are temporary. They will not be saved in the .INI file.

Displaying an option value

Specifying an option name alone will display the value of that option; e.g.:

option localHistory

localHistory=Yes

See also: the @OPTION function.

	OSD	Not in LE

	Purpose:	Write floating text to the display

	Format:	OSD [/ID=n /C[=n] /Font=n /ID=n /N /POS=top,left /RGB=r,g,b /TIME=n /TOP /BOTTOM /LEFT /RIGHT /HCENTER /VCENTER /V] text

	/ID=n	Open the OSD window n (0-9). /ID is optional; it will default to 0. If /ID is specified, it must be the first argument.

	/C=n	Close the specified OSD display. /C=n must be the only argument. /C will default to OSD window 0.

	/Font=n	The font height (default 18)

	/N	Don't wait for timeout before returning to the prompt

	/POS=top,left	Screen coordinates for the top left corner of the text (default 10,10)

	/RGB=r,g,b	Text color in RGB format (default 0,255,0)

	/TIME=n	Time in seconds to display the text (default 10)

	/TOP	Position the text at the top of the display

	/BOTTOM	Position the text at the bottom of the display

	/LEFT	Position the text at the left of the display

	/RIGHT	Position the text at the right of the display

	/HCENTER	Center the text horizontally

	/VCENTER	Center the text vertically

	/V	Display the text vertically

	text	The text to display

Usage:

OSD displays text on the desktop without a surrounding window, like TV or monitor prompts.

If you want to display multiple lines, insert the LF escape sequence (^N) in your text. For example:

osd /pos=40,50 This is text with^Nmultiple lines.

If you specify the /V (vertical display) option, you cannot also display multiple lines of text.

You can combine the window positioning options. For example:

osd /hcenter /vcenter /n Your text here

OSD will strip leading whitespace in text.

You can control up to 10 simultaneous OSD windows with the /ID=n and /C=n options. If you don't specify /ID, OSD will default to window 0.

PATH

	Purpose:	Display or alter the list of directories that TCC will search for executable files, batch files, and files with executable extensions that are not in the current directory

	Format:	PATH [directory [;directory...]]

directory The full name of a directory to include in the path setting.

See also: ESET and SET (the PATH command is syntactically equivalent to SET PATH).

Usage:

When TCC is asked to execute an external command (an .EXE, .BTM, .BAT, or .CMD file, or an executable extension), it first looks for the file in the current directory. If it fails to find an executable file in the current directory, it will search each of the directories specified in the PATH setting.

TCC first searches the current directory before any directories listed in your search path. For example, after the following PATH command, TCC will search for an executable file in four directories: the current directory, the root directory on drive C, then the BIN subdirectory on C, and then the UTIL subdirectory on C:

path c:\;c:\bin;c:\util

The list of directories to search is stored as an environment string, and can also be set or viewed with SET, and edited with ESET.

The PATHEXT environment variable, and the related PathExt configuration option, can be used to select the extensions to look for when searching the PATH for an executable file.

If you enter PATH with no parameters, the current path is displayed:

[c:\] path

PATH=C:\;C:\BIN;C:\UTIL

Entering PATH and a semicolon clears the search path so that only the current directory is searched for executable files. Some applications also use the PATH to search for their files.

If you include an explicit file extension on a command name (for example, WP.EXE), the search will find files with that name and extension in the current directory and every directory in the path. It will not locate other executable files with the same base name (i.e., WP.CMD).

If you have an entry in the path which consists of a single period [.], the current directory will not be searched first, but instead will be searched when TCC reaches the "." in the path. This allows you to delay the search of the current directory for executable files and files with executable extensions. In rare cases, this feature may not be compatible with applications which use the path to find their files; if you experience a problem, you will have to remove the "." from the path while using any such application.

If you specify an invalid directory in the path, it will be skipped and the search will continue with the next directory in the path.

PAUSE

	Purpose:	Suspend batch file or alias execution

	Format:	PAUSE [text]

text The message to be displayed as a user prompt.

Usage:

A PAUSE command will suspend execution of a batch file or alias, giving you the opportunity to change disks, turn on the printer, etc.

PAUSE waits for any key to be pressed and then continues execution. You can specify the text that PAUSE displays while it waits for a keystroke, or let it use the default message:

Press any key when ready...

For example, the following batch file fragment prompts the user before erasing files:

pause Press Ctrl-C to abort, any other key to erase all .LST files

erase *.lst

If you press Ctrl-C or Ctrl-Break while PAUSE is waiting for a key, execution of an alias will be terminated, and execution of a batch file will be suspended while you are asked whether to cancel the batch job. In a batch file, you can handle Ctrl-C and Ctrl-Break yourself with the ON BREAK command.

PDIR

	Purpose:	Display information about files and subdirectories in user-definable fields. It is a "programmable DIR" command.

	Format:	PDIR [ranges] [/A:[attrlist] /B /D /H /I"text" /K /M /N[dej] /O:[order] /P /S[[+]n] /T:t /(...)] [file...]

	attrlist	Selection attributes (see attribute switches for details)

	order	Hierarchical list of sort keys

	ranges	One or more date, description, exclusion, size, time ranges

	file	One or more files to list

	t	Timestamp type selection code

	/A:

	Attribute select

	/N

	Disable options

	/B

	Bare filenames

	/O

	Order

	/D

	colorize

	/P

	Page pause

	/H

	do not Hide . and ..

	/S

	Subdirectories

	/I"text"

	description range

	/T[:t]

	Timestamp type

	/K

	show header

	/(...)

	output fields and format

	/M

	show footer

	

	

See also: DIR, ATTRIB, DESCRIBE, and SELECT.

File Selection

Supports attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Internet

Can be used with FTP/HTTP Servers.

Usage

PDIR is an extremely flexible command allowing you to display information about files and directories from one or more local or remote volume or directories in a wide array of user-defined formats. For a simpler version, see the DIR command.

PDIR and DIR are related, but they do not have identical switches and they are not intended to produce identical output. PDIR is primarily intended to produce output that will be subsequently parsed by another program (or batch file), or (more rarely) for a special-purpose directory display. Its options and output are geared towards those applications.

The various PDIR displays are controlled through options or switches. The best way to learn how to use the many options available with the PDIR command is to experiment. You will soon know which options you want to use regularly. You can then select those options permanently by using the ALIAS command.

The /(...) option specifies which fields you want to display and how to format them. (You can have multiple /(...) options on a line.) The syntax is:

	a	Attributes

	c	Compression: Display the compression percentage on NTFS drives with compression enabled.

	d[...] 	Date (you must specify at least one subfield, otherwise the field remains blank)

	d	day (2 digits, leading zero)

	m	month (2 digits, leading zero)

	y	year (4 digits)

	f[...]	File or Directory name (case sensitive)

	P	SFN path

	p	LFN path

	N	SFN filename

	n	LFN filename (default)

	q	Enclose the filename in double quotes if it contains whitespace or special characters (not available in TCC/LE)

	i	Description

	m	MD5 hash value (see the @MD5 function)

	q	File or directory owner (NTFS only)

	r	CRC32 hash value (see the @CRC32 function)

	s	stream names (NTFS only)

	sp	path and stream names as pathname+filename+streamname (NTFS only)

	t[...]	Time (you must specify at least one subfield, otherwise the field remains blank)

	h	hours (2 digits, leading zero)

	m	minutes (2 digits, leading zero)

	s	seconds (2 digits, leading zero)

	d	milliseconds (decimal separator and 3 digits)

		

	z[...]	Size

	a	Allocated size (this will usually be more than the physical size unless the file is compressed.) Note that you cannot get the allocated size on FTP servers or network sharenames.

	c	The size will be formatted using the thousands separator (default is a comma)

	k|K|m|M|g|G|t|T	(case sensitive) format as kilobytes, megabytes, gigabytes, or terabytes, as used in variable functions (see Memory Size / Disk Space / File Size Units and Report Format). Note that the size will be truncated, not rounded.

@function[*]

		call the specified variable function (internal or user-defined). To specify the current filename, use * as the parameter. For example, pdir /(f @md5[*]) displays the filename and the MD5 hash. Note that the % prefix of the function name is NOT used with the symbolic * parameter. If the parameter of the function is not the symbolic * or it is an "inner" function the % prefix must be doubled, e.g., @function1[%%@function2[*]]

	"..."	Literal string (in quotes). Characters are displayed as is, except that escape characters are converted.

You can also specify a format, independently for each field, by prefixing the field character with its format specification:

	

		[-]i.a

where

- specifies left justification instead of the default, right justification;

i specifies the minimum field width, and

a specifies the maximum field width.

If the first digit of i is 0, the field will be padded with zeros instead of spaces. Some fields cannot be reduced below a minimum width (for example, the z (size) field is a minimum of 15 digits).

If a PDIR line is empty (for example, if you have an embedded @IF), it will not be displayed.

If you want to append fields with no intervening whitespace, or with a custom delimiter character, you can use double quotes to specify arguments. For example, to display the date and time with no space between them:

pdir /(dymd""thms) *

Or to display the date and time separated by a +:

pdir /(dymd"+"thms) *

PDIR sets three internal variables:

	%_pdir_dirs	The number of directories created

	%_pdir_files	The number of files moved

	%_pdir_errors	The number of errors

Example

To display the CRC, the full LFN and the owner of each file:

pdir /(r fpn q) *

Options

Options on the command line apply only to the filenames which follow the option, and options at the end of the line apply to the preceding filename only. This allows you to specify different options for different groups of files, yet retains compatibility with the traditional DIR command when a single filename is specified.

Most options are used to select the desired files/directories. (This is in contrast to the DIR command.) The special option /(...) is used to specify which characteristics of the selected files or directories should be displayed in which sequence and format.

	/A:...	Display only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	Suppress the header and summary lines, and display file or subdirectory names only, in a single column. This option is most useful when you want to redirect a list of names to a file or another program. If you use /B with /S, PDIR will show the full path of each file (the same display as /F) instead of simply its name and extension. If you use /B with /X on an LFN drive, PDIR will display the short name of each file instead of the long name. /B also sets /H.

/B1 will display relative paths when used with /S. (Normally, /B shows the full pathname for the file.)

	/D	Colorize the directory listing. See DIR for more information on directory colorization.

	/H	Show the "." and ".." directory names (normally suppressed).

	/I"text"	Select filenames by matching text in their descriptions. See Description Ranges for details.

	/K	Show the header (disk and directory name) display.

	/M	Show the footer (file and byte count totals) display.

	/N	Turn off the specified options.

	d	Skip hidden directories (when used with /S)

	e	Don't display errors

	j	Skip junctions (when used with /S)

	/O...	The sorting order is applied to the listings of each subdirectory separately. Any combination of the sorting options may be used. If multiple options are specified, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on.

	n	Sort by filename and extension (default). If e is also specified, sort by name only.

	-	Reverse the sort order for the next option

	a	Sort names and extensions in standard ASCII order, rather than sorting numerically when digits are included in the name or extension.

	c	Sort by compression ratio (the least compressed file in the list will be displayed first).

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	i	Sort by file description (ignored if /C or /O:c is also used).

	o	Sort by owner

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

	/S	Display file information from the current directory and all of its accessible subdirectories.

If you specify a number after the /S, PDIR will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, PDIR will not display any filenames until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not display the contents of \a or \a\b. (Not available in TCC/LE.)

	/T:type	 Specifies which single one of the date and time fields below, available on a drive which supports long filenames, should be displayed and used for sorting:

	a	Last access date and time (NTFS volumes).

	c	Creation date and time.

	w	Last write date and time (default).

If /T is not specified, the default is /T:w.

If you append a u after the field, DIR will display the file time in UTC.

Note: If more than one time type is specified, the first one specified is used, and all subsequent ones ignored.

	/(...)	Use this option to define the various fields and display formats you wish to use for each selected entry. The fields may be in any order, and may be repeated. If this option is not used, the output format is identical to that of the DIR command. If you specify multiple /(...) options, PDIR will insert a space in the output between each one.

	PLAYAVI	Not in LE

	Purpose:	Play Windows .AVI (video clip) files

	Format:	PLAYAVI [/A /C /S /Vn] filename

	filename	The file to play

	/A(synchronous)

	/S(ynchronous)

	/C(enter)

	/V(olume)

Usage:

PLAYAVI "plays" an .AVI or Windows video clip file.

Note: This command relies on the capabilities of your Windows configurations, including access to the proper codec. See your Windows documentation for details.

By default, PLAYAVI operates in synchronous mode, which means TCC waits for the .AVI file to complete and its window to close before continuing with the next command in a batch file or alias, or prompting you for a new command. You can change this default behavior with the /A option.

Options:

	/=	Display the PLAYAVI command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A	Plays the .AVI file in asynchronous mode. Control returns to the TCC prompt immediately for a new command or to execute the next command in the current batch file or alias.

	/C	Displays the AVI viewer in the middle of the screen. Without this option, the viewer appears in the upper-left corner of the screen.

	/S	Plays the .AVI file in synchronous mode (this is the default). TCC pauses until the file has finished playing and its window closes.

	/V	Sets the volume level. The range is 0 (silent) to 100.

	PLAYSOUND	Not in LE

	Purpose:	Play MP3, .WAV, Midi, and other sound files

	Format:	PLAYSOUND [/A /M /S /U /Vn] filename

	filename	The file to play

	/A(synchronous)	/U(n mute)

	/M(ute)	/V(volume)

/S(ynchronous)

Usage:

PLAYSOUND "plays" MP3, .WAV, Midi and other types of sound files for which Windows has an appropriate codec installed. It determines the file type automatically from its contents, not its file extension, so it can play sound files which have an unknown file extension. If you don't specify any arguments, PLAYSOUND will display its command dialog.

By default, PLAYSOUND operates in synchronous mode, which means TCC waits for the sound file to complete and its window to close before continuing with the next command in a batch file or alias, or prompting you for a new command. You can change this default behavior with the /A switch, described below.

You can cancel the playing of a synchronous sound file by pressing Ctrl-Break while it is playing.

Options:

	/=	Display the PLAYSOUND command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A	Plays the sound file in asynchronous mode. Control returns to the TCC prompt immediately for a new command or to execute the next command in the current batch file or alias.

	/M	Mute the volume.

	/S	Plays the sound file in synchronous mode (this is the default). TCC pauses until the file has finished playing and its window closes.

	/U	Unmute (restore the previous volume level).

	/V	Sets the volume level. The range is 0 (silent) to 100.

PLUGIN

	Purpose:	Load, unload, or display information about plugins

	Format:	PLUGIN [/B /C /F /I /K /L /P /U /V] plugin ...

	/B (full pathname)	/L(oad)

	/C(ommands)	/P(ause)

	/F(unctions)	/U(nload)

	/I(nfo)	/V(ariables)

/K(eystrokes)

Usage:

Plugins allow you to write your own internal variables, variable functions, and internal commands, put them in a DLL, and have TCC load them at startup. Plugin names will override existing internal names, so you can extend and/or replace internal variables and commands. When TCC starts, it will automatically load any plugins in the default directory (the subdirectory PLUGINS\ in the TCC installation directory). The plugins will be loaded before the startup file (TCSTART) are executed.

You can also write keystroke plugins that will be called for every keystroke entered at the command line. A keystroke plugin can perform actions when a specific key is entered, or even change the key before passing it back to the command processor.

If no options are specified, PLUGIN will display the currently loaded plugins and their internal variables, variable functions, and commands.

See the Plugin SDK for more information on developing plugins.

Options:

	/=	Display the PLUGIN command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/B	Display the full pathnames of the plugins.

	/C	Only display internal commands in the plugins.

	/F	Only display variable functions in the plugins.

	/I	Display information about the specified plugin, including the name, author, author's email and web addresses, description, function list, version and build numbers. The /I option supports wildcards.

	/K	Only display keystroke plugins.

	/L	Loads the specified plugins. If the filename is *, load all plugins from the default directory (the subdirectory PLUGINS\ in the TCC installation directory).

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

	/U	Unloads the specified plugin. If the filename is *, unloads all plugins.

	/V	Only display internal variables in the plugins.

POPD

	Purpose:	Return to the disk drive and directory at the top of the directory stack

	Format:	POPD [/X * n]

n The number of directories to pop

/X (exclude)

See also: DIRS, PUSHD, @DIRSTACK and Directory Navigation.

Usage:

Each time you use the PUSHD command, it saves the current disk drive and directory on the internal directory stack. POPD restores the most recently saved drive and directory and removes that entry from the stack. You can use these commands together to change directories, perform some work, and return to the starting drive and directory.

Directory changes made with POPD are recorded in the directory history list and can be displayed in the directory history window. Read the section on Directory Navigation for complete details on this and other directory navigation features.

This example saves and changes the current disk drive and directory with PUSHD, and then restores it. The current directory is shown in the prompt:

[c:\] pushd d:\database\test

[d:\database\test] pushd c:\wordp\memos

[c:\wordp\memos] pushd a:\123

[a:\123] popd

[c:\wordp\memos] popd

[d:\database\test] popd

[c:\]

You can use the DIRS command to see the complete list of saved drives and directories (the directory stack).

The POPD command followed by an asterisk [*] clears the directory stack without changing the current drive and directory.

If the directory on the top of the stack is not on the current drive, POPD will switch to the drive and directory on the top of the stack without changing the default directory on the current drive.

Options:

	/X	Don't save the current directory to the Directory History list.

	POSTMSG	Not in LE

	Purpose:	Post a message to a window

	Format:	POSTMSG "title" msg wparam lparam

	title	The window title

	msg	The message to send

	wParam	wParam integer

	lParam	lParam integer value

Usage:

POSTMSG allows you to send a Windows message to any window with a caption.

The title may contain wildcards, and POSTMSG will send the message to the first window with a matching title.

See the Windows SDK documentation for a list of possible messages and their parameters.

	PRINT	Not in LE

	Purpose:	Print the specified file(s) using the application associated with each file's extension

	Format:	PRINT [/A printer /D printer] filename ...

	/A(dd) printer

	/D(elete) printer

Usage:

Except for plain text files, Windows files cannot be printed without sending them to an associated application for interpretation and formatting. Using the extension for each file you want to print, PRINT determines if a Print action has been defined for that file type. If so, it executes the Print action and sends the file to the application for processing.

For example, if you use the command

print myletter.doc

PRINT looks up the Print command for .DOC files in the registry and, on most computers, will find that it is associated either with WordPad or Word. It will execute the associated program and send it the file along with the necessary command to print the file and then quit.

If PRINT cannot find a Print command for a file, it displays an error message. If there are additional files in the list you gave it to print, it will go on to the next file in the list.

PRINT accepts piped & redirected input to send to the printer. If there is no filename, PRINT will read from STDIN, create a temporary file, and send it to the printer.

PRINT depends on proper Windows File Associations settings in the registry and proper behavior of the program associated with each file type in order to print the file. If the registry entries or the application associated with a particular file type are not configured correctly, PRINT may not work as expected.

Options:

	/A	Add a connection for the specified printer.

	/D	Remove the connection to the specified printer.

	PRIORITY	Not in LE

	Purpose:	Display or set process priority, or suspend or resume a process

	Format:	PRIORITY [/Q /R /S PID | "title" ABOVE | BELOW | NORMAL | HIGH | IDLE | REALTIME]

	ABOVE	Above normal priority

	BELOW	Below normal priority

	NORMAL	Normal (default) priority

	HIGH	High priority

	IDLE	Idle priority (only executes when no higher priority task is scheduled)

	REALTIME	Realtime priority

	/Q(uiet)	/S(uspend)

/R(esume)

Usage:

You can specify the process either by the PID or by the window title. If you don't specify either a PID or title, PRIORITY will adjust the priority of the current TCC process.

If you do not enter any arguments, PRIORITY displays all of the active processes, their current priority, the module names, and the window titles (if any).

Options:

	/Q	Don't display any suspend / resume messages.

	/R	Resume the process

	/S	Suspend the process

	PROCESSMONITOR	Not in LE

	Purpose:	Monitor process start or end

	Format:	PROCESSMONITOR [/C [name]]

PROCESSMONITOR name STARTED | ENDED | HUNG n command

	name	Full pathname of the process to monitor

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

/C(lear)

Usage:

The process name can include wildcards. If you do not include a path for name, PROCESSMONITOR will only compare the filename part of the process names.

The command line will be parsed and expanded before PROCESSMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. PROCESSMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

HUNG will test the process's main window to see if it is still responding to messages. If the process doesn't respond or call GetMessage within 5 seconds, the condition will be triggered. (This is normally only useful for GUI apps.)

If you don't enter any arguments, PROCESSMONITOR will display the processes it is currently monitoring.

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

PROCESSMONITOR creates three environment variables when a process is STARTED that can be queried by command. The variables are deleted after command is executed.

	_processname	The name of the process that was started

	_processpid	The PID of the process

	_processcount	The number of times the command has been triggered

For example, if you want to be alerted whenever "myapp" exits:

processmonitor myapp ended forever sendmail bob@abc.com Myapp Myapp just shut down!

Options:

	/C	If name is specified, remove the monitor for that process name. Otherwise, remove all active process monitors.

PROMPT

	Purpose:	Change the command line prompt

	Format:	PROMPT [text]

text Text to be used as the new command line prompt.

See also: ESET and SET (the PROMPT command is syntactically equivalent to SET PROMPT).

Usage:

You can change and customize the command line prompt at any time. The prompt can include normal text and system information such as the current drive and directory, the time and date, and the amount of memory available. You can create an informal "Hello, Bob!" prompt or a complex prompt full of impressive information.

The prompt text can contain special commands in the form $?, where ? is one of the characters listed below. Unless otherwise specified, those meta characters are case-independent.

	a	The ampersand character[&].

	b	The vertical bar character [|].

	c	The open parenthesis [(].

	d	Current date, in the format: Fri 01-01-10 (the month, day, and year are formatted according to your current country settings)

	D	Current date, in the format: Fri Aug 19, 2011

	e	The ASCII ESC character (decimal 27), necessary for ANSI commands.

	f	The close parenthesis [)].

	g	The > character.

	h	Backspace over the previous character.

	j	Current date in ISO 8601 format (yyyy-mm-dd).

	l	The < character.

	m	Time in hours and minutes using 24-hour format.

	M	Time in hours and minutes using the default country format.

	n	Current drive letter.

	p	Current drive and directory (lower case).

	P	Current drive and directory (upper case on drives which do not support long filenames; directory names shown in mixed case as stored on the disk on LFN drives).

	q	The = character.

	r	The numeric exit code of the last external command.

	s	The space character.

	t	Current 24-hour time, in the format hh:mm:ss.

	T	Current 12-hour time, in the format hh:mm:ss[a|p).

	u	The current user.

	v	Windows version number, in the format 6.0.

	w	Current directory, in a shortened format. If the current directory is the root or a first-level subdirectory, it is displayed as-is. If it is second level or deeper, the path is truncated (i.e., "c:\...\config"). (This does not work with UNC names.) $W and $w behave like $P and $p for displaying upper/lower case.

	xd:	Current directory on drive d: in lower case, including the drive letter (uses the actual case of the directory name as stored on the disk for LFN drives.)

	Xd:	Current directory on drive d: in upper case, including the drive letter.

	z	Current shell nesting level.

	+	Display one + character for each directory on the PUSHD directory stack.

	$	The $ character.

	_	CR/LF (go to beginning of a new line).

	~	(Substitute for P). If the environment variable HOME (or HOMEDRIVE + HOMEPATH) exists, TCC will compare the variable to the beginning of the current path. If they match, TCC will substitute ~ for the variable part. (If they don't match, ~ is treated like a P.)

For example, to set the prompt to the current date and time, with a ">" at the end:

[c:\] prompt $d $t $g

Thu Aug 18, 2011 10:29:19 >

To use the ~ (home) metacharacter:

[c:\] set home=c:\users\myself

[c:\] set prompt=[$~]

[c:\] cd \users\myself\downloads

[~\downloads]

The TCC prompt can be set in TCSTART or in any batch file that runs when TCC starts.

If you enter PROMPT with no parameters, the prompt will be reset to its default value.

You can include literal text and special characters as well as the value of any environment variable, internal variable, or variable function in a prompt. For example, if you want to include the size of the largest free memory block in the command prompt, plus the current drive and directory, you could use this command:

[c:\] prompt [(%%@dosmem[K]K) $p]

[(31043K) c:\data]

Notice that the @DOSMEM function is shown with two leading percent signs [%]. If you used only one percent sign, the @DOSMEM function would be expanded at once when the PROMPT command was executed, instead of every time the prompt is displayed. As a result, the amount of memory would never change from the value it had when you entered the PROMPT command. You can also use back quotes to delay expanding the variable function until the prompt is displayed:

prompt `[(%@dosmem[K]K) $p]`

You can use this feature along with the @EXEC variable function to create a complex prompt which not only displays information but executes commands. For example, to execute an alias which checks battery status each time the prompt is displayed (enter the alias on one line):

alias cbatt `if %_apmlife lt 30 beep 440 4 880 4 440 4 880 4`

prompt `%@exec[@cbatt]pg`

You can include ANSI escape sequences in the PROMPT by using the built-in ANSI X3.64 support in TCC. This example uses ANSI X3.64 sequences to set a prompt that displays the shell level, date, time and path in color on the top line of the screen (enter the command as one line):

prompt $e[s$e[1;1f$e[41;1;37m$e[K[$z] $d

Time: thhh Path: pe[u$e[0;32m$n$g

PUSHD

	Purpose:	Save the current disk drive and directory, optionally changing to a new drive and directory

	Format:	PUSHD [/X path]

	path	The name of the new default drive and directory.

/X (exclude)

See also: DIRS, POPD, @DIRSTACK and Directory Navigation.

Usage:

PUSHD saves the current drive and directory to a "last in, first out" directory stack. The POPD command returns to the last drive and directory that was saved by PUSHD. You can use these commands together to change directories, perform some work, and return to the starting drive and directory. The DIRS command displays the contents of the directory stack.

To save the current drive and directory, without changing directories, use the PUSHD command by itself, with no path.

If a path is specified as part of the PUSHD command, the current drive and directory are saved and PUSHD changes to the specified drive and directory. If the path includes a drive letter, PUSHD changes to the specified directory on the new drive without changing the current directory on the original drive.

This example saves the current directory and changes to C:\WORDP\MEMOS, then returns to the original directory:

[c:\] pushd \wordp\memos

[c:\wordp\memos] popd

[c:\]

When you use PUSHD to change to a directory on an LFN drive, you must quote the path name if it contains white space or special characters.

PUSHD can also change to a network drive and directory specified with a UNC name (see File Systems for details).

If PUSHD cannot change to the directory you have specified it will attempt to search the CDPATH and the extended directory search database. You can also use wildcards in the path to force an extended directory search. Read the section on Directory Navigation for complete details on these and other directory navigation features.

Directory changes made with PUSHD are also recorded in the directory history list and can be displayed in the directory history window.

The directory stack can hold up to 2047 characters, or about 100 typical entries (depending on the length of the names). If you exceed this limit, the oldest entry is removed before adding a new entry.

Options:

	/X	Don't save the current directory to the Directory History list.

QUERYBOX

	Purpose:	Pops up a dialog box to get an input string from the user and save it in an environment variable

	Format:	QUERYBOX [/CUE="text" /D /E /Ln /P /POS=top,left /Tn] ["title"] prompt %%varname

	title	Text for the title bar of the dialog box.

	prompt	Text that will appear inside the dialog box.

	varname	Variable name where the input will be saved.

	/CUE	Cue text to display in the input box

	/D(igits only)

	/P(assword)

	/E(dit existing value)

	/POS (ition)

	/L (maximum Length)

	/T(imeout)

See also: INKEY, INPUT, and MSGBOX.

Usage:

QUERYBOX displays a dialog box with a prompt, an optional title, and a string input field. Then it waits for your entry, and places any characters you type into an environment variable. QUERYBOX is normally used in batch files and aliases to get text input.

QUERYBOX is similar to INPUT, except it appears as a popup dialog box. If you prefer to work within the command line window, see the INKEY and INPUT commands.

The /CUE option displays the cue text in light gray in the input box (it disappears as soon as you enter a character).

Standard command line editing keys may be used to edit the input string as it is entered. All characters entered up to, but not including, the carriage return are stored in the variable.

For example, to prompt for a string and store it in the variable NAME:

querybox "File Name" Enter a name: %%name

If you press Ctrl-C or Ctrl-Break while QUERYBOX is waiting for input, execution of an alias will be terminated, and execution of a batch file will be suspended while you are asked whether to cancel the batch job. A batch file can handle Ctrl-C and Ctrl-Break itself with ON BREAK.

QUERYBOX returns a value of zero in the internal variable %_? after a successful operation, and a non-zero value otherwise (a timeout returns 20, a cancel returns 2). Be sure to save the return value in another variable or test it immediately; because the value of %_? changes with every internal command.

Options:

	/D	Only accepts numeric values.

	/E	Allows you to edit an existing value. If there is no existing value for varname, QUERYBOX allows you to enter a new value.

	/Ln 	Sets the maximum number of characters which QUERYBOX will accept to n.

	/P	Tells QUERYBOX to echo asterisks, instead of the characters you type.

	/POS	Sets the dialog position. (If you don't specify a position, QUERYBOX will center the dialog in the TCC window.

	/Tn	Wait for a maximum of n seconds for a response.

QUIT

	Purpose:	Terminate the current batch file

	Format:	QUIT [value]

value The numeric exit code to return to TCC or to the previous batch file.

See also: CANCEL and EXIT.

Usage:

QUIT provides a simple way to exit a batch file before reaching the end of the file. If you QUIT a batch file called from another batch file, you will be returned to the previous file at the line following the original CALL.

This example batch file fragment checks to see if the user entered "quit" and exits if true.

input Enter your choice : %%option

if "%option" == "quit" quit

QUIT only ends the current batch file. To end all batch file processing, use the CANCEL command.

If you specify a value, QUIT will set the ERRORLEVEL or exit code to that value. For information on exit codes see the IF command, and the %? variable. Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

You can also use QUIT to terminate an alias. If you QUIT an alias while inside a batch file, QUIT will end both the alias and the batch file and return you to the command prompt or to the calling batch file.

RD / RMDIR

	Purpose:	Remove one or more subdirectories

	Format:	RD [/I"text" /K /N[et] /Q /R /S] [@file] path...

or

RMDIR [/I"text" /K /N[et] /Q /R /S] [@file] path...

	path	The name of one or more subdirectories to remove.

	@file	A text file containing the names of the directories to remove, one per line (see @file lists for details).

	/I (match descriptions)

	/Q(uiet)

	/K (no Recycle Bin)

	/R(ecycle bin)

	/N (disable options)

	/S(ubdirectories)

See also: MD.

File Selection

Supports command dialog, extended wildcards, ranges, multiple file names, and include lists. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Internet: Can be used with FTP Servers.

Usage:

RD and RMDIR are synonyms. You can use either one. If you don't specify any arguments, RD will display its command dialog.

RD removes directories from the directory tree. For example, to remove the subdirectory MEMOS from the subdirectory WP:

rd \wp\memos

Before using RD, you must delete all files and subdirectories (and their files) in the path you want to remove. Remember to remove hidden and read-only files as well as normal files (you can use DEL /Z to delete hidden and read-only files).

You can use wildcards in the path.

When removing a directory on an LFN drive, you must quote any path which contains white space or special characters.

If RD deletes one or more directories, they will be deleted from the extended directory search database.

You cannot remove the root directory, the current directory (.), any directory above the current directory in the directory tree, or any directory in use by another process. RD will delete hidden directories, for compatibility with CMD.

You can remove directories on FTP servers. For example:

rd ftp://ftp.abc.com/data

RD sets two internal variables:

	%_rd_dirs	The number of directories deleted

	%_rd_errors	The number of errors

(Note that if you do an RD /S, the actual deletions are done by DEL, so check the DEL variables.)

Options:

	/=	Display the RD command dialog to help you set the directory and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/I"text"	Select directories by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

	/K	When used with the /S option, this will physically delete files instead of sending them to the Windows Recycle Bin, even if you have the Delete to Recycle Bin configuration option set.

	/N	This option takes two possible arguments:

	e	Don't display errors.

	t	Don't update the CD / CDD extended directory search database (JPSTREE.IDX).

	/Q	When used with the /S option, this will suppress the prompt before deleting the directories.

	/R	When used with the /S option, this will send the deleted files to the Windows Recycle Bin.

	/S	This option is included only for compatibility with CMD, and should be used with EXTREME CARE!! It deletes all files (including hidden and system files) in the named directory and all of its subdirectories, then removes all subdirectories. It can potentially erase all files on a drive with a single command. You cannot use wildcards with the /S option.

Note: Do not use /S with @file lists.

REBOOT

	Purpose:	Reboot the computer, log off Windows, or shut down

	Format:	REBOOT [/H /K /L /M[0|1] /P /R /S /V /W]

	/H(ibernate

	/R(eboot)

	/K (lock)

	/S(hutdown)

	/L(ogoff)

	/V(erify)

	/M(onitor)

	/W (standby)

	/P(ower off)

	

Usage:

REBOOT will log off or shut down the operating system, or completely restart your computer. It normally performs a warm reboot, or a shutdown and restart under Windows.

REBOOT defaults to performing a warm boot, with no prompting. The following example prompts you to verify the reboot, then does a warm boot:

reboot /v

TCC issues the standard commands to shut down other applications and the Windows before rebooting. Windows may prompt you for additional actions, or even ignore the request altogether depending on which processes are running.

Options:

	/H	Save everything in memory to your hard disk, and shutdown to save power. The desktop is restored to its original state when the computer is restarted.

	/K	Lock the workstation. To unlock, the user must log in.

	/L	Log off Windows, but do not reboot. This option is equivalent to selecting Shutdown from the Start menu, then selecting "Close all programs and log on as a different user" in the shutdown dialog.

	/M	Switch the display to low power (M0) or shut off the display (M1 -- will not work on all systems). This option will not reboot the computer unless you also include /R.

	/P	Log off Windows and turn off the computer.

	/R	Reboots the system. This is the default, but is required if you specify /M0 or /M1 and also want to reboot.

	/S	Shut down the system, but do not reboot. This is equivalent to selecting Shutdown from the Start menu, then selecting "Shut down the computer" in the shutdown dialog.

	/V	Prompt for confirmation (Y or N) before acting.

	/W	Save power by turning off the monitor and hard disks. When the computer comes out of standby, the desktop is restored to its original state.

	RECYCLE	Not in LE

	Purpose:	Delete files in the recycle bin or display the recycle bin status

	Format:	RECYCLE [/D /E /Q /P] [drives ...]

	drives	Local fixed and removable (non CD-ROM / DVD) drives

	/D(elete)	/P(rompt)

	/E (no error messages)	/Q(uiet)

Usage:

If you don't specify any drives, RECYCLE will display the recycle bin status, or if /D is specified delete everything in the recycle bin for all local drives.

RECYCLE will empty the recycle bin for an entire drive; there is no way to specify individual files.

Options:

	/D	Empty the recycle bin for the specified drive(s).

	/E	Suppress all non-fatal error messages, such as "File Not Found." Fatal error messages, such as "Drive not ready," will still be displayed. This option is most useful in batch files.

	/P	Prompt the user to confirm each delete operation (at least one drive must be specified).

	/Q	Don't display the name of the recycle bin(s). This option is most often used in batch files.

REM

	Purpose:	Put a comment in a batch file

	Format:	REM [comment]

comment The text to include in the batch file.

Usage:

The REM command lets you place a remark or comment in a batch file. Batch file comments are useful for documenting the purpose of a batch file and the procedures you have used. For example:

rem This batch file provides a

rem menu-based system for accessing

rem word processing utilities.

rem

rem Clear the screen and get selection

cls

REM must be followed by a space or tab character, then the comment. TCC will ignore everything on the line following the REM, including quotes, redirection symbols, and other commands (see below for the exception to this rule).

If ECHO is ON, the comment is displayed. Otherwise, it is ignored. If ECHO is ON and you don't want to display the line, preface the REM command with an at sign [@].

You can also place a comment in a batch file by starting the comment line with two colons [::]. In essence this creates a batch file "label" without a valid label name.

You can use REM to create a zero-byte file if you use a redirection symbol immediately after the REM command. For example, to create the zero-byte file C:\xyz:

rem>xyz

(This capability is included for compatibility with CMD. A simpler method for creating a zero-byte file with TCC is to use >filename as a command, with no actual command before the [>] redirection character.)

REN / RENAME

	Purpose:	Rename files or subdirectories

	Format:	REN [/A:[[-][+]rhsadecijopt] /B /E /I"text" /N[enst] /O:[-]adegnrstu /P /Q /S /T] [@file] old_name... new_name

or

RENAME [/A:[[-][+]rhsadecijopt] /E /I"text" /N[enst] /O:[-]adegnrstu /P /Q /S /T] [@file] old_name... new_name

	old_name	Original name of the file(s) or subdirectory.

	new_name	New name to use, or new path on the same drive.

	@file	A text file containing the names of the source files to rename, one per line (see @file lists for details).

	/A: (Attribute select)	/O:... (Order)

	/B (Rename on reboot)	/P(rompt)

	/E (No error messages)	/Q(uiet)

	/I"text" (match description)	/S(ubdirectory)

	/MD (Create target directory)	/T(otal)

/N (Disable)

See also: COPY and MOVE.

File Selection:

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, delayed variable expansion, and include lists. Use wildcards with caution on LFN volumes; see LFN File Searches for details.

Internet: Can be used with FTP/HTTP Servers and HTTP/HTTPS servers.

Usage:

REN and RENAME are synonyms. You may use either one. If you don't specify any arguments, REN will display its command dialog.

REN lets you change the name of a file or a subdirectory, or move one or more files to a new subdirectory on the same drive. New files may be on different file systems or drives; new directoriesmust be on the same drive.

In its simplest form, you give REN the old_name of an existing file or subdirectory and then a new_name. The new_name must not already exist; you can't give two files the same name (unless they are in different directories). The first example renames the file MEMO.TXT to MEM.TXT. The second example changes the name of the \WORD directory to \WP:

rename memo.txt mem.txt

rename /s \word \wp

When you rename files or directories on an LFN drive, you must quote any names which contain white space or special characters.

You can also use REN to rename a group of files that you specify with wildcards, as multiple files, or in an include list. When you do, the new_name must use one or more wildcards to show what part of each filename to change. Both of the next two examples change the extensions of multiple files to .SAV:

ren config.nt autoexec.nt tcstart.btm *.sav

ren *.txt *.sav

REN can move files to a different subdirectory on the same drive. When it is used for this purpose, REN requires one or more filenames for the old_name and a directory name for the new_name:

ren memo.txt \wp\memos\

ren oct.dat nov.dat \data\save\

The final backslash in the last two examples is optional. If you use it, you force REN to recognize the last parameter as the name of a directory, not a file. The advantage of this approach is that if you accidentally mistype the directory name, REN will report an error instead of renaming your files in a way that you didn't intend.

REN can also move files to a new directory and change their name at the same time if you specify both a path and file name for new_name. In this example, the files are renamed with an extension of .SAV as they are moved to a new directory:

 ren *.dat \data\save*.sav

If you use REN to rename a directory, the new_name must normally be specified explicitly, and cannot contain wildcards. You can override this restriction with /S. When you rename a directory the extended directory search database will be automatically updated to reflect the change.

You can also rename a subdirectory to a new location in the directory tree on the same physical drive (sometimes called "prune and graft"). You must specify the new name explicitly, not just give the path. For example, if the D:\TCMD directory contains a subdirectory TEST, you can rename TEST to be a subdirectory of the root directory like this:

[d:\tcmd] ren TEST \TEST\

REN does not change a file's attributes, except to set attribute A. The new_name file(s) will have the same attributes as old_name.

If you have appropriate permissions, you can rename files on FTP, HTTP, and HTTPS servers. For example:

ren ftp://ftp.abc.com/file1.txt file2.txt

Wildcard characters like [*] and [?] will be treated as wildcards in FTP URLs, but will be treated as normal characters in HTTP URLs.

You can also use the IFTP command to start an FTP session on a server, and then use an abbreviated syntax to specify the files and directories you want. For more information, see Using FTP/HTTP Servers and IFTP.

REN supports regular expression back references in the target name. If you are using back references, you must also use a regular expression in the source name. The syntax is:

ren ::filename ::target

REN sets three internal variables:

	%_ren_dirs	The number of directories renamed

	%_ren_files	The number of files renamed

	%_ren_errors	The number of errors

Note: The wildcard expansion process will attempt to allow both CMD-style "extension" matching (assumes only one extension, at the end of the word) and the advanced TCC string matching (allowing things like *.*.abc) when an asterisk is encountered in the destination of a REN command.

Options:

	/=	Display the REN command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:	Rename only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	If REN can't rename the file (i.e., access denied), it will schedule it to be renamed at the next reboot.

	/E	Suppress all non-fatal error messages, such as "File Not Found." Fatal error messages, such as "Drive not ready," will still be displayed. This option is most useful in batch files.

	/I"text"	Select files by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

	/MD	 Create the target directory if it doesn't exist. Note that you *must* either terminate the target directory name with a trailing \ or specify a filename component; otherwise REN cannot tell what you want for the directory and what you want for the filename.

	/N	Do everything except actually rename the file(s). /N displays how many files would be renamed. This option is useful for testing what a REN command will actually do.

A /N with one or more of the following arguments has an alternate meaning:

	e	Don't display errors.

	n	Don't update the file descriptions

	s	Don't display the summary

	t	Don't update the CD / CDD extended directory search database (JPSTREE.IDX).

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

The /O:... option saves all of the matching filenames and then performs the rename. This avoids the potential problem of renaming files more than once.

	/P	Prompt the user to confirm each rename operation. Your options at the prompt are explained in detail under Page and File Prompts.

	/Q	Don't display filenames or the number of files renamed. When used in combination with the /P option above, it will prompt for filenames but will not display the totals. This option is most often used in batch files. See also /T.

	/S	Normally, you can rename a subdirectory only if you do not use any wildcards in the new_name. This prevents subdirectories from being renamed inadvertently when a group of files is being renamed with wildcards. /S will let you rename a subdirectory even when you use wildcards. /S does not cause REN to process files in the current directory and all subdirectories as it does in some other file processing commands. To rename files throughout a directory tree, use GLOBAL REN.

	/T	Don't display filenames as they are renamed, but report the number of files renamed. See also /Q.

	RESOLUTION	Not in LE

	Purpose:	Change the resolution of the specified display

	Format:	RESOLUTION [displayname] width height [depth [frequency]]

	displayname	The name of the monitor to update

	width	The new display width in pixels

	height	The new height in pixels

	depth	The new color depth

	frequency	The new refresh frequency

Usage:

If you don't specify any arguments, RESOLUTION will display the display devices and monitors.

RETURN

	Purpose:	Return from a GOSUB (subroutine) in a batch file

	Format:	RETURN [value]

value The numeric exit code to return to TCC

See also: GOSUB.

Usage:

TCC allows subroutines in batch files.

A subroutine begins with a label (a colon followed by one or more words) and ends with a RETURN command.

The subroutine is invoked with a GOSUB command from another part of the batch file. When a RETURN command is encountered the subroutine terminates, and execution of the batch file continues on the line following the original GOSUB. If RETURN is encountered without a GOSUB, TCC will display a "Missing GOSUB" error message.

You cannot execute a RETURN from inside a DO loop.

The following batch file fragment calls a subroutine which displays the files in the current directory:

echo Calling a subroutine

gosub subr1

echo Returned from the subroutine

quit

:subr1

dir /a/w

return

If you specify a value, RETURN will set the internal exit code to that value. That exit code should be tested immediately upon return from the subroutine and before it is reset by another command. For information on exit codes from internal commands, see the _? variable.

	REXEC	Not in LE

	Purpose:	Remotely execute commands

	Format:	REXEC [/H host /U name /P password /Rn /Tn] host [/L userid] command ...

	command	The command to execute

	/H(host name)	/R(emote port)

	/L (user ID)	/T (firewall type)

	/P(assword)	/U(sername)

Usage:

REXEC allows remote execution of commands on any system with the rexec service installed. Press Ctrl-C to disconnect from the other system.

If you don't specify a username, REXEC will use the current username. You can provide a password on the command line by appending it to the username (i.e., "User:Password"). If you don't provide a password, REXEC will prompt for it.

If you want to do redirection on the remote system, enclose the argument list in double quotes. For example:

REXEC /H host /U user /P password "command | command2"

The double quotes will be removed before passing the commands to the remote system.

Note: Windows does not include the rexec service, so you will need to get one from a third-party and install it on the remote system before executing REXEC.

Options:

	/H	Firewall host name

	/L	User name (ID)

	/P	Firewall user password

	/R	Remote port number

	/T	Firewall type, where n is:

	0	No firewall (default setting)

	1	Connect through a tunneling proxy

	2	Connect through a SOCKS4 Proxy

	3	Connect through a SOCKS5 Proxy

	/U	Firewall user name

	RSHELL	Not in LE

	Purpose:	Remotely execute commands

	Format:	RSHELL [/H host /U name /P password /Rn /Tn] host [/L userid] command ...

	command	The command to execute

	/H(ost name)	/R(emote port)

	/L (user ID)	/T (firewall type)

	/P(assword)	/U(sername)

Usage:

RSHELL allows remote execution of commands on any system with the rshell service installed. Press Ctrl-C to disconnect from the other system.

If you don't specify a username, RSHELL will use the current username.

If you want to do redirection on the remote system, enclose the argument list in double quotes. For example:

RSHELL /H host /U user /P password "command | command2"

The double quotes will be removed before passing the commands to the remote system.

Note: Windows does not include the rshell service, so you will need to get one from a third-party and install it on the remote system before executing RSHELL.

Options:

	/H	Firewall host name

	/L	User name

	/P	Firewall user password

	/R	Remote port number

	/T	Firewall type, where n is:

	0	No firewall (default setting)

	1	Connect through a tunneling proxy

	2	Connect through a SOCKS4 Proxy

	3	Connect through a SOCKS5 Proxy

	/U	Firewall user name

SCREEN

	Purpose:	Position the cursor on the screen and optionally display a message

	Format:	SCREEN row column [text]

	row	The new row location for the cursor

	column	The new column location for the cursor

	text	Optional text to display at the new cursor location

See also: ECHO and ECHOERR, ECHOS and ECHOSERR, SCRPUT, TEXT, and VSCRPUT.

Usage:

SCREEN allows you to create attractive screen displays in batch files. SCRPUT allows you to specify where a message will appear on the screen. You can use SCREEN to create menus and other similar displays. For example, the following batch file fragment displays a menu:

@echo off

cls

screen 3 10 Select a number from 1 to 4:

screen 6 20 1 - Word Processing

screen 7 20 2 - Spreadsheet

screen 8 20 3 - Telecommunications

screen 9 20 4 - Quit

SCREEN does not change the screen colors. To display text in specific colors, use SCRPUT or VSCRPUT. SCREEN always leaves the cursor at the end of the displayed text.

The row and column values are zero-based, so on a 25 line by 80 column display, valid rows are 0 - 24 and valid columns are 0 - 79. SCREEN checks for a valid row and column, and displays a "Usage" error message if either value is out of range.

In TCC, the maximum row value is determined by the current height of the TCC tab window, and the maximum column value is determined by the current virtual screen width (see Resizing the Take Command Window for more information).

You can also specify the row and column as offsets from the current cursor position. Begin the value with a plus sign [+] to move the cursor down or to the right, or with a minus sign [-] to move the cursor up or to the left. This example prints a string 3 lines above the current position, in absolute column 10:

screen -3 10 Hello, World!

 you specify 999 for the row, SCREEN will center the text vertically on the display. If you specify 999 for the column, SCREEN will center the text horizontally. This example prints a message at the center of the TCC tab window:

screen 999 999 Hello, World

	SCREENMONITOR	Not in LE

	Purpose:	Monitor the Windows screen saver

	Format:	SCREENMONITOR [/C]

SCREENMONITOR n command

	n	Number of repetitions (or FOREVER)

	command	Command to execute when the Windows screen saver is activated

/C(lear)

Usage:

SCREENMONITOR will set its trigger when the Windows screen saver is activated.

If you don't enter any arguments, if SCREENMONITOR is active it will display the repeat count and the command.

The command line will be parsed and expanded before SCREENMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. SCREENMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

Options:

	/C	Remove the screen saver monitor.

	SCRIPT 	Not in LE

	Purpose:	Run a script using an Active Scripting engine

	Format:	SCRIPT [/E engine] [filename ...]

/E(ngine)

	engine	The name of the scripting engine

Usage:

If you don't specify any arguments, SCRIPT will display the installed engines.

See also the @SCRIPT variable function.

TCC has a COM interface to allow the script to call back into TCC. The methods are:

shell.exec("command") - execute the specified command (internal or external)

shell.write("string") - write the string to stdout

shell.writeLn("string") - write the string to stdout with a CR/LF

shell.alert("text") - pop up a message box

Options:

	/E 	If the script doesn't have a recognized extension (i.e., .vbs, .pls, etc.) you will need to specify the engine SCRIPT should use to execute the script.

SCRPUT

	Purpose:	Position text on the screen and display it in color

	Format:	SCRPUT row col [BRIght] fg ON [BRIght] bg text

	row	Starting row

	col	Starting column

	fg	Foreground character color

	bg	Background character color

	text	The text to display

See also: ECHO and ECHOERR, ECHOS and ECHOSERR, SCREEN, TEXT, and VSCRPUT.

Usage:

SCRPUT allows you to create attractive screen displays in batch files. SCRPUT allows you to specify where a message will appear on the screen and what colors will be used to display the message text. You can use SCRPUT to create menu displays, logos, etc.

SCRPUT works like SCREEN, but requires you to specify the display colors. See Colors and Color Names for details.

The row and column values are zero-based, so on a 25 line by 80 column display, valid rows are 0 - 24 and valid columns are 0 - 79. The maximum row value is determined by the current height of the TCC tab window. The maximum column value is determined by the current virtual screen width (see Resizing the Take Command Window for more information).

SCRPUT checks for a valid row and column, and displays a "Usage" error message if either value is out of range.

You can also specify the row and column as offsets from the current cursor position. Begin the value with a plus sign [+] to move down the specified number of rows or to the right the specified number of columns, or with a minus sign [-] to move up or to the left.

If you specify 999 for the row, SCRPUT will center the text vertically in the TCC tab window. If you specify 999 for the column, SCRPUT will center the text horizontally.

SCRPUT does not move the cursor when it displays the text.

The following batch file fragment displays part of a menu, in color:

cls white on blue

scrput 3 10 bri whi on blu Select an option:

scrput 6 20 bri red on blu 1 - Word Processing

scrput 7 20 bri yel on blu 2 - Spreadsheet

scrput 8 20 bri gre on blu 3 - Communications

scrput 9 20 bri mag on blu 4 - Quit

SELECT

	Purpose:	Interactively select files for a command

	Format:	SELECT [/1 /A[[:][-][+]rhsadecijopt] /C /D /E /H /I"text" /J /L /O:[-]acdeginorsu /Q /T:acw /X /Z] [command] ... (files...)...

	command	The command to execute with the selected files.

	files	The files from which to select. File names may be enclosed in either parentheses or square brackets. The difference is explained below.

	/1 One selection only

	/J(ustify names)

	/A(ttribute select)

	/L(ower case)

	/C(ompression)

	/O(rder)

	/D(isable color coding)

	/Q (owner)

	/E (use upper case)

	/T(ime)

	/H(ide dots)

	/X (display short names)

	

	/I"text" (match descriptions)

	/Z (FAT format)

File Selection

Supports command dialog, extended wildcards, ranges, multiple file names, and include lists. Ranges must appear immediately after the SELECT keyword.

Internet: Can be used with FTP servers. See Using FTP/HTTP Servers.

Usage:

SELECT allows you to select files for internal and external commands by using a "point and shoot" display. You can have SELECT execute a command once for each file you select, or have it create a list of files for a command to work with. The command can be an internal command, an alias, an external command, or a batch file. If you don't specify any arguments, SELECT will display its command dialog.

If you use parentheses around the files, SELECT executes the command once for each file you have selected. During each execution, one of the selected files is passed to the command as a parameter. If you use square brackets around files, the SELECTed files are combined into a single list, separated by spaces. The command is then executed once with the entire list presented as part of its command line parameters.

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. SELECT will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

SELECT can also select files on FTP servers. For example:

select del (ftp://ftp.domain.com/)

You can also use the IFTP command to start an FTP session on a server, and then use an abbreviated syntax to specify the files and directories you want. For more information, see Using FTP/HTTP Servers and IFTP.

Using the SELECT File List

When you execute the SELECT command, the file list is displayed in a full-window format which includes a top-line status bar and shows the command to be executed, the number of files marked, and the number of Kbytes in those files.

SELECT supports the mouse for selecting and scrolling the list. You can also use the cursor up, cursor down, PgUp, and PgDn keys to scroll through the file list. You can also use character matching to find specific files, just as you can in any popup window. While the file list is displayed you can enter any of the following keys to select or unselect files, display files, execute the command, or exit:

	space	Select a file, or unselect a marked file

	+	Select a file (all products), or unselect a marked file

	-	Unselect a marked file

	*	Reverse all of the current marks (except those on subdirectories). If no files have been marked you can use * to mark all of the files

	/	Unselect all files

	Ctrl-L	View the current highlighted file with LIST. When you exit from LIST, the SELECT screen will be restored

	Enter	Execute the command with the marked files, or with the currently highlighted file if no files have been marked

	Esc	Skip the files in the current display and go on to the next file specification inside the parentheses or brackets (if any)

	Ctrl-C or	Cancel the current SELECT command entirely

 Ctrl-Break

On FAT drives the file list is shown in standard FAT directory format, with names at the left and descriptions at the right. On LFN drives the format is similar but more space is allowed for the name, and the description is not shown. In this format long names are truncated if they do not fit in the allowable space. For a short-name format (including descriptions) on long filename drives, use the /X and / or /Z switches.

When displaying descriptions in the short filename format, SELECT adds a right arrow at the end of the line if the description is too long to fit on the screen. This symbol will alert you to the existence of additional description text. You can use the left and right arrow keys to scroll the description area of the screen horizontally and view the additional text.

Creating SELECT Commands

In the simplest form of SELECT, you merely specify the command and then the list of files from which you will make your selection(s). For example:

select copy (*.cmd *.exe) q:\

will let you select from among the .CMD files in the current directory, and will then invoke the COPY command to copy each file you select to the root of drive Q:. After the .CMD files are done, the operations will be repeated for the .EXE files.

If you want to select from a list of all the .CMD and .EXE files mixed together, create an include list inside the parentheses by inserting a semicolon:

select copy (*.cmd;*.exe) a:\

Finally, if you want the SELECT command to send a single list of files to COPY, instead of invoking COPY once for each file you select, put the file names in square brackets instead of parentheses:

select copy [*.cmd;*.exe] a:\

If you use brackets, you have to be sure that the resulting command (the word COPY, the list of files, and the destination drive in this example) does not exceed the command line length limit. The current line length is displayed by SELECT while you are marking files to help you to stay within that limit.

The parentheses or brackets enclosing the file name(s) can appear anywhere within the command; SELECT assumes that the first set of parentheses or brackets it finds is the one containing the list of files from which you wish to make your selection.

When you use SELECT on an LFN drive, you must quote any file names inside the parentheses which contain white space or special characters. For example, to copy selected files from the Program Files" directory to the E:\SAVE directory:

select copy ("Program Files*") e:\save\

File names passed to the command will be quoted automatically if they contain white space or special characters.

The list of files from which you wish to select can be further refined by using date, time, size and file exclusion ranges. The range(s) must be placed immediately after the word SELECT. If the command is an internal command that supports ranges, an independent range can also be used in the command itself.

You cannot use command grouping to make SELECT execute several commands, because SELECT will assume that the parentheses are marking the list of files from which to select, and will display an error message or give incorrect results if you try to use parentheses for command grouping instead. (You can use a SELECT command inside command grouping parentheses, you just can't use command grouping to specify a group of commands for SELECT to execute.)

Advanced Topics

If you don't specify a command, the selected filename(s) will become the command. For example, this command defines an alias called UTILS that selects from the executable files in the directory C:\UTIL, and then executes them in the order marked:

alias utils select (c:\util*.cmd;*.exe;*.btm;*.bat)

If you want to use filename completion to enter the filenames inside the parentheses, type a space after the opening parenthesis. Otherwise the command line editor will treat the open parenthesis as the first character of the filename.

With the /I option, you can select files based on their descriptions. SELECT will display files if their description matches the text after the /I switch. The search is not case sensitive. You can use wildcards and extended wild cards as part of the text.

When sorting file names and extensions for the SELECT display, TCC normally assumes that sequences of digits should be sorted numerically (for example, the file DRAW2 would come before DRAW03 because 2 is numerically smaller than 03), rather than strictly alphabetically (where DRAW2 would come second because "2" comes after "0"). You can defeat this behavior and force a strict alphabetic sort with the /O:a option.

Options:

	/1	Only allow one selection.

	/A[:]	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/C	Display per-file and total compression ratios on compressed drives. The compression ratio is displayed instead of the file description. The ratio is left blank for directories and files with a length of 0 bytes, and for files on non-compressed drives. The compression ratios will not be visible on LFN drives unless you use /Z to switch to the short filename format. Only compressed NTFS drives are supported. See DIR /C for more details on how compression ratios are calculated.

	/D	Temporarily turn off directory colorization.

	/E	Display filenames in upper case.

	/H	Suppress the display of the "." and ".." directory names.

	/I"text"	 Display filenames by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]".

	/J	Justify (align) filename extensions and display them in the FAT format.

	/L	Display file and directory names in lower case.

	/O	Set the sort order for the files. The order can be any combination of the following options:

	n	Sort by filename (this is the default)

	- 	Reverse the sort order for the next option.

	a	Sort names and extensions in standard ASCII order, rather than sorting numerically when digits are included in the name or extension.

	c	Sort by compression ratio (the least compressed file in the list will be displayed first). For information on supported compression systems see /C above.

	d	Sort by date and time (oldest first).

	e	Sort by extension.

	g	Group subdirectories together.

	i	 Sort by the file description (ignored if /C or /O:c is also used).

	o	Sort by owner

	r	Reverse the sort order for all options.

	s	Sort by size.

	u	Unsorted.

	/Q	Display the file owner (requires > 80 column display).

	/T:acw	Specify which of the date and time fields on an LFN drive should be displayed and used for sorting:

	a	Last access date and time (access time is not saved on VFAT and FAT32 volumes).

	c	Creation date and time.

	w	Last write date and time (default).

	/X	Display short filenames in FAT format (like /Z), on LFN drives.

	/Z	Display a directory on an LFN drive in the old-style format, with the filename at the left and the description at the right. Long names will be truncated to 12 characters; if the name is longer than 12 characters, it will be followed by a right arrow.

	SENDHTML	Not in LE

	Purpose:	Send an HTML-formatted email message

	Format:	SENDHTML [/A file1 [/A file2 ...] /D /Eaddress /H"header: value" /In /M /Pn /R /SMTP=server /Sn /SSL[=n] /USER=address /V /X] "address[,address...] [cc:address[,address] bcc:address[,address...]]" subject [text | @msgfile]

	file1...

	The attachment files

	address

	The destination email address

	subject

	The subject line

	text

	The message to send

	msgfile

	The file containing the message body

	/SSL=n

	SSL negotiation type

	/SMTP=server

	Override the default SMTP server

	/USER=address

	Override the default sending email account

	/A file

	Attachment

	/Pn

	Priority

	/D

	Delivery Confirmation

	/R

	Send read receipt

	/E

	Reply-to address

	/Sn

	Sensitivity

	/H

	Send custom header

	/V

	Verbose

	/In

	Importance

	/X

	EHLO

	/M

	CRAM-MD5 authentication

	

	

See also: SNPP and SMPP.

Usage:

SENDHTML sends an HTML email message from TCC via SMTP. The text of the message can be entered either on the command line or read from a text file. SENDHTML also supports SMTP over SSL. If you don't specify any arguments, SENDHTML will display its command dialog.

Before you can use SENDHTML, you must either set the SMTP configuration options, or have a default account in the registry. Depending on your system configuration, you may also need to start an Internet connection before you use SENDHTML.

A SENDHTML message has three required parts: an address, a subject, and message. Optionally it may also have attachments.

1. The address field contains one or more standard Internet email addresses:

sendhtml abc@xyz.com ...

If address contains white space, the entire address field must be surrounded by quotes. You can specify multiple destinations by separating the addresses with commas and enclosing the entire string in quotes (all addresses will appear in the "To:" header sent to all recipients). You can add CC (copy) addresses by prefacing the desired target(s) with cc:; and BCC (blind copy) addresses by prefacing the desired target(s) with bcc:. For example:

sendhtml "bob@bob.com bcc:joe@joe.com" Test Hello!

will send the text Hello! with subject Test to bob@bob.com with a blind copy to joe@joe.com.

2. The subject will appear as the subject line in the message. If it contains white space, it must be surrounded by quotes.

3. The message may either be entered on the command line, or it may be placed in a text file. To tell SENDHTML to send the contents of a file as the message text, use @ sign, followed by the filename. You can use the same approach to send the text content of the clipboard (@CLIP:) or the console (@CON:):

sendhtml abc@xyz.com Party @c:\messages\invitation.txt

sendhtml abc@xyz.com Party @clip:

type myfile.txt | sendmail abc@xyz.com Party @con:

Options:

	/=	Display the SENDHTML command dialog to help you set the command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A file	Attach file to the email message. The /A switch and the name of the file to attach must appear before address. Any file name that contains spaces or special characters must be quoted. You can send multiple files by repeating the /A switch for each additional file to send. For example:

sendhtml /a file1 /a "d:\path\My file2" abc@xyz.com ...

	/D	Request Delivery Notification.

	/E	Set the "reply to" address in the message header.

	/H	Set a custom header. The header will be appended to the message headers created from "to", "from", "subject", etc. The headers must of the format "header: value" as specified in RFC 822. You can specify multiple headers with multiple /H arguments.

	/In	Set the Importance where n is:

	1	High

	2	Normal (default)

	3	Low

	/M	Use CRAM-MD5 authentication.

	/Pn	Set the Priority where n is:

	0	Unspecified (default)

	1	Normal

	2	Urgent

	3	Non Urgent

	/R	(Read receipt) : Send a read receipt.

	/Sn	Set the message sensitivity. The values are:

	1	Personal

	2	Private

	3	CompanyConfidential

	/SMTP	Overrides the default SMTP server (as set in the registry) to use when sending mail.

	/SSL=n	Type of SSL negotiation. The values are:

	0	Automatic (default if no n value is specified). If the remote port is set to the standard plaintext port, SENDHTML will use Explicit mode. In all other cases, SSL negotiation will be implicit.

	1	Implicit - SSL negotiation will start immediately after the connection is established.

	2	Explicit - SENDMAIL will first connect in plaintext, and then explicitly start SSL negotiation.

	3	No SSL negotiation or security. (This is the default if /SSL is not specified.)

	/USER	Overrides the default email account (as set in the registry) to use when sending mail.

	/V	Show all the interaction with the server, except the message header and message body text.

	/X	Send EHLO instead of HELO.

	SENDMAIL	Not in LE

	Purpose:	Send an email message

	Format:	SENDMAIL [/A file1 [/A file2 ...] /D /Eaddress /H"header: value" /In /M /Pn /R /Sn /SMTP=server /SSL[=n] /USER=address /V /X] "address[,address...] [cc:address[,address] bcc:address[,address...]]" subject [text | @msgfile]

	file1...

	The attachment files

	address

	The destination email address

	subject

	The subject line

	text

	The message to send

	msgfile

	The file containing the message body

	/SSL=n

	SSL negotiation type

	/SMTP=server

	Override the default SMTP server

	/USER=address

	Override the default sending email account

	/A file

	Attachment

	/Pn

	Priority

	/D

	Delivery Confirmation

	/R

	Send read receipt

	/E

	Reply-to address

	/Sn

	Sensitivity

	/H

	Send custom header

	/V

	Verbose

	/In

	Importance

	/X

	Send EHLO

	/M

	CRAM-MD5 authentication

	

	

See also: SNPP and SMPP.

Usage:

SENDMAIL sends an email message from TCC via SMTP. The text of the message can be entered either on the command line or read from a text file. SENDMAIL also supports SMTP over SSL. If you don't specify any arguments, SENDMAIL will display its command dialog.

Before you can use SENDMAIL, you must either set the SMTP configuration options, or have a default account in the registry. Depending on your system configuration, you may also need to start an Internet connection before you use SENDMAIL.

A SENDMAIL message has three required parts: an address, a subject, and message. Optionally it may also have attachments.

1. The address field contains one or more standard Internet email addresses:

sendmail abc@xyz.com ...

If address contains white space, the entire address field must be surrounded by quotes. You can specify multiple destinations by separating the addresses with commas and enclosing the entire string in quotes (all addresses will appear in the "To:" header sent to all recipients). You can add CC (copy) addresses by prefacing the desired target(s) with cc:; and BCC (blind copy) addresses by prefacing the desired target(s) with bcc:. For example:

sendmail "bob@bob.com bcc:joe@joe.com" Test Hello!

will send the text Hello! with subject Test to bob@bob.com with a blind copy to joe@joe.com.

2. The subject will appear as the subject line in the message. If it contains white space, it must be surrounded by quotes.

3. The message may either be entered on the command line, or it may be placed in a text file. To tell SENDMAIL to send the contents of a file as the message text, use @ sign, followed by the filename. You can use the same approach to send the text content of the clipboard (@CLIP:) or the console (@CON:):

sendmail abc@xyz.com Party @c:\messages\invitation.txt

sendmail abc@xyz.com Party @clip:

type myfile.txt | sendmail abc@xyz.com Party @con:

Options:

	/=	Display the SENDMAIL command dialog to help you set the command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A file	Attach file to the email message. The /A switch and the name of the file to attach must appear before address. Any file name that contains spaces or special characters must be quoted. You can send multiple files by repeating the /A switch for each additional file to send. For example:

sendmail /a file1 /a "d:\path\My file2" abc@xyz.com ...

	/D	Request Delivery Notification.

	/E	Set the "reply to" address in the message header.

	/H	Set a custom header. The header will be appended to the message headers created from "to", "from", "subject", etc. The headers must of the format "header: value" as specified in RFC 822. You can specify multiple headers with multiple /H arguments. For example, to send HTML mail:

sendmail /h"Content-Type: text/html" ...

	/In	Set the Importance where n is:

	1	High

	2	Normal (default)

	3	Low

	/M	Use CRAM-MD5 authentication.

	/Pn	Set the Priority where n is:

	0	Unspecified (default)

	1	Normal

	2	Urgent

	3	Non Urgent

	/R	(Read receipt) : Send a read receipt.

	/Sn	Set the message sensitivity. The values are:

	1	Personal

	2	Private

	3	CompanyConfidential

	/SMTP	Overrides the default SMTP server (as set in the registry) to use when sending mail.

	/SSL=n	Type of SSL negotiation. The values are:

	0	Automatic (default if no n value is specified). If the remote port is set to the standard plaintext port, SENDMAIL will use Explicit mode. In all other cases, SSL negotiation will be implicit.

	1	Implicit - SSL negotiation will start immediately after the connection is established.

	2	Explicit - SENDMAIL will first connect in plaintext, and then explicitly start SSL negotiation.

	3	No SSL negotiation or security. (This is the default if /SSL is not specified.)

	/USER	Overrides the default email account (as set in the registry) to use when sending mail.

	/V	Show all the interaction with the server, except the message header and message body text.

	/X	Send EHLO instead of HELO.

	SERVICEMONITOR	Not in LE

	Purpose:	Monitor service start, pause, and / or stop

	Format:	SERVICEMONITOR [/C [name]]

SERVICEMONITOR name STARTED | PAUSED | STOPPED n command

	name	Device name

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

/C(lear)

Usage:

The service name can include wildcards.

The command line will be parsed and expanded before SERVICEMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. SERVICEMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

If you don't enter any arguments, SERVICEMONITOR will display the services it is currently monitoring.

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

SERVICEMONITOR creates several environment variables when a service is started, paused, or stopped that can be queried by command. The variables are deleted after command is executed.

	_servicedisplay	Display name used by service control programs to identify the service

	_servicename	The name of the service in the service control manager database

	_servicecount	The number of times the command has been triggered

	_servicestate	The current state of the service. The possible values are:

	1	The service is stopped

	2	The service is starting

	3	The service is stopping

	4	The service is running

	5	The service continue is pending

	6	The service pause is pending

	7	The service is paused

Options:

	/C	If name is specified, remove the monitor for that service. Otherwise, remove all service monitors.

	SERVICES	Not in LE

	Purpose:	Display, stop, or start system services

	Format:	SERVICES [/P /R /S] [name ...]

	/P(ause)	/S(top service)

/R(un)

Usage:

The name is the service name, not the display name. name can contain wildcards.

You must be an admin user to run or stop a service.

Options:

	/P	Pause after displaying each page.

	/R	Run the specified service(s).

	/S	Stop the specified service(s).

SET

	Purpose:	Display, create, modify, or delete environment variables

	Format:	Display mode:

SET [/D /E /P /S /U /V /X] [wildname]

Definition mode:

SET [/A /D /O /S /U /V /E /RO /R [file...] | name=value | prompt]

Deletion mode:

SET [/D /S /U /V /E] name=

	file	One or more input files from which to read variable definitions.

	name	The name of the environment variable.

	value	The new value for the variable, separated from name by space[s].

	prompt	Optional input prompt for the /P name= option.

	wildname	Name of variable[s] to be displayed. May contain * wildcard unless displaying registry variables.

	/A

	Arithmetic

	/R

	Read from file(s)

	/D

	Default

	/RO

	Readonly variable

	/E

	Environment, too

	/S

	System

	/P

	Pause or Prompt

	/U

	User

	/O

	Don't overwrite

	/V

	Volatile

	/Q

	Don't echo /A result

	/X

	Override VariableExclude

See also: ESET and UNSET.

Usage:

Every program and command inherits an environment, which is a list of pairs of variable names and values. Each value is a non-empty character string (i.e., there must be at least one character in it). Many programs use entries in the environment to modify their own actions. TCC itself uses several environment variables.

If you simply type the SET command with no options or parameters, it will display all the names and values of all currently defined variables in the environment. Typically, you will see an entry called PATH, an entry called CMDLINE, and whatever other environment variables you and your programs have established:

[c:\] set

PATH=C:\;C:\UTIL

CMDLINE=C:\TCMD\TCSTART.CMD

If you enter only name, and there is no variable with that name, SET will display all environment variables whose names begin with name. For example, if there is no variable pa, the command below will display all variables whose names start with pa:

set pa

The above command is equivalent to the command

set pa*

If there is only a single parameter and it contains one or more wildcards (sorry, only * available), SET will display all matching environment variables. You cannot use wildcards to display the registry variables (/D, /S, /U, and /V).

You can specify variables to exclude from the SET display with the VariableExclude variable. For example, to suppress the display of the processor and user variables:

set VariableExclude=proc*;user*

(Note that this option doesn't affect the existence of the variables, just whether they're displayed by a SET with no arguments.)

To add a variable to the environment, type SET, a space, the variable name, an equal sign, and the desired value:

set mine=c:\finance\myfiles

The variable name and the text after the equal sign will be left just as you entered it. However, case is ignored when looking for a variable; for example MyVar, myvar, and MYVAR all refer to the same variable. If the variable already exists, its value will be replaced with the new text that you entered.

Normally you should not put a space on either side of the equal sign. A space before the equal sign will become part of the name ; a space after the equal sign will become part of the value.

Trailing whitespace in the SET command is ignored. To create a variable with trailing whitespace, use a pair of back quotes after the whitespace:

set mine=%@repeat[,20]``

makes mine 20 characters of spaces.

If you use SET to create a variable with the same name as one of the TCC internal variables, you will disable the internal variable. If you later execute a batch file or alias that depends on that internal variable, it may not operate correctly. Once you delete your variable, the internal variable becomes accessible again.

To display the contents of a variable, type SET plus the variable name:

set mine

You can edit environment variables with the ESET command. To remove variables from the environment, use UNSET, or type SET, followed by the variable name and an equal sign:

set mine=

The variable's name is limited to a maximum of 255 characters. Name and value together cannot be longer than 32,767 characters.

Note: You cannot use SET to modify GOSUB variables.

The size of the environment is set automatically, and increased as necessary as you add variables.

Registry Variables

Windows stores some of its own variables in the registry. This includes Default, System, User, and Volatile variables. Those variables can be manipulated with the SET command's /D, /S, /U and /V options respectively. For example, to display the contents of volatile variable clientname, use:

set /v clientname

Note that setting a registry variable using one of the options /D, /S, /U or /V will not set the variable in the local environment unless you also use the /E option.

User variables are user-specific, and volatile variables are only valid for the current Windows session. Use caution when directly modifying registry variables as they may be essential to various Windows processes and applications.

If the Update Environment on System Change configuration option is set, TCC will monitor the WM_SETTINGCHANGE message and update the environment from the User, Volatile, and System registry entries. The update is done whenever TCC displays the prompt (to prevent the environment from changing in the middle of a command).

Array Variables (not in TCC/LE)

In addition to environment variables, SET is also used to set values for array variables. For example, to define a 5-row by 10-column array, you would first use SETARRAY:

setarray array1[5,10]

To set the array values (0-based), the syntax is:

set array1[a[,b[,c[,d]]]

For example:

set array1[0,0]=Bob

set array1[0,1]=Bob's Job

To expand the array variable:

echo Name is %array[0,0] and job is %array1[0,1]

Options:

	/A	Evaluate the arithmetic expression on the right of the equal sign, place the result in the environment, and display it. For example, this command adds 2 and 2, and places the result in the environment variable VAR:

set /a var=2+2

		/A interprets non numeric strings in value as environment variable names whether or not preceded by a percent sign %, and replaces them with their respective values. For example, this sequence will set Y to 4:

set x=2

set /a y=x+2

	

		You can use @EVAL to perform the same task; SET /A is included for compatibility with CMD. Unlike @EVAL, use of the >> or << shift operators in SET /A requires disabling their interpretation as redirection symbols by using SETDOS /X-6.

	/D	Create/modify/delete a default variable in the registry (HKU\.DEFAULT\Environment).

	/E	When used together with one of /D, /S, /U, or /V, set both the registry variable and the local environment variable.

	/O	Don't overwrite existing values (only valid in combination with /R).

	/P	When used without a variable name, wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

When used with a variable name and an optional prompt string, e.g. set /p myvar=Enter value, emulates the CMD behavior of allowing entry of a value for the variable. This is provided for compatibility reasons only. For more flexibility, use the ESET or INPUT command.

	/Q	Don't echo the result of /A when at the command line.

	/R	Read environment variables from a file. This is much faster than loading variables from a batch file with multiple SET commands. Each entry in the file must fit within the command line length limit for TCC. The file is in the same format as the SET display (i.e., name=value), so SET /R can accept as input a file generated by redirecting SET output. For example, the following commands will save the environment variables to a file, and then reload them from that file:

set > varlist

set /r varlist

You can load variables from multiple files by listing the filenames individually after the /R.

If you are creating a SET /R file by hand, and need to create an entry that spans multiple lines in the file, you can do so by terminating each line (except the last) with an escape character. However, you cannot use this method to exceed the command line length limit. You can also add comment lines to the file by starting each with a colon :. You can also use other special characters, e.g., trailing whitespace, redirection and pipe symbols (<>|), without the need for escaping the characters. If you reference the value of another variable in value (e.g., x=%path;c:\jpsoft), evaluating that variable (path in the example) is postponed until at some future time a command line evaluates the current variable (x in the example), so that the command echo %x will display the path in effect when echo is executed, regardless of what path may have been when the original SET defined x.

If you do not specify a filename and input is redirected, SET /R will read from stdin.

	/RO	Create a read-only variable. Once you have set the variable, you cannot change it or UNSET it. Only environment variables can be read-only, not registry variables or array variables. A read-only variable will automatically be exported from an ENDLOCAL.

	/S	Create/modify/delete a system variable in the registry (HKLM\System\CurrentControlSet\Control\Session Manager\Environment).

	/U	Create/modify/delete a user variable in the registry (HKCU\Environment).

	/V	Create/modify/delete a volatile variable in the registry (HKCU\Volatile Environment).

	/X	Override the VariableExclude variable and display all matching variables.

	SETARRAY	Not in LE

	Purpose:	Define array variables

	Format:	SETARRAY [/R filename arrayname] name[a[,b[,c[,d]]]] [...]

	a,b,c,d	Array dimensions

/R(ead)

Usage:

You can define up to 4-dimensional arrays. For example, to define a 5-row by 10-column array:

setarray array1[5,10]

The array elements are addressed in base 0, so to reference this array you would use 0-4 for the rows and 0-9 for the columns.

To set the variable elements, use the SET command.

If you don't enter any arguments, SETARRAY will display the currently defined arrays. If you don't enter any dimensions, SETARRAY will display the definition for that array. You can use wildcards in the array name.

See also @ARRAYINFO.

Options:

	/R	Read a file into a 1-dimensional array. SETARRAY will automatically determine the required size of the array.

	SETERROR	Not in LE

	Purpose:	Set the ERRORLEVEL value

	Format:	SETERROR errorlevel

	errorlevel	New value for ERRORLEVEL

Usage:

SETERROR sets the value of the ERRORLEVEL internal variable and the last-error code in Windows to the specified value.

See also IF.

SETDOS

	Purpose:	Display or set the TCC configuration

	Format:	SETDOS [/A? /C? /D? /E? /Fn.n /G?? /I[+|-] command /M? /N? /P? /S?:? /V? /X[+|-]n]

	/A(NSI)

	/M(ode for editing)

	/C(ompound)

	/N(o clobber)

	/D(escriptions)

	/P(arameter character)

	/E(scape character)

	/S(hape of cursor)

	/F(ormat for @EVAL)

	/V(erbose)

	/G (numeric separators)

	/X (expansion, special characters)

	/I(nternal)

	

		

See also: OPTION.

Usage:

SETDOS allows you to customize certain aspects of TCC to suit your personal tastes or the configuration of your system.

You can display the value of all SETDOS options by entering the SETDOS command with no parameters.

Most of the SETDOS options can also be changed in the configuration dialogs. The name of the corresponding configuration option is listed with each SETDOS option below; if none is listed, that option cannot be set from the configuration dialogs. You can also define the SETDOS options in your TCSTART or other startup file (see Automatic Batch Files), in aliases, or at the command line.

Note: The functionality of the "/Y" option ("debug", no longer supported) of previous versions has been moved to the BDEBUGGER command.

Inheritance

When a new instance of the command is started, it inherits the SETDOS characteristics set by the most recently started instance of TCC.

Options:

	/A	[ANSI] This option determines whether ANSI X3.64 support is enabled. /A1 enables ANSI X3.64 string processing. The default of /A0 disables ANSI X3.64 strings. See the ANSI X3.64 Commands Reference for a list of the ANSI X3.64 sequences supported by TCC. See also: the ANSI Colors configuration option and the _ANSI internal variable.

	/C	[Command Separator] This option sets the character used for separating multiple commands on the same line. The default value is the ampersand [&]. You cannot use any of the redirection characters (| > <), or a space, tab, comma, or equal sign as the command separator. The command separator is saved by SETLOCAL and restored by ENDLOCAL. The following example changes the separator character to a tilde [~]:

setdos /c~

	/D	[Descriptions and Description Name] This option controls whether file processing commands like COPY, DEL, MOVE, and REN process file descriptions along with the files they belong to. /D1 turns description processing on, which is the default. /D0 turns description processing off. See also: the Enable Descriptions configuration option.

You can also use /D to set the name of the hidden file in each directory that contains file descriptions. To do so, follow /D with the filename in quotes:

setdos /d"files.bbs"

Use this option with caution, because changing the name of the description file will make it difficult to transfer file descriptions to another system.

	/E	[Escape Character] This option sets the character used to suppress the normal meaning of the following character. Any character following the escape character will be passed unmodified to the command. The default escape character is a caret [^]. You cannot use any of the redirection characters (| > <) or a space, tab, comma, or equal sign as the escape character. The escape character is saved by SETLOCAL and restored by ENDLOCAL. Certain characters (b, c, e, f, k, n, q, r, s, and t) have special meanings when immediately preceded by the escape character.

	/F	[@EVAL maximum and minimum] This option lets you set the default decimal display precision for the @EVAL variable function. The maximum precision is 1,000 digits to the left of the decimal point and 1,000 digits to the right of the decimal point. (You can specify up to 10,000 digits in an @EVAL calculation by using the =x,y option.)

The format for this option is /Fx.y, where the x value sets the minimum number of digits to the right of the decimal point and the y value sets the maximum number of digits. You can use =x,y instead of =x.y if the comma is your decimal separator. Both values can range from 0 to 10. You can specify either or both values: /F2.5, /F2, and /F.5 are all valid entries. If x is greater than y, it is ignored; if only x is specified, y is set to the same value (e.g. /F2 is equivalent to /F2.2). See the @EVAL Precision configuration option to set the precision when TCC starts; see the @EVAL function if you want to set the display precision for a single computation.

	/G	[Decimal and thousands separator characters] This option sets the Decimal and Thousands separator characters. The format is /Gxy where "x" is the new decimal separator and "y" is the new thousands separator. Both characters must be included. The only valid settings are /G., (period is the decimal separator, comma is the thousands separator); /G,. (the reverse); or /G0 to remove any custom setting and use the default separators associated with your current country code (this is the default).

The decimal separator is used for @EVAL, numeric IF and IFF tests, version numbers, and other similar uses. The thousands separator is used for numeric output, and is skipped when performing calculations in @EVAL.

	/I	This option allows you to disable or enable internal commands. To disable a command, precede the command name with a minus [-]. To re-enable a command, precede it with a plus [+]. For example, to disable the internal LIST command to force TCC to use an external command:

setdos /i-list

To re-enable all disabled commands use /I*.

	/M	[Edit Mode] This option controls the initial line editing mode. To start in overstrike mode at the beginning of each command line, use /M0 (the default). To start in insert mode, use /M1). See also: the Edit Mode configuration option.

	/N	[NoClobber] This option controls output redirection. /N0 means existing files will be overwritten by output redirection (with >) and that appending (with >>) does not require the file to exist already. This is the default. /N1 means existing files may not be overwritten by output redirection, and that when appending the output file must exist. A /N1 setting can be overridden with the [!] character. See also: the Protect Redirected Output File configuration option.

	/P	[Parameter Character] This option sets the character used after a percent sign to specify all or all remaining command line parameters in a batch file or alias. The default value is the dollar sign [$]. The parameter character is saved by SETLOCAL and restored by ENDLOCAL.

	/S	[Insert and Overstrike Cursor] The cursor size is entered as a percentage of the total character height. The default values are 10:100 (a 10% underscore cursor for overstrike mode, and a 100% block cursor for insert mode). Because of the way video drivers remap the cursor shape, you may not get a smooth progression in the cursor size from 1% - 100%. (You can disable the cursor by specifying a size of 0:0.)

If either value is -1, TCC will not attempt to modify the cursor shape at all. You can retrieve the current cursor shape values with the %_CI and %_CO internal variables. See also the Overstrike Cursor and Insert Cursor configuration options.

	/V	[Batch Echo] This option controls the default for command echoing in batch files.

		

/V0 disables echoing of batch file commands unless ECHO is explicitly set ON.

/V1, the default setting, enables echoing of batch file commands unless ECHO is explicitly set OFF. See also: the Batch Echo configuration option.

	/X[+|-]n	(expansion and special characters) This option enables and disables alias and environment variable expansion, and controls whether special characters have their usual meaning or are treated as text. It is most often used in batch files to process text strings which may contain special characters.

The features enabled or disabled by /X are numbered (in hex). All features are enabled when TCC starts, and you can re-enable all features at any time by using /X0. To disable a particular feature, use /X-n, where n is the feature number from the list below. To re-enable the feature, use /X+n. To enable or disable multiple individual features, list their numbers in sequence after the + or - (e.g. /X-345 to disable features 3, 4, and 5).

The features are:

	1	All alias expansion

	2	Nested alias expansion only

	3	All variable expansion (includes environment variables, batch file parameters, variable function evaluation, and alias parameters)

	4	Nested variable expansion only

	5	Multiple commands, conditional commands, and piping (affects the command separator, ||, &&, |, and |&)

	6	Redirection (affects < , >, >&, >&>, etc.)

	7	Quoting (affects back-quotes [`] and double quotes ["]) and square brackets)

	8	Escape character

	9	Include lists

	A	User-defined functions

If nested alias expansion is disabled (/X-2), the first alias of a command is expanded but any aliases it invokes are not expanded. If nested variable expansion is disabled (X-4), each variable is expanded once, but variables containing the names of other variables are not expanded further.

For example, to disable all features except alias expansion while you are processing a text file containing special characters:

setdos /x-35678

 ... [perform text processing here]

setdos /x0

A SETLOCAL command will save the current SETDOS /X values for ENDLOCAL to restore.

SETLOCAL

	Purpose:	Save a copy of the current disk drive, directory, environment, alias and function lists, and special characters

	Format:	SETLOCAL

See also: ENDLOCAL.

Usage:

SETLOCAL can be used on the command line, in aliases, and in batch files.

SETLOCAL will save :

●the default disk drive and directory
●the environment,
●the alias list
●the user-defined function list (not in TCC/LE)
●the special character set (command separator, escape character, parameter character, decimal separator, and thousands separator)
●the SETDOS /X setting

After using SETLOCAL, you can change the values of any or all of the above, and later restore the original values with an ENDLOCAL command, or just by exiting the batch file.

SETLOCAL does not save the command history or array variables.

For example, this batch file fragment saves everything, removes all aliases so that aliases will not affect batch file commands, changes the disk and directory, changes the command separator, runs a program, and then restores the original values:

setlocal

unalias *

cdd d:\test

setdos /c~

program ~ echo Done!

endlocal

SETLOCAL and ENDLOCAL may be nested up to 16 levels deep in each batch file. You can also have multiple SETLOCAL / ENDLOCAL pairs within a batch file, and nested batch files can each have their own SETLOCAL / ENDLOCAL pairs.

SETLOCAL does not override the Local Aliases configuration option. Consequently changing aliases inside a SETLOCAL / ENDLOCAL pair affects the definition of aliases of other concurrently executing sessions of TCC.

You can also use SETLOCAL and ENDLOCAL in an alias or at the command line. The maximum nesting level from a command line or alias is 10 levels. Unlike batch files, you are responsible for matching the SETLOCAL / ENDLOCAL calls from an alias or command line; TCC will not perform an automatic ENDLOCAL.

An ENDLOCAL is performed automatically at the end of a batch file, or when returning from a "GOSUB filename". If you invoke one batch file from another without using CALL, the first batch file is terminated, and an automatic ENDLOCAL is performed; the second batch file inherits the settings as they were prior to any SETLOCAL.

You can "export" modified variables from inside a SETLOCAL / ENDLOCAL block. See ENDLOCAL for details.

SHIFT

	Purpose:	Allows the use of more than 512 parameters in a batch file, or iterating through its parameters

	Format:	SHIFT [[-]n | /n]

n Number of positions to shift (an unsigned number), or the position of the parameter to be deleted.

Usage:

SHIFT is provided for compatibility with batch files written for CMD, where it was used to access more than the CMD limit of 10 parameters. TCC supports 4096 parameters (%0 to %4095), so you do not need to use SHIFT for batch files running exclusively under TCC.

SHIFT n moves each of the batch file parameters n positions to the left. The default value for n is 1. For example, SHIFT (with no parameters) makes the parameter %1 become to %0, the parameter %2 becomes %1, etc.

SHIFT -n moves parameters to the right, but it is limited to moving them back to their position on entry to the batch file.

This form of SHIFT also affects the special parameters %n$, %$ and %# (number of command parameters). However, for compatibility with CMD, this form of the SHIFT command does not alter the contents or order of the parameters returned by %*. See Batch File Parameters for details.

For example, create a batch file called TEST.BAT:

echo %1 %2 %3 %4

shift

echo %1 %2 %3 %4

shift 2

echo %1 %2 %3 %4

shift -1

echo %1 %2 %3 %4

Executing the command below produces the following results:

[c:\] test one two three four five six seven

one two three four

two three four five

four five six seven

three four five six

SHIFT /n This form of the command irreversibly deletes parameter %n from the command tail, and shifts all parameters originally to its right 1 position to the left. For example,

shift /2

leaves parameters %0 and %1 unchanged, and moves the value of %3 to position %2, %4 to %3, etc.

This form of SHIFT also affects the special parameters %n$, %$ and %# (number of batch file parameters), and unlike the first form, it also affects %*. See Batch File Parameters for details.

	SHORTCUT	Not in LE

	Purpose:	Create or display a shortcut

	Format:	Creation mode

SHORTCUT command args dir desc link mode [iconfile [iconoffset [hotkey]]]

Display mode

SHORTCUT link

	command	Command the shortcut executes

	args	Command line parameters for command

	dir	Starting directory

	desc	Description

	link	Filename of the .LNK file.

	mode	Initial window mode: 1=normal, 2=minimized, 3=maximized

	iconfile	File containing the icon to use

	iconoffset	Icon offset within iconfile

	hotkey	Hotkey to invoke the shortcut

Usage:

Creation Mode

SHORTCUT creates a Windows shortcut file and places it in the specified directory. You can run any Windows shortcut from TCCby entering the name of the .LNK file on the command line.

SHORTCUT requires a minimum of 6 parameters. To leave a parameter blank, enter an empty string (2 double quotes "" in its place. Any parameter must be enclosed in double quotes if it includes white space or other special characters.

Command is the full path of the executable file to start, or the data file or folder to open. If it is a data file, its extension must be associated with an executable command (see ASSOC) for the shortcut to work.

The args parameter lists any command line parameters which you want to include when command is executed. For example, if command points to a batch file, you might want to include /c in args so that TCC exits immediately when the batch file is completed.

The dir parameter is the path of the directory to which you want Windows to switch when the command starts. If you don't care which directory is used, you can omit this parameter by entering "" in its place.

Desc provides a description that is stored internally in the shortcut. It is displayed when the cursor is moved to the shortcut. If you omit the description, enter ""' in its place.

The link parameter is the drive, path, name and extension of the shortcut file you want to create. The drive and path portion is interpreted according to the usual rules - missing elements default to the current defaults, path is relative to the current default unless it starts with \. The file extension must be .LNK.

Note: If you want the shortcut to appear on the Windows desktop, you should include the full path to one of the desktop directory in the command. In most Windows configurations, that directory can be referenced symbolically as %userprofile\Desktop. Some Windows versions also include an All Users\Desktop directory.

The mode parameter determines how Windows will display the application or folder when you run the shortcut. It must be 1 for a normal window, 2 for a minimized window (normally placed on the taskbar), or 3 for a maximized window.

The two (optional) parameters, iconfile and iconoffset allow you to specify the icon for the shortcut to use. (By default, SHORTCUT will use the default icon in the executable file.)

The final (optional) parameter hotkey specifies the keystroke which will call the shortcut. The keystroke should be entered in the same format as used in KEYSTACK; for example, Ctrl-Alt-B.

Display mode

If you provide a single parameter (a link file name), SHORTCUT will display the values for that link.

SHRALIAS

	Purpose:	Retains global command history, directory history, alias and user function lists in memory when TCC is not running

	Format:	SHRALIAS [/U]

/U(nload)

Usage:

When you close all TCC sessions, the memory for the global command history, global directory history, global alias and global function lists is released. If you want the lists to be retained in memory even when TCC is not running, you need to execute SHRALIAS.

The SHRALIAS command starts and initializes SHRALIAS.EXE, a small program which remains active and retains global lists when TCC is not running. SHRALIAS.EXE must be stored in the same directory as TCC or in a directory on your PATH. You cannot run SHRALIAS.EXE directly, it must be invoked internally by the SHRALIAS command.

Once SHRALIAS has been executed, the global lists will be retained in memory until you use SHRALIAS /U to unload the lists, or until you shut down your operating system.

If you have an environment variable named SHRALIAS_SAVE_PATH, SHRALIAS will save the alias, history, dirhistory, and function lists to the path specified by SHRALIAS_SAVE_PATH when SHRALIAS exits. The files will be saved in Unicode format as alias.sav, history.sav, dirhistory.sav, and function.sav.

SHRALIAS will not work unless you have at least one copy of TCC running with global alias, global function, global command history, or global directory history enabled. If no global list is found, SHRALIAS will display an error.

If you start SHRALIAS from a temporary TCC session which exits after starting SHRALIAS, the TCC session may terminate and discard the shared lists before SHRALIAS can attach to them. In this case SHRALIAS.EXE will not be loaded. If you experience this problem, add a short delay with the DELAY command after SHRALIAS is loaded and before your session exits.

SHRALIAS will not work in detached sessions (i.e., those started with DETACH, or with the AT utility), due to security issues within Windows. Therefore the SHRALIAS command is ignored for detached sessions.

For more information about global histories, function and alias lists, see Local and Global History Lists, Local and Global Functions, Local and Global Aliases.

Option:

	/U	Shuts down SHRALIAS.EXE. All global command history, directory history, function and alias lists will be released from memory when the last copy of TCC exits unless SHRALIAS is loaded again before that time.

	SMPP	Not in LE

	Purpose:	Send simple text (SMS) messages, typically to text-enabled cellular phones and similar devices

	Format:	SMPP server username password recipient message

	server	SMS server name

	username	User name for the SMS server

	password	Password for the SMS server

	recipient	Phone number or dotted IP of an SMS-enabled device

	message	The message to send

See also: SENDMAIL, SNPP.

Usage:

SMPP sends message through standard Internet Paging Gateways. Depending on your system configuration, you may need to start an Internet connection before using SMPP. See your service provider for specific requirements.

	SNMP	Not in LE

	Purpose:	Send SNMP traps

	Format:	SNMP remotehost trapOID "value" [username password]

	remotehost	Host name receiving the trap

	trapOID	OID of the trap

	value	Description

	username	User name for SNMP v3 trap

	password	Password for SNMP v3 trap

Usage:

SNMP normally sends an SNMPv2 trap. If you specify a user name and password it will send an SNMPv3 trap.

 The following symbolic names are recognized and translated:

	Trap Name	OID

	coldStart	1.3.6.1.6.3.1.1.5.1

	warmStart	1.3.6.1.6.3.1.1.5.2

	linkDown	1.3.6.1.6.3.1.1.5.3

	linkUp	1.3.6.1.6.3.1.1.5.4

	authenticationFailure	1.3.6.1.6.3.1.1.5.5

	egpNeighborLoss	1.3.6.1.6.3.1.1.5.6

	enterpriseSpecific	1.3.6.1.6.3.1.1.5.7

	SNPP	Not in LE

	Purpose:	Send messages to alphanumeric pagers

	Format	SNPP server pagerid message

	server	The SNPP server name

	pagerid	The ID of the pager to receive the message

	message	The message to send

See also: SENDMAIL, SMPP.

Usage:

SNPP sends message to alphanumeric pagers through standard Internet Paging Gateways. Depending on your system configuration, you may need to start an Internet connection before using SNPP.

START

	Purpose:	Start a program in another session or window

	Format:	START ["title"] [/AFFINITY=n /ABOVENORMAL /BELOWNORMAL /DESKTOP=name /ELEVATED /HIGH /LOW /NORMAL /REALTIME /B /C /K /Dpath /I /FS /INV /MAX /MIN /NODE n /POS=x,y,width,height /L /LA /LD /LF /LH /MONITOR=n /RUNAS user password /SEPARATE /SHARED /SIZE=rows,cols /TAB /TABNA /WAIT /WIN /PGM] "progname" [command]

	title	Title to appear on title bar

	path	Startup directory

	progname	Program name (not the session name)

	command	Command to be executed by progname

	/ABOVENORMAL

	Priority

	/LOW

	Priority

	/AFFINITY

	Multiple CPUs

	/MAX

	Maximized window

	/B

	No new console

	/MIN

	Minimized window

	/BELOWNORMAL

	Priority

	/MONITOR

	Monitor to use

	/C

	Close when done

	/NODE

	NUMA node

	/D

	Startup directory

	/NORMAL

	Priority

	/DESKTOP

	Start desktop

	/PGM

	Program name

	/ELEVATED

	Start as admin

	/POS

	Position of window

	/FS

	Full screen window

	/REALTIME

	Priority

	/HIGH

	Priority

	/RUNAS

	Run as other user

	/I

	Inherit environment

	/SEPARATE

	Separate session

	/INV

	Invisible window

	/SHARED

	Shared session

	/K

	Keep when done

	/SIZE

	Screen buffer size

	/L

	Local lists

	/TAB

	Start in Take Command tab window

	/LA

	Local aliases

	/TABNA

	Start in inactive Take Command tab

	/LD

	Local directory history

	/WAIT

	For session to finish

	/LF

	Local functions

	/WIN

	Windowed session

	/LH

	Local history list

	

	

See also: DETACH.

Usage:

START is used to begin a new session, and optionally run a program in that session. If you use START with no parameters, it will begin a new TCC session. If you add a command, START will begin a new session or window and execute that command.

START will return to the TCC prompt immediately (or continue a batch file), without waiting for the program to complete, unless you use /WAIT.

If title is included, it will appear on the task list and Alt-Tab displays instead of the program name. Title must be enclosed in double quotes, and cannot exceed 127 characters.

START always assumes that the first quoted string on the command line is the title. If there is a second quoted string it is assumed to be the command. As a result, if the name of the program you are starting contains white space (and must therefore be quoted), and you don't specify a title, START will interpret the first quoted string as the title, not the command. To address this, use the /PGM switch to indicate explicitly that the quoted string is the program name, or include a title before the program name. For example, to start the program C:\Program Files\Proc.Exe you could use either of the first two commands below, but the third command would not work:

Valid

start /PGM "C:\Program Files\Proc.Exe"

start "test" "C:\Program Files\Proc.Exe"

Invalid

start "C:\Program Files\Proc.Exe"

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

START offers a large number of switches to control the session you start. In most cases you need only a few switches to accomplish what you want. The list below summarizes the most commonly used START options, and how you can use them to control the way a session is started.

Window controls: /FS, /MAX, /MIN, and /POS allow you to start a character-mode windowed session in full screen mode, a maximized window, a minimized window, or a window with a specified position and size, respectively. /INV starts an invisible window. /B starts the program in the current console window. The default is /WIN, which permits Windows to choose the position and size of the non-maximized window. If you start a graphics mode program, only /MAX and /POS are effective, and the position and size information associated with /POS is ignored. Windows will use the size, but not the position of the same program when last used in RESTORE mode. If you want to control the window size and placement of a graphics mode program, use the ACTIVATE command after the window has been opened.

Session priority: The options /ABOVENORMAL, /BELOWNORMAL, /HIGH, /LOW, /NORMAL and /REALTIME allow you to select the new session's priority.

Program controls.

If progname is in the "App Paths" registry, its associated "Path" value (if it exists) is inserted into the beginning of the PATH in the environment inherited by the program.

If progname is the name of a directory instead of an executable program, TCC will start your default Windows shell (usually Windows Explorer) in the specified directory.

Progname inherits the environment as it exists when START is executed, unless /I is used to select the default environment.

If progname specifies TCC.EXE, the options /L, /LA, /LD, /LF and/LH provide control over the use of local or global lists. See details below.

The initial directory for progname is the current default directory, unless otherwise specified using the /D option.

If progname is a 16-bit Windows application, by default is starts in a shared virtual machine. You may use the /SEPARATE option to force creation of a unique virtual machine.

When command is finished, /C closes the session (the default for Windows sessions), while /K keeps it and displays the prompt (the default for character mode sessions).

The Process ID of the detached session or program is returned in the _STARTPID internal variable.

Options:

	/=	Display the START command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/ABOVENORMAL	Set the priority above normal.

		

	/AFFINITY=n	On multiple processor machines, set the processor affinity for this process. /AFFINITY takes a hex argument for the processor mask -- i.e., to set the affinity for cpu's 1 and 4, set /AFFINITY=5.

	/B	The program is started without creating a new window or console, i.e. in the TCC window. Normally, the application is started in its own window. For compatibility with CMD, /B also disables Ctrl-C processing for the program.

	/BELOWNORMAL	Set the priority below normal.

	/C	Start the program in a new TCC window and close the TCC window when the application ends.

	/D	Specifies the startup directory. Include the directory name immediately after the /D, with no intervening spaces or punctuation.

	/DESKTOP	Start the program on the specified desktop

	/ELEVATED	Start the program elevated, with full admin privileges. (Windows Vista or later only.) /ELEVATED cannot be used in combination with /RUNAS.

	/FS	Start the console application in full-screen mode. (Not supported in Windows Vista or later.)

	/HIGH	Start the window at high priority.

	/I	Inherit the default (startup) environment, rather than the current environment. (Only supported in Vista and later.)

	/INV	Start the session or window as invisible. No icon will appear and the session will only be accessible through the Task Manager or Window List.

	/K	Start the program in a new TCC window and keep the TCC window open when the program ends. (Use the EXIT command to close the TCC window.)

	/L	Start TCC with local alias, function, history and directory history lists. This option is equivalent to specifying all of /LA, /LD, /LF, and /LH (below).

	/LA	Start TCC with a local alias list. See ALIAS for information on local and global alias lists.

	/LD	Start TCCwith a local directory history list. See Local and Global History Lists for information on local and global directory history lists.

	/LF	Start TCC with a local function list. See FUNCTION for information on local and global function lists.

	/LH	Start TCC with a local history list. See Local and Global History Lists for information on local and global history lists.

	/LOW	Start the window at low priority.

	/MAX	Start the session or window maximized.

	/MIN	Start the session or window minimized.

	/MONITOR=n	Start the program on the specified monitor (1 to n). This will only work with apps that do not try to position their window at startup, and you cannot combine this switch with /POS.

	/NODE n	Start the program using the specified NUMA node (n is a decimal integer).

	/NORMAL	Start the window at normal priority.

	/PGM	The quoted string following this option is the program name. Any additional text beyond the quoted string is passed to the program as its parameters, so to use other START switches you must place them before /PGM which must be the last option for START. You can use /PGM to allow START to differentiate between a quoted long filename and a quoted title for the session.

	/POS=left,top,width,height	Start the window at the specified screen position. The top left corner of the screen is 0,0.

	/REALTIME	Start the window at realtime priority.

	/RUNAS	Run a command in the context of the specified user. The syntax is:

/RUNAS user@domain password .

If "domain" is not specified, the local database is checked for the username. If you specify * for the password, START will prompt you to enter the password. (Useful when you don't want to put the password in a batch file.) /RUNAS cannot be used in combination with /ELEVATED.

	/SEPARATE	Start a 16-bit Windows application in a separate virtual machine. Normally, all 16-bit Windows applications are started in the same virtual machine, see /SHARED..

	/SHARED 	Start a 16-bit Windows application in the shared virtual machine (default). See also /SEPARATE. Included only for compatibility with CMD.

	/SIZE=rows,columns	Specifies the screen buffer size. Rows is the number of text rows and columns is the number of text columns. (This is not the size of the session's window.)

	/TAB	Start the command in a new TCC tab window, and activate the new window. The command will usually be a Windows console mode application, but Take Command can also run many simple GUI applications in a tab window (provided the application does not have multiple parent windows).

	/TABNA	Start the command in a new TCC tab window, but don't activate the new window.

	/WAIT	Wait for the new session or window to finish before continuing.

	/WIN	Start the new console session as a window (this is the default.) See also /FS and /B.

	STATUSBAR	Not in LE

	Purpose:	Display a message on the Take Command status bar

	Format:	STATUSBAR message

	message	Text to display.

Usage:

STATUSBAR parses and expands message, and displays it on the Take Command status bar.

SWITCH

	Purpose:	Select commands to execute in a batch file based on a value

	Format:	SWITCH expression

CASE value1 [.OR. value2 [.OR. value3 ...]]

 [commands]

CASE value4

 [commands]

CASEALL

[commands]

[DEFAULT

 commands]

ENDSWITCH

	expression	An environment variable, internal variable, variable function, text string, or a combination of these elements, that is used to select a group of commands.

	value1, value2	A value to test or multiple values connected with .OR.

	commands	One or more commands to execute if the expression matches the value. If you use multiple commands, they must be separated by command separators or placed on separate lines of a batch file.

See also: IF and IFF.

Usage:

SWITCH can only be used in batch files. It allows you to select a command or group of commands to execute based on the possible values of a variable or a combination of variables and text.

The SWITCH command is always followed by an expression created from environment variables, internal variables, variable functions, and text strings, and then by a sequence of CASE statements matching the possible values of expression, an optional DEFAULT statement, and terminated by an ENDSWITCH statement. Each CASE statement and the DEFAULT statement may be followed by one or more commands.

TCC evaluates expression, and sequentially compares it with the list of values in the CASE statements, starting with the first one. Comparison rules are the same ones used for the EQ relational operator; see Numerical and String Comparisons for details. If a match is found, the commands following the matched CASE statement are executed, and the batch file continues with the commands that follow ENDSWITCH. If there are any matches in subsequent CASE statements, they are ignored. The value in a CASE statement can be literals, or variables or functions (which will be expanded prior to the comparison with the SWITCH expression).

The optional CASEALL statement should follow all of the CASE statements but precede DEFAULT. If any preceding CASE block was executed, CASEALL will also be executed; otherwise it is ignored.

If during the search for a match the DEFAULT statement is encountered, the commands, if any, following it are executed, and the batch file continues with the commands that follow ENDSWITCH. Any CASE statements after the DEFAULT statement are ignored.

SWITCH commands can be nested.

You can exit from all SWITCH / ENDSWITCH processing by using GOTO to a line past the last ENDSWITCH.

Restrictions

Each SWITCH, CASE, DEFAULT and ENDSWITCH statement must be on a separate line, and may not be followed by a command separator. (This is the reason SWITCH cannot be used in aliases.) There is no restriction on grouping and command separator use in the commands for a CASE or DEFAULT.

You can link a list of values in a single CASE statement with .OR., but not with .AND. or .XOR..

Examples

The batch file fragment below displays one message if the user presses A, another if the user presses B or C, and a third one if the user presses any other key:

inkey Enter a keystroke: %%key

switch %key

case A

 echo It's an A

case B .or. C

 echo It's either B or C

default

 echo It's none of A, B, or C

endswitch

In the example above, the value of a single environment variable was used for expression. However, you can use other kinds of expressions if necessary. The first SWITCH statement below selects a command to execute based on the length of a variable, and the second bases the action on a quoted text string stored in an environment variable:

switch %@len[%var1]

case 0

 echo Missing var1

case 1

 echo Single character

...

endswitch

switch "%string1"

case "This is a test"

 echo Test string

case "The quick brown fox"

 echo It's the fox

...

endswitch

	SYNC	Not in LE

	Purpose:	Synchronize two directories

	Format:	SYNC [/A:... /C /D /E /F /G /J /K /L /M /N[enst] /O /O:[-]adegnrstu /P /Q /R /S[[+]n] /T /V /W /X /Y /Z] dir1 dir2

	dir1	First directory (and source for a /W)

	dir2	Second directory (and target for a /W)

	/A:...

	Attribute switch

	/O

	Only if no target file

	/C.

	Changed source files

	/O:...

	Sort order

	/D

	Copy encrypted files

	/P

	Prompt

	/E

	No error messages

	/Q

	Quiet

	/F

	No empty subdirectories

	/R

	Replace

	/G

	Display percentage completed

	/S

	Subdirectories included

	/H

	H(idden included)

	/T

	Totals

	/I"text"

	Match description

	/V

	Verify

	/J

	Restartable copy

	/W

	Delete non-matching target

	/K

	Keep RDONLY attribute

	/X

	Clear archive bit

	/L

	ASCII-mode FTP transfer

	/Y

	Suppress prompt

	/M

	Modified files (not Archived)

	/Z

	Overwrite read-only

	/N

	Disable

	

	

See also: COPY and MOVE.

File Selection

Supports command dialog, extended wildcards and ranges.

Internet: Can be used with FTP servers.

Usage:

SYNC will synchronize two directories, copying the updated files from each directory to the other. If you don't specify any arguments, SYNC will display its command dialog.

SYNC sets three internal variables:

	%_sync_dirs	The number of directories created

	%_sync_files	The number of files copied

	%_sync_errors	The number of errors

Options:

	/=	Display the SYNC command dialog to help you set the directory and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. See the cautionary note under Advanced Features above before using /A: when both dir1 and dir2 contain file descriptions. Hidden or system files selected by this option overwrite hidden or system files in the target directory.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/C	Copy files only if the destination file exists and is older than the source file. This option is useful for updating the files in one directory from those in another without copying any files not already in the target directory.

	/D	(Windows XP+ Only) Force copy of an encrypted file even when the target will be decrypted.

	/E	Suppress all non-fatal error messages, such as File not found or Can't copy file to itself. Fatal error messages, such as Drive not ready, will still be displayed. This option is most useful in batch files and aliases.

	/F	When used with /S, SYNC will not create any empty subdirectories.

	/G	Displays the percentage copied, the transfer rate (in Kbytes/second), and the estimated time remaining. Useful when copying large files across a network or via FTP to ensure the copy is proceeding. When /V is also used, reports percentage verified.

	/H	Copy all matching files including those with the hidden and/or system attribute set. See the cautionary note under Advanced Features above before using /H when both dir1 and dir2 contain file descriptions.

	/I"text"	Select source files by matching text in their descriptions. See Description Ranges for details.

	/J	Copy the files in restartable mode. The copy progress is tracked in the destination file in case the copy fails. The copy can be restarted by specifying the same source and destination file names.

	/K	(Keep read-only attribute) SYNC normally maintains the hidden and system attributes, sets the archive attribute, and removes the read-only attribute on the target file. /K tells SYNC to also maintain the read-only attribute on the destination file.

	/L	Perform FTP transfers in ASCII mode, instead of the default binary mode.

	/M	Copy only those files with the archive attribute set, i.e., those which have been modified since the last backup. The archive attribute of the source file will not be cleared after copying; to clear it use the /X switch, or use ATTRIB.

	/N	Do everything except actually perform the copy. This option is useful for testing the result of a complex SYNC command. /N displays how many files would be copied. /N does not prevent creation of destination subdirectories when it is used with /S.

A /N with one or more of the following arguments has an alternate meaning:

	d	Skip hidden directories (when used with /S)

	e	Don't display errors

	j	Skip junctions (when used with /S)

	n	Don't update the file descriptions

	s	Don't display the summary

	t	Don't update the CD / CDD extended directory search database (JPSTREE.IDX)

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Ask the user to confirm each source file. Your options at the prompt are explained in detail under Page and File Prompts. See also: the /Q option below.

	/Q	Don't display filenames, percentage copied, total number of files copied, etc... When used in combination with the /P option above, it will prompt for filenames but will not display the totals. This option is most often used in batch files. See also /T.

	/R	Prompt the user before overwriting an existing file. Your options at the prompt are explained in detail under Page and File Prompts.

	/S	Copy the subdirectory tree starting with the files in the source directory plus each subdirectory below that. If the destination subdirectories don't exist, SYNC will attempt to create them. If SYNC /S creates one or more destination directories, they will be added automatically to the extended directory search database.

If you attempt to use SYNC /S to copy a subdirectory tree into part of itself, SYNC will detect the resulting infinite loop, display an error message and exit.

If you specify a number after the /S, SYNC will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, SYNC will not sync any files until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not sync anything in \a or \a\b.

	/T	Turns off the display of filenames, like /Q, but does display the total number of files copied.

	/V	Verify each disk write by performing a true byte-by-byte comparison between the source and the newly-created target file. This option will significantly increase the time necessary to complete a SYNC command.

	/W	Delete files in dir2 that do not exist in dir1.

	/X	Clear the archive attribute from the source file after a successful copy.

	/Y	If you have the COPY Prompt on Overwrite option set, you can suppress the prompt with /Y.

	/Z	Overwrite destination files regardless of their attributes. Without this option, SYNC will fail with an "Access denied error" if the destination file has its read-only attribute set, or (depending on other options) its hidden or system attribute set. Required to overwrite read-only targets regardless of other options. Required to overwrite hidden or system targets unless the source also has the attribute, and either /H or /A: is used to select it.

	TAIL	Not in LE

	Purpose:	Display the end of the specified file(s)

	Format:	TAIL [range ... [/I"text"]] [/A:[attrlist] /B /Cnn /F /N+x /N[]n /O:[-]adegnrstu /P /Q /V] {@file|file}...

	file	The file or list of files that you want to display

	@file	A text file containing the name of a file to display in each line (see @file lists for details)

	/A: (Attribute select)	/N(umber of lines)

	/B(ell)	/O:... (Order)

	/C (number of bytes)	/P(ause)

	/F(ollow)	/Q(uiet)

	/I"text" (description range)	/V(erbose)

	/N+x (skip x lines before display)	

See also: HEAD, LIST, and TYPE.

File Selection

Supports command dialog, extended wildcards, ranges, multiple file names, and include lists.

Internet: Can be used with FTP servers, including HTTP/HTTPS files, e.g.

tail "http://jpsoft.com/notfound.htm"

Usage:

The TAIL command displays the last part of a file or files. It is normally only useful for displaying ASCII text files (i.e. alphanumeric characters arranged in lines separated by CR/LF). Executable files (.EXE) and many data files may be unreadable when displayed with TAIL because they include non-alphanumeric characters or unusual line separators.

You can press Ctrl-S to pause TAIL's display and then any key to continue.

The following example displays the last 15 lines of the files MEMO1 and MEMO2:

tail /n15 memo1 memo2

To display text from the clipboard use CLIP: as the file name. CLIP: will not return any data if the clipboard does not contain text. See Highlighting and Copying Text for additional information on CLIP:.

TAIL sets two internal variables:

	%_tail_files	The number of files displayed

	%_tail_errors	The number of errors

●FTP Usage

TAIL can also display files on FTP servers. For example:

tail "ftp://ftp.microsoft.com/index"

You can also use the IFTP command to start an FTP session on a server, and then use an abbreviated syntax to specify the files and directories you want.

●NTFS File Streams

TAIL supports file streams on NTFS drives. You can type an individual stream by specifying the stream name, for example:

tail streamfile:s1

●Pipes

TAIL can optionally be used with an input pipe. For example:

dir | tail /n2

This is not ordinarily feasible in Windows because pipes can't be "rewound", and therefore the pipe has to be written to a temporary memory buffer and the TAIL taken from there. Consequently, this limits the amount you can actually display in TAIL to less than a million bytes when the input is piped.

Examples

	tail /n 5 xxx	displays the last 5 lines of file xxx

	tail /n+20 /n 999999 xxx	skip 20 lines, then display 999999 lines of xxx

	tail /n+1001 /n 1 xxx	skip 1001 lines, then display 1 line of xxx

	set x=%@execstr[tail /n+1001 /n 1 xxx]	sets x to the contents of the 1002-nd line of xxx

	set x=%@execstr[tail /n 2 xxx]	sets x to the contents of the penultimate line of xxx

Options:

	/=	Display the TAIL command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:[attributelist]

		Select only those files that match the specified attribute(s).See Attribute Switches for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	Ignore bell (ASCII 7) characters.

	/Cnn[b|k|m]

		Display nn bytes, 512-byte blocks, kilobytes, or megabytes.

	/F	Continuously monitor the file and display new lines until the command is interrupted, e.g, using Ctrl-C or Ctrl-Break..

	/I"text"	

		Select files by a descriptor range. See the link for details.

	/N n	Display n lines. The default is 10. Space between the option switch /N and the number n is optional. If /N is specified without n, it is equivalent to specifying 0 lines to be displayed, and the command will not generate output, unless /V is also specified.

	/N+x	Skip x lines from the beginning of the file, then start displaying lines. If the /N+ option is specified without specifying x, the option is ignored. This option does not affect the number of lines displayed (unless the start line is too close to the end of file)

		Example: TAIL /N+5 file will display 10 lines (the default) after skipping 5 lines.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Pause and prompt after displaying each page.

	/Q	Do not display a header for each file. This is the default behavior, but an explicit /Q may be needed to override an alias that forces /V.

	/V	Display a header for each file.

	TAR	Not in LE

	Purpose:	Add, update, or delete files in a .tar archive

	Format:	TAR [/A:[[-][+]rhsdaecjot] /A /C /D /F /G /M /O:[-]adegnrstu /Q /R /TEST /U /V] tararchive [@file] file...

	tararchive	The tar file to work with

	file	The files(s) to be added to the tar archive

	/A:... (attribute switch)	/O:... (sort order)

	/A(dd)	/P(rogress)

	/C(ontents)	/R(ecurse)

	/D(elete)	/TEST

	/F(reshen)	/U(pdate)

	/G(zip)	/V(iew)

	/M(ove)

		

See also UNTAR.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Usage:

TAR is compatible with archives created by the Linux / UNIX tar utility. Unless you use the /G option, the tar file will be uncompressed. If you don't specify any arguments, TAR will display its command dialog.

You can specify a pathname for tararchive. If you don't provide an extension, and the filename as entered doesn't exist, TAR adds ".tar". If you don't specify an operation, TAR will default to Add.

TAR sets two internal variables:

	%_tar_files	The number of files archived

	%_tar_errors	The number of errors

Option:

	/=	Display the TAR command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/A	Add the specified file(s) to the tar file. (This is the default.)

	/C	Display (on standard output) the contents of a file in the tar archive.

	/D	Delete the specified file(s) from the tar file.

	/F	Update only those files that currently exist in the tar file, and which are older than the files on disk.

	/G	When all the files have been added to the archive, compress the entire archive using gzip compression and create a .tar.gz archive.

	/M	Delete the files from the disk after adding them to the tar file.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the files will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Display the progress (0 - 100%) for each file as it is archived.

	/Q	Don't display the files being archived.

	/R	If the argument is a subdirectory, copy all of the files in that subdirectory and all of its subdirectories to the tar archive.

	/TEST	Test the integrity of the TAR file (header and contents). Any errors will be displayed on STDERR.

	/U	Update files which either don't exist in the tar, or which are older than the files on disk.

	/V	View the list of files in the tar file (date, time, size, and filename).

	TASKBAR	Not in LE

	Purpose:	Call Windows Taskbar functions

	Format:	TASKBAR command

Usage:

TASKBAR calls the Windows Taskbar to display dialogs or to manipulate the top level windows.

Options:

	Cascade	Cascade all top level windows.

	Computers	Display the Find Computers dialog (requires Active Directory Domain Services)

	Control	Display the Control panel.

	Customize	Display the Customize Taskbar dialog.

	Date	Display the Date and Time dialog.

	Desktop	Show the Windows desktop.

	Help	Display the Help and Support Center dialog.

	HTile	Horizontally tile all top level windows.

	Lock	Toggle the taskbar lock.

	Min	Minimize all windows.

	Max	Maximize all windows.

	Printers	Display the Printers and Faxes dialog.

	Properties	Display the Taskbar Properties dialog.

	Run	Display the Run dialog.

	Search	Display the Search dialog.

	Shutdown	Display the Shut Down Computer dialog.

	Start	Display the Start Menu.

	Task	Display the Windows Task Manager dialog.

	VTile	Vertically tile all top level windows.

	TASKDIALOG	Not in LE

	Purpose:	Display a Windows Task Dialog

	Format:	TASKDIALOG [/I /S /W] buttontype "title" "instruction" [text]

	buttontype	One or more of OK, YES, NO, RETRY, CANCEL, and/or CLOSE

	title	Text for the task dialog title

	instruction	Text for the main instruction

	text	Optional additional text that appears below the main instruction, in a smaller font

	/I(nformation icon)	/W(arning icon)

	/S(top icon)	

See also: INKEY, INPUT, MSGBOX and QUERYBOX.

Usage:

TASKDIALOG requires Windows Vista or later.

The button the user chooses is indicated using the internal variable %_?. Be sure to save the return value in another variable or test it immediately; because the value of %_? changes with every internal command. The following list shows the value returned for each button:

	response

	%_?

	Yes or OK

	10

	No

	11

	Cancel or Close

	12

	Retry

	13

If there is an error in the TASKDIALOG command itself, %_? will be set to 2.

For example, to display a Yes / No message box and take action depending on the result, you could use commands like this:

taskdialog yes no "Copy" "Copy all files to A:?"

if %_? == 10 copy * a:

Since TASKDIALOG doesn't write to standard output, it disables redirection allow you to enter the redirection characters (< and >) in your prompt text. If you want to use pipe characters or command separators, you will need to escape or quote them.

TASKDIALOG creates a popup dialog box. If you prefer to retrieve input from the command line, see the INKEY and INPUT commands.

Options:

	/I	Display an icon consisting of a lower case "i" in a circle in the message box.

	/S	Display a stop sign icon in the message box.

	/W	Display an exclamation point icon in the message box.

	TASKEND	Not in LE

	Purpose:	End the specified process

	Format:	TASKEND [/F] pid | name | "title"

	pid	The process ID

	name	The process name

	title	Window title

/F(orce)

See also: TASKLIST, _PID, _DETACHPID, _WINTITLE

Usage:

Windows applications (and Windows itself) run as one or more processes or tasks. You can use the TASKLIST command to display a list of currently-running tasks. TASKEND can be used to end a task.

When you use TASKEND, you must specify the task you want to end by process ID number, by name (usually the name of the executable file that started the task) or by window title. If you use the Window title to specify the task, you must enclose it in double quotes. You can use wild cards and extended wildcards in the window title.

If you use TASKEND without the /F option, the effect is much the same as closing a window by clicking the close button. The application is notified of the request to end the task and has an opportunity to save data, prompt whether you mean to shut down, and perform other normal "close" operations.

If you use the /F option with TASKEND, the application is shut down abruptly and has no chance to save data. Use of the /F option is only recommended for unusual circumstance and advanced users because of the possibility of data loss.

Using this command may require the Windows DEBUG privilege, so (depending on the Windows version and the process you are trying to end) it may not work in a limited user account.

Option:

	/F	Forces the task or application to end immediately, with no opportunity to save data, prompt the user, etc. Use this option with caution; it can possibly lead to system instability and data loss or corruption.

	TASKLIST	Not in LE

	Purpose:	Display a list of active processes

	Format:	TASKLIST [/C /D /L /M /N /O /P /T] [name]

	name	Process name or window title

	/C (Priority)	/N (class names)

	/D (show modules)	/O(rder by PID)

	/L (Startup command)	/P(ause)

	/M(emory)	/T(ime)

See also: TASKEND.

Usage:

Windows programs run as one or more processes or tasks. You can use the TASKLIST command to display a list of currently-running tasks. TASKLIST displays the process ID number for each running task, the name of the executable program that started the task, and, when available, the window title. You can also optionally display the process priority, the modules (dll's) loaded by that process, the startup command line, the memory usage, the class name of the main window of the process, and the cpu usage.

TASKLIST will display a * after the process ID of the current process.

You can limit the output of TASKLIST by specifying the task name that you wish to see. The name can contain wildcards and extended wildcards.

Options:

	/=	Display the TASKLIST command dialog to help you set the command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/C	Display the current priority class for each process.

	/D	Display the loaded modules for each process.

	/L	Display the startup command line for each process.

	/M	Display the memory usage for each process.

	/N	Display the class name for the main window of each process.

	/O	Sort the output by Process ID (PID).

	/P	Wait for a key to be pressed after each screen page before continuing the display.

	/T	Display the system and user cpu usage for each process.

	TCDIALOG	Not in LE

	Purpose:	Display the command dialogs

	Format:	TCDIALOG command

	command	The dialog for the command to execute

See also: Command Dialogs.

Usage:

Most of the file commands (i.e., COPY, DEL, DIR, MOVE, REN, etc.) have an associated dialog that will interactively build the command line for you, without requiring you to memorize switches and the order of options. You can invoke those dialogs with TCDIALOG, with the /= command line option, or with Alt-F1 at the command line.

If command does not have an associated dialog, TCDIALOG returns a usage error.

For example, to display the dialog for COPY:

tcdialog copy

[image: clip0023]

The "Show" button in a command dialog will show all of the files that match the file specification in the edit field to the left. This may include subdirectories if you've selected that option (for example, in COPY or DIR), so it may take a few seconds to populate the list before displaying it.

The internal commands that have a command dialog are:

ATTRIB

COPY

DEL

DESCRIBE

DIR

DIRHISTORY

EVENTLOG

GLOBAL

HEAD

HISTORY

IFTP

JABBER

LIST

MD

MKLINK

MKLNK

MOVE

PLAYAVI

PLAYSOUND

PLUGIN

PRIORITY

RD

REN

SELECT

SENDHTML

SENDMAIL

START

SYNC

TAIL

TAR

TASKLIST

TOUCH

TREE

TYPE

UNTAR

UNZIP

VIEW

ZIP

TCFILTER

	Purpose:	Display or change the Take Command List View filter

	Format:	TCFILTER [/C] filter

	filter	A wildcard string or regular expression

/C(lear)

See also: _TCFILTER

Usage:

TCFILTER allows you to set the filter used by the Take Command List View to determine what file and folder names to display. For example, to only display files with a .DOC extension in the List View:

tcfilter *.doc

The filter can either use the TCC extended wildcard syntax or (if preceded by ::) a regular expression. See Regular Expression Syntax for details on valid regular expressions.

Option:

	/C	Clear the current filter

TCTOOLBAR

	Purpose:	Change the Take Command tool bar buttons

	Format:	TCTOOLBAR [/C /I /R filename /U /W filename] tab button, flags, icon, label, title, directory, command

	tab	The label of the toolbar tab

	button	The button number (1 - 50)

	flags	0=Start new tab, 1=Send to current tab, 2=Change Folders directory

	icon	Icon to display on button

	label	The button label

	title	The tab title (when starting new tabs)

	directory	The startup or Folders directory

	command	The command to execute or keystrokes to send

	/C(lear)	/U(pdate)

	/I (reset toolbar)	/W (save to file)

/R(ead file)

Usage:

TCTOOLBAR lets you configure the Take Command tab tool bar buttons (you can also use the Configure Tool Bar dialog available from the Options menu). The changes you make can be temporary or, with the /U option, written to the TCMD.INI file so that they will be loaded the next time Take Command starts.

There are a maximum of 50 buttons on the tab tool bar. The button parameter must be a number from 1 to 50 to select the button you want to work with. If you enter a command like

tctoolbar 1

the button with that number will be removed from the tool bar. If you want to add or modify a button, you must include the flags, icon and/or label, and command parameters.

The flags parameter specifies what happens when you click the button. If flags is 256, Take Command will use command to start a new tab (or a new window if command is a GUI app). If flags is 257, the command text (in KEYSTACK format) is sent to the current tab. If flags is 258, the button will change the default directory in the Folders view. You can optionally add 4 to the value of flags to insert a separator before the button.

The icon parameter allows you to specify the name of an icon file (or an executable file if you want to use its default icon). The icon will be displayed to the left of the button label. If you have entered a label, the icon parameter is optional.

The label parameter specifies the text that appears on the button. If the text contains white space or other special characters, it must be enclosed in double quotes. If you have entered an icon file, label is optional.

The optional title parameter specifies the new tab title (if flags=0).

If you're starting a new window, the directory parameter will set the startup directory for the command. If you are changing the Folders directory, the directory parameter specifies the new directory.

The command parameter contains the command to start a new tab (if flags=0), or the keystrokes to be sent to the current tab in KEYSTACK format (if flags=1) when the button is clicked.

Option:

	/C	Clear all entries from the toolbar.

	/I	Reset the toolbar to the definition in TCMD.INI. (Not available in TCC/LE.)

	/R	Load the toolbar button definitions from the specified file. /R will not clear an existing toolbar; you must use /C for that. The file should be in the same format as the [Toolbarn] section in TCMD.INI:

[Toolbar1]

Title=MyTabs

Bn=flags,icon,label,title,directory,command

n - the button number (1 - 50)

flags - 256=start new tab (or new window if a GUI app), 257=send keystrokes to current tab, 258=Change Folders directory

icon - the icon to display on the label (leave empty for no icon)

label - the label to display on the button

title - the tab title (if starting a new tab)

directory - startup directory or Folders directory

command - the command to execute

The command and directory parameters can include environment variables, internal variables, and variable functions. Note that the variable expansion occurs in Take Command, not TCC, so internal variables like %_cwd will not probably work as expected.

	/U	Write the changed button definition to the TCMD.INI file so that it will be included the next time Take Command starts.

	/W	Save the current toolbar to the specified file. (Not available in TCC/LE.)

TEE

	Purpose:	Copy standard input to both standard output and a file

	Format:	TEE [/A /D /T] file...

file One or more files that will receive the "tee-d" output.

/A(ppend) /T(ime)

/D(ate)

See also: Y, piping and redirection.

Usage:

TEE is normally used to "split" the output of a program so that you can see it on the display and also save it in a file. It can also be used to capture intermediate output before the data is altered by another program or command.

TEE gets its input from standard input (usually the piped output of another command or program), and sends out two copies: one to standard output, the other to the file(s) that you specify. TEE is not likely to be useful with programs which do not use standard output, because these programs cannot send output through a pipe.

For example, to search the file DOC for any lines containing the string Take Command, make a copy of the matching lines in TC.DAT, sort the lines, and write them to the output file TCS.DAT:

ffind /t"Take Command" doc | tee tc.dat | sort > tcs.dat

If you are typing at the keyboard to produce the input for TEE, you must enter a Ctrl-Z to terminate the input.

See Piping for more information on pipes.

Option:

	/A	Append to the file(s) rather than overwriting them.

	/D	Prefix each line with the current date (in yyyy-mm-dd format).

	/T	Prefix each line with the current time (in hh:mm:ss.ms format).

TEXT

	Purpose:	Display a block of text in a batch file

	Format:	TEXT

 .

 .

 .

ENDTEXT

See also: ECHO, ECHOS, SCREEN, SCRPUT, and VSCRPUT.

Usage:

TEXT can only be used in batch files. Both TEXT and ENDTEXT must be entered as the only commands on their respective lines, and cannot be included in a command group.

The TEXT command is useful for displaying menus, tables, special characters, or multiline messages. TEXT will display all lines in the batch file between itself and the terminating ENDTEXT. The display starts at the current display position, which allows you to start its display with other text, e.g., from the ECHOS command.

The lines between TEXT and ENDTEXT are not parsed. As a consequence, no environment variable expansion or other processing is performed, and all lines are displayed exactly as they are stored in the batch file, subject only to the choice of font and codepage differences, if any, between the program which created the file and that in effect during its execution. This makes it easy to include special characters, e.g., < | > in the text. However, if the ANSI X3.64 interpretation option is enabled, you can change screen colors by inserting ANSI X3.64 escape sequences anywhere in the text block. The ENDTEXT command itself will not be displayed.

You can also use the CLS or the COLOR command to set the default screen colors before executing TEXT.

Redirecting TEXT output

To redirect or pipe the entire block of text, use redirection or piping on the TEXT command itself as shown in the Examples below. As with any other command, this redirection is not affected by redirection of all output of the batch file by the command which started the batch file. Attempting to redirect or pipe the actual text lines is ignored. Attempting to redirect or pipe the ENDTEXT line is invalid.

Warning: If the TEXT command is redirected or piped. and the redirection/piping fails, the lines of the batch file following the TEXT command are executed as if they were commands, causing potential harm. The simplest way to avoid trouble this may cause is to use the ON ERROR command before TEXT. See the second example below.

Examples

The following batch file fragment displays a simple menu:

@echo off & cls

screen 2 0

text

Enter one of the following:

1 - Spreadsheet

2 - Word Processing

3 - Utilities

4 - Exit

endtext

inkey /k"1234" Enter your selection: %%key

The example below uses TEXT to display or append to a file (specified as the optional parameter of the batch file):

@echo off

setlocal

setdos /x-6

set dest=%@if[%# GT 0,>> %1,]

setdos /x+6

set repeat=0

on error (unset dest & goto PROBLEM)

:PROBLEM

iff %repeat GT 1 then

 echo Repeated problems - quitting

 quit

endiff

set repeat=%@inc[%repeat]

text %dest

+----------------+

| Logical Drives |

+----------------+

endtext

subst %dest

echo. %dest

if %_transient eq 1 .and. %# EQ 0 pause

endlocal

TIME

	Purpose:	Display or set the system time

	Format:	TIME [/S [server] /T /U] [hh[:mm:ss]]] [AM | PM]

	hh	The hour (0 - 23)

	mm	The minute (0 - 59)

	ss	The second (0 - 59)

	/S(erver time)	/U (UTC time)

	/T (Display only)	

See also: DATE.

Usage:

If you don't enter any parameters, TIME will display the current system time and prompt you for a new time. Press Enter if you don't wish to change the time; otherwise, enter the new time:

[c:\] time

Thu Aug 18, 2011 9:30:06

Enter new date (mm-dd-yy):

TIME defaults to 24-hour format, but you can optionally enter the time in 12-hour format by appending a, am, p, or pm to the time you enter. For example, to enter the time as 9:30 am:

time 9:30 am

Options:

	/S server	Sets the date and time from the specified internet time server. If no server is specified, TIME uses the server defined in the Time Server configuration option (the default is clock.psu.edu).

	/T	Displays the current time but does not prompt you for a new time. You cannot specify a new time on the command line with /T. If you do, the new time will be ignored.

	/U	Display or enter the UTC time. (Not available in TCC/LE.)

TIMER

	Purpose:	TIMER is a system stopwatch

	Format:	TIMER [/1 /2 /3 /Q /S] [ON | OFF] [command]

	ON	Force the stopwatch to reset and start

	OFF	Force the stopwatch to stop

	command	Time the specified command

	/1

	stopwatch #1 (default)

	/Q

	quiet

	/2

	stopwatch #2

	/S

	split

	/3

	stopwatch #3

	

	

Usage:

The TIMER command accepts its parameters in any order, and acts on the specified one of three possible timers (system stopwatches) by turning it on or off, or by displaying its current elapsed time. The TIMER command with neither of the keywords ON and OFF nor the /S option toggles the state of the timer.

The switch arguments (/1, /2, /3, /Q, and /S) must appear before any other arguments on the TIMER command line.

If you execute TIMER or TIMER /S when the timer is off, or execute TIMER ON at any time, the current time of day is displayed, and the stopwatch starts from :

[c:\] timer

Timer 1 on: 12:21:46

If you execute TIMER /S when the timer is on, the elapsed time is displayed:

[c:\] timer /s

Timer 1 Elapsed time: 0:00:12.06

If you execute TIMER when it is on, or execute TIMER OFF, the stopwatch stops, the current time and the elapsed time are displayed, and the elapsed time is reset:

[c:\] timer

Timer 1 off: 12:21:58

Elapsed time: 0:00:12.06

There are three stopwatches available (1, 2, and 3) so you can time multiple overlapping events. By default, TIMER uses stopwatch #1.

TIMER is particularly useful for timing events in batch files. For example, to time both an entire batch file, and an intermediate section of the same file, you could use commands like this:

rem Turn on timer 1

timer

rem Do some work here

rem Turn timer 2 on to time the next section

timer /2

rem Do some more work

echo Intermediate section completed

rem Display time taken in intermediate section

timer /2

rem Do some more work

rem Now display the total time

timer

You can optionally specify a command for TIMER to run. This is the equivalent of "timer on & command & timer off". For example:

timer dir c:\ /s

The smallest interval TIMER can measure depends on the operating system you are using, your hardware, and the interaction between the two. However, it should never be more than 60 ms.

You can also retrieve the elapsed time of a timer using the @TIMER[] function.

Options:

	/1	Use timer #1 (the default).

	/2	Use timer #2.

	/3	Use timer #3.

	/Q 	Don't display any messages.

		

	/S	Display a split time without stopping the timer. To display the current elapsed time but leave the timer running:

[c:\] timer /s

Timer 1 elapsed: 0:06:40.63

	ON	Start the timer regardless of its previous state (on or off). Otherwise the TIMER command toggles the timer state (unless /S is used).

	OFF	Stops the timer.

TITLE

	Purpose:	Change the window title

	Format:	TITLE [/P] title

/P(rompt characters)

title The new window title.

See also: the TITLEPROMPT variable and the ACTIVATE and WINDOW commands.

Usage:

TITLE changes the text that appears in the caption bar at the top of the TCC window. You can also change the window title with the WINDOW command or the ACTIVATE command.

The title text should not be enclosed in quotes unless you want the quotes to appear as part of the actual title.

To change the title of the current window to "Title Test":

title Title Test

Options:

	/P	Support the special characters in PROMPT.

TOUCH

	Purpose:	Change a file's time stamps, and optionally create a file

	Format:	TOUCH [/A:[[-][+]rhsdaecjot] /C [/D[acw][date] /E /F /I""text"" /N /O:[-]adegnrstu /Q /R[:acw]file /S[[+]n] /T[acw[u]][hh:mm[:ss[.dd]]] file...

	file	One or more files whose date and/or time stamps are to be changed.

	/A:

	Attribute select

	/N

	No action

	/C

	Create file

	/O:..

	Order

	/D

	Date

	/Q

	Quiet

	/E

	No error messages

	/R

	Reference file

	/F

	Force read-only files

	/S

	Subdirectories

	/I

	Match descriptions

	/T

	Time

File Selection:

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, subdirectories, catalog files, and include lists.

Usage:

TOUCH is used to change the date and / or time of a file. You can use it to be sure that particular files are included or excluded from an internal command, backup program, compiler MAKE utility, or other program that selects files based on their time and date stamps, or to set a group of files to the same date and time for consistency. If you don't specify any arguments, TOUCH will display its command dialog.

TOUCH should be used with caution, and in most cases should only be used on files you create. Many programs depend on file dates and times to perform their work properly. In addition, many software manufacturers use file dates and times to signify version numbers. Indiscriminate changes to date and time stamps can lead to confusion or incorrect behavior of other software.

By default, TOUCH affects only files. You must utilize the /A: option to include directories. /A:D will select directories only.

TOUCH sets three internal variables:

	%_touch_dirs	The number of directories touched

	%_touch_files	The number of files touched

	%_touch_errors	The number of errors

Options:

	/=	Display the TOUCH command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/C	Create file (as a zero-byte file) if it does not already exist. You cannot use wildcards with /C, but you can create multiple files by listing them individually on the command line.

	/D	If neither /R nor /D are specified, the current date is used. If the /D option is specified without date, TOUCH will not modify the date even if /R is also specified. If the /D option is followed by date, and /R is not specified, date is used. The date must not be quoted. If both /R and /D with date are specified, the one specified later in the command takes effect.

		

On an LFN drive, you can specify which of the date fields should be set by appending a, c, or w to the /D option:

	a	Last access date

	c	Creation date

	w	Last modification (write) date

If you append a u to the date field, TOUCH will set the UTC date rather than the local date.

	/E	Suppress all non-fatal error messages, such as "File not found." Fatal error messages, such as "Drive not ready," will still be displayed. This option is most useful in batch files.

	/F	The file systems normally do not permit changing timestamps of read only files. The /F option forces date and time change of read-only files by temporarily removing the read only attribute.

	/I"text"	Select files by matching text in their descriptions. See Description Ranges for details.

	/N	Display what would occur without actually doing it.

	/O:...	Sort the files before processing. You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/Q	Do not display normal messages.

	/R	The /R option permits duplication of the time stamp of ref_file (which must immediately follow the /R, and can be a file or subdirectory). For example, if you recompile an old program (e.g., to obtain an intermediate file that has long been deleted) you may want to use the timestamp of the source file that was last changed as the time stamp of the newly built duplicate of the original object file to prevent a "make" from attempting to rebuild everything else in the project as shown in the example:

touch /r project.c project.obj

		Another use could be to synchronize files without rendering the current version inaccessible during the synchronization:

touch /c /r c:\jpsoft\tcmd.chm %temp\tcmd.chm

copy /u ftp://ftp.jpsoft.com/help/tcmd.chm %temp\tcmd.chm

		In the above example TOUCH creates an empty file with the time stamp of your already existing help file; COPY updates the empty file if a newer version is available (beware of time stamp synchronization across the Internet!).

		On an LFN drive, you can specify which of the date/time fields should be used by appending a, c, or w to the /R option:

	a	Last access date and time (on VFAT volumes access time is always midnight).

	c	Creation date and time

	w	Last modification (write) date and time

	/S	TOUCH all matching files in the specified directory and its subdirectories. Do not use /S with @file lists. See @file lists for details.

If you specify a number after the /S, TOUCH will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.

If you specify a + followed by a number after the /S, TOUCH will not modify any time stamps until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not modify anything in \a or \a\b. (Not available in TCC/LE.)

	/T	If neither /R nor /T are specified, the current time is used. If the /T option is specified without time, TOUCH will not modify the time even if /R is also specified. If the /T option is followed by time, and /R is not specified, time is used. (Time must not be quoted). If both /R and /T with time are specified, the one specified later in the command takes effect.

	

		On an LFN drive, you can specify which of the time fields should be set by appending a, c, or w to the /T option:

	a	Last access time (on VFAT volumes access time is always midnight).

	c	Creation time

	w	Last modification (write) time

If you append a u to the time field, TOUCH will set the UTC time rather than the local time.

	TPIPE command - Text filtering, search, substitution, and conversion	Not in LE

	Purpose:	Text filtering, search, substitution, and conversion

	Format:	See Options below.

Usage:

TPIPE does text filtering and substitution on files. If you don't specify an input filename, TPIPE will read from standard input if it has been redirected. If you don't specify an output filename, TPIPE will write to standard output. This is substantially slower than reading from and writing to files, but allows you to use TPIPE with pipes.

You can specify multiple filters, which will be processed in the order they appear on the command line. Do not insert any unquoted whitespace or switch characters in the arguments to an option.

Row and column positions start at 1.

If you need to process a Windows Unicode UTF-16 file, unless the filter supports Unicode directly (for example, /simple) you'll need to convert it to UTF-8 first (see /unicode=...).

Options:

/input=filename

Filename to read. This can be either a disk file, file list (@filename), or CLIP:. If it is not specified, TPIPE will read from standard input.

/output=filename

Filename to write. This can be either a disk file or CLIP:. If it is not specified, TPIPE will write to standard output.

/filter=filename

Name of filter file to load (see /save=filename)

/save=filename

Saves the filter settings defined on the command line to the specified filename, and returns without executing any filters.

/startsubfilters

The following filters are created as sub filters, until the closing /ENDSUBFILTERS. Sub filters allow a restricted part of the entire text to be operated on by a group of filters without effecting the entire text. For example, a "Restrict to delimited fields" (CSV, Tab, Pipe, etc.) filter can pick out a range of CSV fields, and then a search/replace filter can operate JUST on the text restricted.

/endsubfilters

End the sub filters defined by the preceding /STARTSUBFILTERS.

/buffersize=n

Sets the buffer size for the preceding search/replace filter. (The default is 4096.)

/editdistance=n

Sets the edit distance threshhold for the preceding search/replace filter. (The default is 2.)

/comment=text

Add a comment to a filter file.

Text - Comment to add

/database=Mode,GenerateHeader,Timeout,Connection,InsertTable,FieldDelimiter,Qualifier

Adds a database-type filter.

Mode

0 Delimited output

1 Fixed width

2 XML

3 Insert script

GenerateHeader - Generates header information when True.

Timeout - SQL command timeout in seconds.

ConnectionStr - The database connection string.

InsertTable - The name of the insert table.

FieldDelimiter - The string to use between columns.

Qualifier - The string to use around string column values.

/dup=Type,MatchCase,StartColumn,Length,IncludeOne

Remove or show duplicate lines. The arguments are:

Type:

0 - Remove duplicate lines

1 - Show duplicate lines

MatchCase - If 1, do case-sensitive comparisons

StartColumn - The starting column for comparisons

Length - The Length of the comparison

IncludeOne - Include lines with a count of 1

/eol=input,output,length

Add an EOL (end of line) conversion filter. The arguments are:

input:

0 - Unix (LF)

1 - Mac (CR)

2 - Windows (CR/LF)

3 - Auto

If you are unsure of the source, select Auto. The Auto option can detect and modify text files containing a variety of line endings.

4 - Fixed (use the length parameter to specify the length)

If you are converting a mainframe file that contains fixed length records, select "Fixed length" and enter the record length. The maximum record length is 2,147,483,647 characters. Note: If you are converting 132 column mainframe reports, you should set the fixed length to 133, because each line has a prefix character.

output:

0 - Unix

1 - Mac

2 - Windows

3 - None

length - The line length to use if input=4

/file=type,MatchCase,filename

Add a file-type filter. The arguments are:

type:

17 Restrict to filenames matching the Perl pattern

18 Restrict to filenames NOT matching the Perl pattern

MatchCase - If 1, do a case sensitive match (where appropriate)

filename - the filename to use

/grep=Type,IncludeLineNumbers,IncludeFilename,MatchCase,CountMatches,PatternType,UTF8,IgnoreEmpty,Pattern

Adds a Grep type line based filter. The arguments are:

Type:

0 Restrict lines matching (for subfilters)

1 Restrict lines NOT matching (for subfilters)

2 Extract matches

3 Extract matching lines (grep)

4 Extract non-matching lines (inverse grep)

5 Remove matching lines

6 Remove non-matching lines

IncludeLineNumbers - 1 to include the line number where the pattern was found

IncludeFilename - 1 to include the filename where the pattern was found

MatchCase - 1 to do a case-sensitive comparison when matching the pattern

CountMatches - 1 to output a count of the number of matches

PatternType

0 Perl pattern

1 Egrep pattern

2 Brief pattern

3 MS Word pattern

UTF8 - 1 to allow matching Unicode UTF8 characters

IgnoreEmpty - 1 to ignore empty matches

Pattern - the (regular expression) pattern to match

/head=Exclude,LinesOrBytes,Count

Add a head type filter (includes or excludes text at the beginning of the file). The arguments are:

Exclude:

0 - Include the text

1 - Exclude the text

LinesOrBytes:

0 - Measure in lines

1 - Measure in bytes

Count - the number of lines or bytes to include or exclude

/insert=type,position,string

Add an insert type filter. The arguments are:

type:

0 - Insert column

Inserts a new column of text. The position the text is inserted is determined by a column count. The leftmost column is column 1 – inserting in this column displaces all other text to the right. If the insert column given is 0, the text is inserted at the end of the line. If the insert column is negative, the text is inserted at the given position relative to the end of the line. If the insert column given is before the start of the line, or beyond the end of the line, then the text is prepended or appended to the line respectively. Note - this filter is designed for ANSI or Unicode UTF-8 data - it will not handle UTF-16 data. If you need to process UTF-16 files, convert them to UTF-8 first and then convert back to UTF-8 after doing the insertion.

1 - Insert bytes

Insert bytes at the given offset (from 0 to the size of the file).

position - the position to insert the string

string - the string to insert

/line=StartNumber,Increment,SkipBlank,DontNumberBlank,NumberFormat

Adds a Line Number filter. The arguments are:

StartNumber - the starting line number

Increment - the amount to add for each new line number

SkipBlankIncrement - don't increase the line number for blank lines

DontNumberBlank - don't put a line number on blank lines

NumberFormat - The format to use for the line number. The format syntax is:

[-][width][.precision]d

An optional left justification indicator, ["-"]

An optional width specifier, [width] (an integer). If the width of the number is less than the width specifier, it will be padded with spaces.

An optional precision specifier [precision] (an integer). If the width of the number is less than the precision, it will be left padded with 0's.

The conversion type character:

d - decimal

/log=Filename

Log the TPIPE actions.

Filename - Name of log file

/maths=operation,operand

Adds a maths type filter.

operation - the operation to perform

0 +

1 -

2 *

3 div (the remainder is ignored)

4 mod (the remainder after division)

5 xor

6 and

7 or

8 not

9 shift left (0 inserted)

10 shift right (0 inserted)

11 rotate left

12 rotate right

operand - the operand to use

/merge=type,filename

Adds a merge type filter (merge into single output filename). The arguments are:

type:

0 Merge into filename

1 Retain lines found in filename

2 Remove lines found in filename

3 Link filter filename

filename - the filename to use

/number=type,value

Add a number-type filter. The arguments are:

type:

0 Convert Tabs to Spaces

1 Convert Spaces to Tabs

2 Word wrap (value column width)

3 Pad to width of value

4 Center in width of value

5 Right justify in width of value

6 Restrict CSV field to value

7 Restrict tab-delimited field to value

8 Truncate to width value

9 Force to width value

10 Repeat file value times

11 Restrict to blocks of length

12 Expand packed decimal (with implied decimals)

13 Expand zoned decimal (with implied decimals)

14 Expand unsigned (even-length) packed decimal

15 Expand unsigned (odd-length) packed decimal

Value - the numeric value to use

/perl=BufferSize,Greedy,AllowComments,DotMatchesNewLines

Sets the Perl matching options for the immediately preceding search/replace filter.

BufferSize - The maximum buffer size to use for matches. Any match must fit into this buffer, so if you want to match larger pieces of text, increase the size of this buffer to suit. Default is 4096.

Greedy - If the pattern finds the longest match (greedy) or the shortest match. Default is false.

AllowComments - Allow comments in the Perl pattern. Default is false.

DotMatchesNewLines - Allow the '.' operator to match all characters, including new lines. Default is true.

/replace=Type,MatchCase,WholeWord,CaseReplace,PromptOnReplace,Extract,FirstOnly,SkipPromptIdentical,Action,SearchStr,ReplaceStr

Adds a search and replace (find and replace) filter. The arguments are:

Type:

0 Replace

1 Pattern (old style)

2 Sounds like

3 Edit distance

4 Perl pattern

5 Brief pattern

6 Word pattern

MatchCase - Matches case when set to 1, ignores case when set to 0

WholeWord - Matches whole words only when set to 1

CaseReplace - Replaces with matching case when set to 1

PromptOnReplace - Prompts before replacing when set to 1

Extract - If 1, all non-matching text is discarded

FirstOnly - If 1, only replace the first occurrence

SkipPromptIdentical - If 1, don't bother prompting if the replacement text is identical to the original.

Action - the action to perform when found:

0 replace

1 remove

2 send to subfilter

3 send non-matching to subfilter

4 send subpattern 1 to subfilter etc

SearchStr - the string to search for

ReplaceStr - the string to replace it with

/replacelist=Type,MatchCase,WholeWord,CaseReplace,PromptOnReplace,FirstOnly,SkipPromptIdentical,Simultaneous,LongestFirst,Filename

Add a search and replace list, using search and replace pairs from the specified file.

Type:

0 Replace

1 Pattern (old style)

2 Sounds like

3 Edit distance

4 Perl pattern

5 Brief pattern

6 Word pattern

MatchCase - Matches case when set to 1, ignores case when set to 0

WholeWord - Matches whole words only when set to 1

CaseReplace - Replaces with matching case when set to 1

PromptOnReplace - Prompts before replacing when set to 1

FirstOnly - If 1, only replace the first occurrence

SkipPromptIdentical - If 1, don't bother prompting if the replacement text is identical to the original.

Simultaneous - If 1, all search strings are scanned for simultaneously instead of consecutively. (This is useful if the search strings and results strings overlap.)

LongestFirst - If 1, searches for long phrases (most specific) before short phrases (least specific) - this is generally used for translations.

Filename - The file to load search/replace pairs from. If the file extension is .XLS or .XLSX, the file is assumed to be Excel format, if the extension is .TAB the file is assumed to have tab-delimited values, and any other extension (including .CSV) is assumed to have Comma-Separated Values. The filename can contain environment variables enclosed in % signs e.g. %TEMP%\myfile.txt. TPIPE corrects any doubled backslashes.

/run=InputFileName,OutputFileName,"CommandLine"

Adds a Run External Program filter. The arguments are:

InputFilename - the filename that TextPipe should read from after the External Program writes to it.

OutputFilename - the filename that TextPipe should write to for the External Program to read in.

CommandLine - the command line of the program to run. Should include double quotes around the entire command line.

/script=language,timeout,code

Adds an ActiveX script filter.

language: The language of the script

timeout: The command timeout in seconds

script: The code

/selection=Type,Locate,Param1,Param2,MoveTo,nDelimiter,CustomDelimiter,HasHeader[,ProcessIndividually]

Type - The type of filter to add:

0 – Remove column:

This filter is used to remove columns of text, given a column specification that describes the position of the column relative to the start or end of the line, and the width of the column. There are several ways to specify the columns (Locate,Param1,Param2) to remove:

0 - Start column, End column. This removes all text including and between the specified columns. Useful for removing column in fixed width data files.

1 - Start column, width. Removes Width characters starting from (and including) column Start.

2 - End column, width. Removes Width characters backwards starting from (and including) column End.

3 - Start column to end of line. Removes all characters from the Start column to the very end of the line. Useful for making a file a uniform width.

4 - Width to end of line. Removes Width characters backwards starting from (and including) the last column.

Note - if you are removing more than one column range, it is easiest to remove ranges from right-to-left so that the position of the columns doesn't change.

1 - Restrict lines (restriction filters require sub filters to have any effect)

2 - Restrict columns (restriction filters require sub filters to have any effect)

3 - Restrict to bytes (restriction filters require sub filters to have any effect)

4 - Restrict to delimited fields (CSV, Tab, Pipe, etc.)

6 – Remove lines:

This filter removes a range of lines. There are several ways to specify the lines (Locate,Param1,Param2) to remove:

0 - Start line, End line. This removes all lines including and between the specified lines.

1 - Start line, width. Removes Width lines starting from (and including) line Start.

2 - End line, width. Removes Width lines backwards starting from (and including) line End.

3 - Start line to end of line. Removes all lines from the Start line to the very end of the line.

4 - Width to end of line. Removes Width lines backwards starting from (and including) the last line.

7 – Remove delimited fields (CSV, Tab, Pipe, etc.):

This filter is used to remove fields delimited by a given character. You can choose a predefined delimiter character (Delimiter), or select your own (CustomDelimiter). The trailing delimiter (if any) is also removed. When Comma (.csv) is chosen, TPIPE automatically handles single and double quoted strings, with embedded line feeds.

First Row Contains Field Names

If the first line of the file contains Field Names, set HasHeader to 1 so that TPIPE can count how many fields are expected. It can then determine if a field has embedded CR/LF characters and spans multiple lines. TPIPE can also determine this without a header if the fields are properly double-quoted - TPIPE will notice the missing double quote and continue reading the record from the following line.

Remove Fields

There are several ways to specify the fields (Locate,Param1,Param2) to remove:

0 - Start field, end field. This removes all text including and between the specified fields.

1 - Start field, width. Removes Width fields starting from (and including) field Start.

2 - End field, width. Removes Width fields backwards starting from (and including) field End.

3 - Start field to end of line. Removes all fields from the Start field to the very end of the line.

4 - Width to end of line. Removes Width fields backwards starting from (and including) the last field.

Note - if you are removing more than one field range, it is easiest to remove ranges from right-to-left so that the position of the fields doesn't change.

9 – Move columns:

TPIPE will move columns to a new position on the line. The new position (MoveTo) is specified assuming that the moved columns have been removed from the line.

10 – Move delimited fields (CSV, Tab, Pipe, etc.):

TPIPE will move CSV-delimited fields to a new position on the line. The new position (MoveTo) is specified assuming that the moved fields have been removed from the line. TPIPE ensures that all the delimiters on the line are correctly maintained, both at the end of the line and where the moved fields are inserted. Note - this filter is designed for ANSI or Unicode UTF-8 data - it will not handle UTF-16 data. You will need to convert UTF-16 files to UTF-8 first, do the selection, and then convert back to UTF-16.

12 – Copy columns:

TPIPE will copy columns to a new position (MoveTo) on the line. Note - this filter is designed for ANSI or Unicode UTF-8 data - it will not handle UTF-16 data. You will need to convert UTF-16 files to UTF-8 first, do the selection, and then convert back to UTF-16.

13 – Copy delimited fields (CSV, Tab, Pipe, etc.):

TPIPE will copy CSV-delimited fields to a new position (MoveTo) on the line. TPIPE ensures that all the delimiters on the line are correctly maintained, both at the end of the line and where the copied fields are inserted. Note - this filter is designed for ANSI or Unicode UTF-8 data - it will not handle UTF-16 data. You will need to convert UTF-16 files to UTF-8 first, do the selection, and then convert back to UTF-16.

17 – Remove byte range:

This filter is used to remove a range of bytes. There are several different ways to specify the bytes (Locate,Param1,Param2) to remove:

0 - Start byte, end byte. This removes all text including and between the specified byte.

1 - Start byte, width. Removes Width byte starting from (and including) the start byte.

2 - End byte, width. Removes Width fields backwards starting from (and including) byte End.

3 - Start byte to end of file. Removes all fields from the Start byte to the very end of the file.

4 - Width to end of file. Removes Width fields backwards starting from (and including) the last byte.

Note - if you are removing more than one byte range, it is easiest to remove ranges from right-to-left so that the position of the bytes doesn't change.

Locate - How to determine which areas to affect:

0 - Restrict %d .. %d

1 - Restrict %1:d starting at %0:d

2 - Restrict %1:d starting at END - %0:d

3 - Restrict %d .. END - %d

4 - Restrict END - %d .. END - %d

Param1, Param2 - The integer values for the Locate method.

MoveTo - The integer value where to move or copy the columns or fields to (first columns or field is 1).

Delimiter - The index of the standard delimiter to use:

0 - Comma

1 - Tab

2 - Semicolon

3 - Pipe (|)

4 - Space

5 - Custom

CustomDelimiter - The custom delimiter to use (if Delimiter == 5). This should be a quoted string; if you are not using a custom delimiter then set this field to "".

HasHeader - 1 if the file's first row is a header row, 0 if not.

ProcessIndividually - Whether to apply sub filters to each CSV or Tab field individually (1), or to the fields as one string value (0). The default is false.

/simple=n[u]

Adds a simple filter type. n is the type of filter to add, and for those filters that support it, u indicates that the filter will be dealing with Unicode data.

1 – Convert ASCII to EBCDIC

EBCDIC is the character collating sequence commonly used on mainframes. Some characters cannot be converted because they exist in one character set but not the other.

2 – Convert EBCDIC to ASCII

3 – Convert ANSI to OEM

Converts from ANSI to ASCII/OEM. ANSI is an 8-bit character set used by Windows, and it includes all accentuated Roman characters used by non-English languages like French, German and Spanish. (Windows uses UTF-16LE for all of its internal APIs, and converts to ANSI if the user is using raster fonts or ANSI files.) ASCII/OEM is an extension of the original IBM character set where various non-essential characters are replaced by language-specific accentuated characters. Different ASCII/OEM character sets are not compatible. They must be converted to ANSI and then back to the correct ASCII/OEM character set to be readable.

4 – Convert OEM to ANSI

5 – Convert to UPPERCASE

Forces all text to UPPERCASE. To make the conversion, the function uses the current language selected by the user in the system Control Panel. If no language has been selected, TPIPE uses the Windows internal default mapping.

6 – Convert to lowercase

Forces all text to lowercase. To make the conversion, the function uses the current language selected by the user in the system Control Panel. If no language has been selected, TPIPE uses the Windows internal default mapping.

7 – Convert to Title Case

Converts all text to Title Case -- i.e., the first letter of every word is capitalized, and all other letters are forced to lower case. This routine calculates a table of upper and lower case letters on TPIPE startup, and this determination is based on the semantics of the language selected in Control Panel.

8 – Convert to Sentence Case

Converts all text to Sentence case ie the first word in every sentence is capitalized, all other letters are left as is. Sentences start after periods, exclamation marks, colons, question marks, quotes, parentheses and angle brackets (.!:?'"<().

9 – Convert to tOGGLE cASE

tOGGLES tHE cASE of all text -- i.ee, all UPPERCASE characters are converted to lowercase and vice-versa.

10 – Remove blank lines

Removes blank lines. Note, lines with spaces or tabs are not removed. Use the Remove Blanks From Start Of Line filters first to rectify this.

11 – Remove blanks from End of Line

Removes spaces and tabs from the end of every line.

12 – Remove blanks from Start of Line

Removes spaces and tabs from the start of every line.

13 – Remove binary characters

Removes binary characters such as those higher than ASCII code 127, and those less than ASCII code 32 except for carriage returns (ASCII code 13) and line feeds (ASCII code 10).

This filter if very useful if you have a corrupted text file, or if you just want to see what text is inside a binary file. The binary information is removed, leaving you with just the text.

14 – Remove ANSI codes

ANSI (American National Standards Institute) codes are included in various streams of information, to provide a remote computer with control over cursor positioning, text attributes, etc. They are also used in connections between minicomputers and mainframe computers and the terminals connected to them.

The need to use an ANSI filter can be recognized when something like the following example shows up in a file viewed in a text editor:

<[0;1;4mas<[m - MC88000 assembler

In this example, the "as" near the beginning is displayed in a different color than the rest of the line when the ANSI codes are properly processed. The Escape (ASCII 27) codes above have been replaced by the < symbol to make this line printable.

The Remove ANSI Escape Sequences filter can be used to filter out these codes and "clean up" the text so that it can be used in standard fashions such as copying and pasting into a word processor. On Unix machines the man (manual) help utility will only allow page-by-page browsing through a file in a forward direction. By piping the man output to a text file, transferring it to a DOS machine, and running it through the Remove ANSI Escape Sequences filter (and the Convert EOL filter - Unix to DOS if desired), a standard DOS editor can be used for browsing through the file, quoting from it, etc.

15 – Convert IBM drawing characters

IBM drawing characters in the upper ASCII range (128-255) are commonly used to draw lines and boxes, single and double line borders, shaded characters etc. Many devices (such as printers, non-IBM computers etc.) do not support the display of these characters.

This filter converts them to standard ASCII characters (+, - and |) that all computers can display.

16 – Remove HTML and SGML

Use this filter to convert HTML documents to a readable format. This filter removes HTML and XML markup tags i.e. everything including and between <> brackets.

17 – Remove backspaces

Remove backspaces, i.e. all ASCII code 8's.

18 – Resolve backspaces

Resolve backspaces -- i.e., remove both the backspaces and the characters prior to the backspaces that would have been deleted.

19 – Remove multiple whitespace

Removes sequences of multiple spaces or tabs and replaces them with a single space.

20 – UUEncode

Usually used for transmitting binary files inside an email. Files of this type are usually given an extension of .uue. Warning – UUencoded text may be corrupted when passing over a mainframe mail gateway. To avoid corruption, use Mime Base 64 or XXEncode.

21 – Hex Encode

A very simple encoding of a file. Usually used for small files, because it uses a large amount of space. The benefit is that the file is very easy to encode/decode, and the file cannot be corrupted passing through mail gateways.

22 – Hex Decode

Converts a file from its hex representation back to binary. The file to be decoded MUST NOT have any extra characters at the start or end if it is to be successfully processed.

23 – MIME Encode (Base 64)

Used for binary data. Files of this type are usually given an extension of .b64.

24 – MIME Decode (Base 64)

Used for binary data. Files of this type are usually given an extension of .b64. The file to be decoded MUST NOT have any extra characters at the start or end if it is to be successfully processed.

25 – MIME Encode (Quoted printable)

Quoted printable is used for text that is mainly readable, but may contain special characters with accents etc.

26 – MIME Decode (Quoted printable)

The inverse of the above encoding.

27 – UUDecode

Mail attachments can be uuencoded, use this filter to convert the file back to its correct form. Files of this type are usually given an extension of .uue.

28 – Extract email addresses

Extract email addresses. This filter searches for email addresses of the form user@server.domain, and writes them out one per line (using a DOS line feed, CR/LF). Usually this filter is followed by a filter to remove duplicate lines, and then by a Search and Replace filter, searching for \013\010 and replacing with a comma or semi-colon, depending on the email address separator used by your email software.

29 – Unscramble (ROT13)

This is a simple email encoding usually used to disguise text that some people may find offensive. The encoding is totally reversible (applying it twice removes the encoding). Only alpha characters are affected (A..Z and a..z).

30 – Hex dump

This changes the text to lines consisting of 16 bytes each. Each line has an 8 hex digit file index, 16 bytes (in hex) and the ASCII representation:

00000000 65 67 69 6E 0D 0A 20 20 20 20 20 20 61 64 64 72 egin........addr

00000010 65 73 73 20 3A 3D 20 0D 0A 20 20 20 20 20 20 20 ess.:=..........

00000020 20 64 65 63 54 6F 48 65 78 53 74 72 28 20 28 66 .decToHexStr(.(f

This filter is very useful for identifying special characters to search and replace.

32 – XXEncode

Essentially identical to UUEncode except that the character set used is different to allow it to pass through EBCDIC gateways without corruption. The XXencoding implemented by TPIPE uses the following characters:

+-0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

33 – XXDecode

Essentially identical to UUDecode except that the character set used is different to allow it to pass through EBCDIC gateways without corruption.

34 – Reverse line order

The order of the input lines is reversed i.e. the last line comes out first and the first line comes out last. A file is read entirely into RAM before being reversed, so be wary of reversing files that are larger than your machine's RAM size.

35 – Remove email headers

This filter removes the email headers that accompany emails exported to a text format. The email headers are the lines such as To:, From:, Subject: and various other message headers added by all the servers through which your email passes before it gets to its destination.

36 – Decimal dump

This changes the text to lines consisting of 10 bytes each. Each line has a 10 decimal digit file index, 10 bytes (in decimal) and the ASCII representation:

0000000000 080 108 101 097 115 101 032 102 101 101 Please fee

0000000010 108 032 102 114 101 101 032 116 111 032 l free to

0000000020 099 111 109 109 101 110 116 013 010 111 comment..o

This filter is very useful for identifying special characters to search and replace.

37 – HTTP Encode

This filter is used to encode text for use in an HTTP header – a (usually) small piece of text that accompanies a web page request to a web server. This filter is very useful for debugging CGI scripts because it can create HTTP requests in the correct form. HTTP encoded text usually looks like the following:

a+%28usually%29+small+piece+of+text+that+accompanies+a+web+page+request+to+a+web+server.+This+filter+is+very+

38 – HTTP Decode

This filter is used to decode text from an HTTP header – a (usually) small piece of text that accompanies a web page request to a web server.

39 – Randomize lines

This filter put lines into random order. This is useful when a random sample of data is required for statistical purposes - just follow this filter with a head/tail of file filter (/head or /tail). The lines output will differ from one run to the next; the order is determined by a pseudo-random number generator.

40 – Create word list

This filter takes all the incoming words and outputs them one per line. This can be used to generate word lists for Indexes, encryption programs etc. Hyphenated words are recognized as single words, provided that they aren't broken across lines. To get around this limitation, use a Search and Replace filter to replace hyphens followed by line feeds with just a hyphen. Normally you would follow this filter with a remove duplicates filter, or alternatively, a Count Duplicate Lines filter (with Include counts of 1).

catch22 – a word

24-7 – a word

twenty-four – a word

5th – a word

ice cream – two words

Commas or periods after words are treated as word separators.

41 – Reverse each line

Each line is output reversed from left to right. This can be useful to extract domain names from web site log files - use this filter to reverse each line, use an extract matches filter of [\w\d]+\.[\w\d]+ to extract each domain name, then reverse each line again. Note: This filter will NOT work on Unicode or UTF-8 data. It will only work on single-byte data such as ASCII or ANSI.

42 – Convert to RanDOm case

This filter randomly changes the case of characters. This routine calculates a table of upper and lower case letters on TPIPE startup, and this determination is based on the semantics of the language selected in the Windows Control Panel.

Running this filter again will generate different results; for example:

1. ranDoMIze cASe

2. RanDOmIZE case

3. randOMIZE casE

43 – Extract URLs

Extract URLs. This filter lists http://, https://, ftp:// and gopher:// URLs one per line.

44 – ANSI to Unicode

Converts single byte ANSI characters to double byte Unicode characters. This filter can be useful if you want to send a text file to someone using a language other than your own. This filter is often followed by an Add Header filter, to add a Unicode byte order mark (BOM), \xFF\xFE.

45 – Unicode to ANSI

Converts double byte Unicode characters to single byte ANSI characters. This filter can be useful if you want to send a text file to someone using a language other than your own. This filter is often followed by a Remove start or end of file filter, to either remove the first two bytes of Unicode (before the conversion) or the first byte of ANSI (after the conversion), to remove the leading Unicode byte order mark (BOM).

46 – Display debug window

A debug filter is very handy for debugging filters. When text is passed through this filter, it places the output into a window so that you can see what the text looks like at that stage of the filtering process.

47 – Word concordance

This filter generates a word concordance. A word concordance shows the context or surrounding words for a given set of words in a dictionary.

48 – Remove all

This filter removes all text. Unlike a pattern match filter that matches everything and then throws it away, this filter is far more efficient, especially for large files, as it signals completion back to the input filter so only the first chunk of a multi-gigabyte file will ever get processed.

It is useful in two main situations

1. Inside a subfilter, it prevents any of the subfiltered text from re-entering the text stream. So you could restrict to lines matching a pattern, output the matching lines to a new file, and then remove them.

2. To remove all of the text of a file, then use an Add Header filter with the @fullInputFilename macro to obtain the name of the file.

Note: An Add Left Margin or Add Right Margin filter will not work after a Remove All filter, as they require an actual line to trigger them. Instead, use an Add Header or Add Footer filter.

49 – Restrict to each line in turn

This filter restricts sub filters to operate on each line in turn. This filter is used for its side effect of limiting the matched text to a single line at most.

50 – Convert CSV to Tab-delimited

Converts CSV data (quoted or unquoted) to tab-delimited form. It's preferable to use a file with column headers, because then TPIPE can easily determine if the fields have embedded CR/LFs in them. If the data is properly quoted then TPIPE will determine this automatically.

51 – Convert CSV to XML

Converts CSV data (quoted or unquoted) to XML form. It's preferable to use a file with column headers, because then TPIPE can easily determine if the fields have embedded CR/LFs in them. If the data is properly quoted then TPIPE will determine this automatically. TPIPE correctly escapes < > " ' and & in the data to the corresponding XML entity. If your data contains invalid XML characters such as ASCII 26 (End-of-file, hex \x1A), follow this filter with a search/replace filter to remove \x1A and replace with nothing.

52 – Convert Tab-delimited to CSV

Converts Tab-delimited data to CSV data. It's preferable to use a file with column headers, because then TPIPE can easily determine if the fields have embedded CR/LFs in them. TPIPE cannot determine this without column headers.

53 – Convert Tab-delimited to XML

Converts Tab-delimited data to XML data. It's preferable to use a file with column headers (/simple=55), because then TPIPE can easily determine if the fields have embedded CR/LFs in them. TPIPE cannot determine this without column headers. TPIPE correctly escapes < > " ' and & in the data to the corresponding XML entity. If your data contains invalid XML characters such as ASCII 26 (End-of-file, hex \x1A), follow this filter with a search/replace filter to remove \x1A and replace with nothing.

54 – Convert CSV (with column headers) to XML

See description for 51 – Convert CSV to XML.

55 – Convert Tab-delimited (with column headers) to XML

See description for 53 – Convert Tab-delimited to XML.

56 – Convert CSV (with column headers) to Tab-delimited

See description for 50 – Convert CSV to Tab-delimited.

57 – Convert Tab-delimited (with column headers) to CSV

See description for 52 – Convert Tab-delimited to CSV.

58 – Restrict to file name

This filter applies its subfilters only to files with filenames (ie drive + path + filename) matching or not matching a pattern or list of patterns. This is very handy for only applying a Convert Word Documents to Text filter only to files matching the pattern

\.DOC$

With the appropriate pattern, this filter can also be used to control subfilters based on filename, folder and drive. Note that this filter uses case-insensitive Perl regular expressions, not Windows wildcards.

59 – Convert Word documents to text

This filter takes ALL incoming documents, opens them with Microsoft Word, and outputs them as text files. This can be used to process a set of Word Documents to text file format. After this filter you can add search and replace filters or any other filters you choose.

This filter requires Microsoft Word 98 or higher to be installed. If you wish to convert documents other than the default .DOC files, you may also need to install Word's conversion filters. If Word cannot be started automatically TPIPE will prompt you to start it manually before continuing.

Unless you know that all documents being processed are Word documents (e.g. by using a wildcard of *.doc in the Files to Process tab), you should restrict this filter to only files matching the pattern:

\.DOC$

60 – Swap UTF-16 word order

This filter swaps pairs of bytes

e.g.

	Byte number

	1

	2

	3

	4

	5

	6

	7

	8

	Input File

	FF

	FE

	00

	20

	00

	31

	00

	32

	Output File

	FE

	FF

	20

	00

	31

	00

	32

	00

This is commonly used to transform big-endian or little-endian Unicode files so that other programs can use them.

61 – Swap UTF-32 word order

This filter swaps groups of 2-byte words.

e.g.

	Byte number

	1

	2

	3

	4

	5

	6

	7

	8

	Input File

	FF

	FE

	00

	00

	00

	31

	00

	00

	Output File

	00

	00

	FE

	FF

	00

	00

	31

	00

This is commonly used to transform big-endian or little-endian Unicode files so that other programs can use them.

62 – Remove BOM (Byte Order Mark)

This filter removes the Unicode Byte Order Mark from the start of Unicode files, if it is present.

	Bytes removed

	Description

	00 00 FE FF

	UTF-32, big-endian

	FF FE 00 00

	UTF-32, little-endian

	FE FF

	UTF-16, big-endian

	FF FE

	UTF-16, little-endian

	EF BB BF

	UTF-8

63 – Make Big Endian

Converts a Little Endian Unicode file into a Big Endian Unicode file

e.g.

	Input file

	Output file

	00 00 FE FF 00 00 00 4D

	Unchanged

	FE FF 4E 8C

	Unchanged

	FF FE 00 00 4D 00 00 00

	00 00 FE FF 00 00 00 4D

	FF FE 8C 4E

	FE FF 4E 8C

Note - the file MUST start with a Byte Order Mark (BOM) for it to be correctly identified.

64 – Make Little Endian

Converts a Big Endian Unicode file into a Little Endian Unicode file

e.g.

	Input file

	Output file

	00 00 FE FF 00 00 00 4D

	FF FF 00 00 4D 00 00 00

	FE FF 4E 8C

	FF FE 8C 4E

	FF FE 00 00 4D 00 00 00

	Unchanged

	FF FE 8C 4E

	Unchanged

Note - the file MUST start with a Byte Order Mark (BOM) for it to be correctly identified.

65 – Compress to Packed Decimal

This filter compresses EBCDIC numeric data (optional leading sign, numbers and periods) to an EBCDIC packed decimal field (also known as Comp-3).

There are several notes to keep in mind when using this filter:

1. You MUST use this filter inside a Restrict to Byte Range filter. The field WIDTH is then set by the containing filter.

2. Compressing a field will decrease your output record length, so ensure you allow for this. A good strategy to avoid problems is to first compress the rightmost field, then work your work back to the leftmost field. This prevents the field column positions from changing and makes the file easier to work with.

This filter will add hex 'B' to negative fields, hex 'C' to positive fields and hex 'F' to unsigned fields. If these codes don't match what your target needs, use a column or CSV restriction to apply a search/replace.

66 – Compress to Zoned Decimal

This filter expands an EBCDIC zoned decimal field to a raw EBCDIC number with a sign. Typically this filter is then followed by a Convert EBCDIC to ASCII filter - after all other fields have been expanded as well.

There are several notes to keep in mind when using this filter:

1. You MUST use this filter inside a Restrict to Byte Range filter. The field WIDTH is then set by the containing filter.

2. Expanding a field will increase your output record length, so ensure you allow for this. A good strategy to avoid problems is to first expand the rightmost field, then work your work back to the leftmost field. This prevents the field column positions from changing and makes the file easier to work with.

67 – Expand Binary Number to EBCDIC

This filter expands a series of digits stored in binary (BIG ENDIAN) form. The maximum width is 8 bytes.

There are several notes to keep in mind when using this filter:

1. You MUST use this filter inside a Restrict to Byte Range filter. The field WIDTH is then set by the containing filter.

2. Expanding a field will increase your output record length, so ensure you allow for this. A good strategy to avoid problems is to first expand the rightmost field, then work your work back to the leftmost field. This prevents the field column positions from changing and makes the file easier to work with.

3. If the data is stored in LITTLE ENDIAN order, use a Reverse filter inside the Restriction prior to the Expand Binary Numbers filter.

68 – Expand Binary Number to ASCII

This filter expands a series of digits stored in binary (BIG ENDIAN) form. The maximum width is 8 bytes.

There are several notes to keep in mind when using this filter:

1. You MUST use this filter inside a Restrict to Byte Range filter. The field WIDTH is then set by the containing filter.

2. Expanding a field will increase your output record length, so ensure you allow for this. A good strategy to avoid problems is to first expand the rightmost field, then work your work back to the leftmost field. This prevents the field column positions from changing and makes the file easier to work with.

3. If the data is stored in LITTLE ENDIAN order, use a Reverse filter inside the Restriction prior to the Expand Binary Numbers filter.

69 – NFC - Canonical Decomposition, followed by Canonical Composition

Applies a Unicode NFC - Canonical Decomposition, followed by Canonical Composition transformation to incoming Unicode text (UTF16-LE). Output is also Unicode UTF16-LE.

70 – NFD - Canonical Decomposition

Applies a Unicode NFD - Canonical Decomposition transformation to incoming Unicode text (UTF16-LE). Output is also Unicode UTF16-LE.

71 – NFKD - Compatibility Decomposition

Applies a Unicode NFKD - Compatibility Decomposition transformation to incoming Unicode text (UTF16-LE). Output is also Unicode UTF16-LE.

72 – NFKC - Compatibility Decomposition, followed by Canonical Composition

Applies a Unicode NFKC - Compatibility Decomposition, followed by Canonical Composition transformation to incoming Unicode text (UTF16-LE). Output is also Unicode UTF16-LE.

73 – Decompose

74 – Compose

Applies a Unicode Compose transformation to incoming Unicode text (UTF16-LE). The output is also Unicode UTF16-LE.

75 – Convert numeric HTML Entities to text

This filter converts decimal/hex numeric HTML/XML entities to plain text. For example:

® → ®

® → ®

Typically, the input file is ANSI (single byte) format. This filter will output UTF-8 characters for high-value entities e.g. ᠀ The best approach is to first convert the file from ANSI to UTF-8 (/unicode), then apply this filter.

76 – Convert PDF documents to text

This filter takes ALL incoming documents and converts them from PDF to text. Most of the formatting will be lost.

77 – Restrict to ANSI files

78 – Restrict to Unicode UTF16 files

79 – Restrict to Unicode UTF32 files

80 – Convert Excel spreadsheets to text

This filter takes ALL incoming documents, opens them with Microsoft Excel, and outputs them as CSV (comma-delimited) files. After running this filter, you can add search and replace filters or any other filters you choose, such as convert the data to Tab-delimited or XML.

This filter requires Microsoft Excel 98 or higher to be installed. If you wish to convert documents other than the default .XLS files, you may also need to install Excel's conversion filters.

Unless you know that all documents being processed are Excel documents (e.g. by using a wildcard of *.xls in the Files to Process tab), you should restrict (/simple=58) this filter to only files matching the pattern

\.XLS$

/split=type,SplitSize,SplitChar,SplitCharPos,SplitCharCount,SplitLines,SplitFilename

Adds a split type filter. The arguments are:

type:

0 Split at a given size

1 Split at a given character

2 Split at a given number of lines

splitSize - the size file to split at

splitChar - the character to split at

splitCharPos -

0 Split before the character (it goes into the next file)

1 Split after the character (it remains in the first file)

2 Split on top of the character (remove it)

SplitCharCount - the number of times to see SplitChar before splitting

SplitLines - (optional) split after a given number of lines, default 60

SplitFilename - (optional) the name to give to each output split file. /split will append a "%3.3d" format specifier to the name; i.e. SplitFilename of "foo.txt" will generate output files named "foo.txt.000", "foo.txt.001", etc. If you don't specify a SplitFilename, /split will use the input filename as the base.

/string=type,MatchCase,string

Add a string-type filter. The arguments are:

type:

0 Add left margin

1 Add header

2 Add footer

3 Add right margin

4 Remove lines that match exactly

5 Retain lines that match exactly

6 Remove lines matching the Perl pattern

7 Retain lines matching the Perl pattern

8 Add text side by side

9 Add repeating text side by side

10 Not Used

11 Not Used

12 XSLT transform

13 Restrict to lines from list

14 Restrict to lines NOT in list

15 Restrict to lines matching the Perl pattern

16 Restrict to lines NOT matching the Perl pattern

matchCase - case sensitive or not (where appropriate)

string - the string to use

/tail=Exclude,LinesOrBytes,Count

Add a tail type filter (includes or excludes text at the end of the file). The arguments are:

Exclude:

0 - Include the text

1 - Exclude the text

LinesOrBytes:

0 - Measure in lines

1 - Measure in bytes

Count - the number of lines or bytes to include or exclude

/unicode=input,output

Convert the file to or from Unicode. input is the encoding for the input file; output is the encoding for the output file. The possible values are:

UTF-16LE

UTF-16BE

UTF-32LE

UTF-32BE

UTF-8

ANSI

ASCII

CPnnn, where nnn is a Windows code page (for example, CP437 or CP1251).

TPIPE handles files internally as UTF-8, so if you want to process a Windows UTF-16LE file, you'll need to convert it to UTF-8 first, then apply the desired filters, and convert it back to UTF-16LE. For example, to wrap a Unicode file at column 80:

tpipe /input=inputname /output=outputname /unicode=UTF-16LE,UTF-8 /number=2,80 /unicode=UTF-8,UTF-16LE

/xml=Type,IncludeText,IncludeQuotes,MatchCase,BufferSize,Tag,Attribute,EndTag

Adds an HTML / XML filter. The arguments are:

Type - the operation to perform:

0 restrict to an element

1 restrict to an attribute

2 restrict to between tags

IncludeText - whether to include the find string in the restriction result (default false)

IncludeQuotes - whether to include surrounding quotes in the attribute result or not (default false)

MatchCase - match case exactly or not (default false)

BufferSize - the maximum expected size of the match (default 32768)

Tag - the element or start tag to find

Attribute - the attribute to find

EndTag - the endTag to find

	TRANSIENT	Not in LE

	Purpose:	Toggle the shell's transient mode

	Format:	TRANSIENT [on | off]

Usage:

TRANSIENT allows you to change the shell's transient mode (i.e., whether it was started with a /C), so that you can make a transient session permanent (or vice versa).

TREE

	Purpose:	Display a graphical directory tree

	Format:	TREE [[/A:[[-|+]rhsadecijopt /A /B /D /F /H /Nj /O:[-]adegnrstu /P /S[n] /T[:a|c|w] /Z] dir...

	dir	The directory to use as the start of the tree. If one or more directories are specified, TREE will display a tree for each specified directory. If none are specified, the tree for the current working directory is displayed.

	/A: (Attribute select)

	/O(rder)

	/A(SCII)

	/P(ause)

	/B(are)

	/S (file size)

	/D(escriptions)

	/Sn (subdirectory depth)

	/F(iles)

	/T(ime and date)

	/H(idden directories)

	/Z (file size)

	/N (disable option)

	

File Selection:

Supports command dialog, attribute switches, extended wildcards, ranges (with /F), and multiple file names.

Usage:

The TREE command displays a graphical representation of the directory tree using standard or extended ASCII characters. For example, to display the directory structure on drive C:

[c:\] tree c:\

TREE uses the standard line drawing characters in the U.S. English extended ASCII character set. If your system is configured for a different country or language, or if you use a font which does not include these line drawing characters, the connecting lines in the tree display may not appear correctly (or not appear at all) on your screen. To correct the problem, use /A, or configure the TCC to use a font which can display standard extended ASCII characters.

You can print the display, save it in a file, or view it with LIST by using standard redirection symbols. Be sure to review the /A option before attempting to print the TREE output. The options discussed below specify the amount of information included in the display.

Options:

	/=	Display the TREE command dialog to help you set the command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A	Display the tree using standard ASCII characters. You can use this option if you want to save the directory tree in a file for further processing or print the tree on a printer which does not support the graphical symbols that TREE normally uses.

	/A:[..]	Select only those files that match the specified attribute(s).See Attribute Switches for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	Display the full pathname of each directory, without any of the line-drawing characters.

	/D	Display file and directory descriptions.

	/F	Display files as well as directories. If you use this option, the name of each file is displayed beneath the name of the directory in which it resides.

	/H	Display hidden as well as normal directories. If you combine /H and /F, hidden files are also displayed.

	/N	Disables the specified options:

	j	Skip junctions

	/O:...	Sort the files before processing. You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Wait for a key to be pressed after each screen page before continuing the display. Your options at the prompt are explained in detail under Page and File Prompts.

	/S	If you specify a number after the /S, TREE will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories. If you do not specify a number, /S shows the file sizes (see /Z).

	/T	Display the time and date for each directory. If you combine /T and /F, the time and date for each file will also be displayed.

By default, the time and date shown will be of the last modification. You can select a specific time and date stamp by using the following variations of /T:

/T:a Last access date and time (access time is not displayed on VFAT and FAT32 volumes).

/T:c Creation date and time.

/T:w Last modification ("write") date and time (default).

	/Z	Display the size of each file. /Z without a /F will display the subdirectory tree sizes (the size of the current directory and all of its subdirectories).

TRUENAME

	Purpose:	Find the full, true path and file name for a file

	Format:	TRUENAME file

See also: The @TRUENAME variable function.

Usage:

Network reassignments, junctions, symbolic links, and the SUBST command can obscure the true name of a file. TRUENAME "sees through" these obstacles and reports the fully qualified name of a file.

The following example uses TRUENAME to get the true pathname for a file:

[c:\] subst d: c:\util\test

[c:\] truename d:\test.exe

c:\util\test\test.exe

TYPE

	Purpose:	Display the contents of the specified file(s)

	Format:	TYPE [/A:[[-][+]rhsadecijopt] /B /I"text" /L /O:[-]adegnrstu /P /X /XS] [@file] file...

	file	The file or list of files that you want to display.

	@file	A text file containing the names of the files to display, one per line (see @file lists for details).

	/A: (Attribute select)	/P(ause)

	/B(ell)	/O(rder)

	/I"text" (match description)	/X (hex)

	/L(ine numbers)	/XS (hex w/spaces)

See also: HEAD, TAIL, LIST.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Internet: Can be used with FTP and HTTP servers, e.g.

type "http://jpsoft.com/notfound.htm"

Usage:

The TYPE command displays a file. It is normally only useful for displaying text files (i.e. alphanumeric characters arranged in lines separated by CR/LF). Most text files use either ASCII or Unicode.

Executable files (.EXE) and many data files may be unreadable when displayed with TYPE because they include non-alphanumeric characters or unusual line separators.

To display the files MEMO1 and MEMO2:

type /p memo1 memo2

You can press Ctrl-S to pause TYPE's display and then any key to continue.

To display text from the clipboard use CLIP: as the file name. CLIP: will not return any data if the clipboard does not contain text. See Redirection for more information on CLIP:.

You will probably find LIST to be more useful for displaying files on the screen. The TYPE /L command used with redirection is useful if you want to add line numbers to a file, for example:

type /l myfile > myfile.num

TYPE sets two internal variables:

	%_type_files	The number of files renamed

	%_type_errors	The number of errors

●NTFS File Streams

TYPE supports file streams on NTFS drives. You can type an individual stream by specifying the stream name, for example:

type streamfile:s1

See NTFS File Streams for additional details.

Options:

	/=	Display the TYPE command dialog to help you set the command line options. You cannot specify any other arguments on the command line. (Not available in TCC/LE.)

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/B	Ignore bell (ASCII 7) characters.

	/I"text"	Select files by matching text in their descriptions. The text can include wildcards and extended wildcards. The search text must be enclosed in double quotes, and must follow the /I immediately, with no intervening spaces. You can select all filenames that have a description with /I"[?]*", or all filenames that do not have a description with /I"[]". Do not use /I with @file lists. See @file lists for details.

	/L	Display a line number preceding each line of text.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the listing will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Prompt after displaying each page. Your options at the prompt are explained in detail under Page and File Prompts.

	/X	Display the file in hex. (Not available in TCC/LE.)

	/XS	Display the file in hex, using spaces instead of periods for non-printable characters. (Not available in TCC/LE.)

UNALIAS

	Purpose:	Remove aliases from the alias list

	Format:	UNALIAS [/Q /R file... (alias ...)] alias...

 or

UNALIAS *

	alias	One or more aliases to remove from memory.

	file	One or more files from which to read the aliases to be undefined.

	/Q(uiet)	/R(ead file)

See also: ALIAS and ESET.

Usage:

TCC maintains a list of the aliases that you have defined. The UNALIAS command will remove aliases from that list. UNALIAS supports wildcards in the alias name.

For example, to remove the alias DDIR:

unalias ddir

To remove all the aliases:

unalias *

To remove all the aliases that begin with "DD":

unalias dd*

You can delete all matching aliases except for those specified by enclosing the exceptions in parentheses. For example, to remove all aliases beginning with "a" except for alias1 and alias2:

unalias (alias1 alias2) a*

If you keep aliases in a file that can be loaded with the ALIAS /R command, you can remove the aliases by using the UNALIAS /R command with the same file name:

unalias /r alias.lst

This is much faster than removing each alias individually in a batch file, and can be more selective than using UNALIAS *. UNALIAS /R accepts all of the alias definition formats you can use in a file for ALIAS /R.

Options:

	/Q	Prevents UNALIAS from displaying an error message if one or more of the aliases does not exist. This option is most useful in batch files, for removing a group of aliases when some of the aliases may not have been defined.

	/R	Read the list of aliases to remove from a file. The file format should be the same format as that used by the ALIAS /R command. You can use multiple files with one UNALIAS /R command by placing the names on the command line, separated by spaces:

unalias /r alias1.lst alias2.lst

UNALIAS /R will read from stdin if no filename is present and input is redirected.

	UNFUNCTION	Not in LE

	Purpose:	Remove user-defined functions from the function list

	Format:	UNFUNCTION [/G /L /Q /R file... (function ...)] function...

or

UNFUNCTION *

	function	One or more functions to remove from memory.

	file	One or more files from which to read functions to be undefined.

	/Q(uiet)	/R(ead file)

See also: FUNCTION and ESET.

Usage:

TCC maintains a list of the functions that you have defined. The UNFUNCTION command will remove functions from that list. UNFUNCTION supports wildcards in the function name.

To remove the function DDIR:

unfunction ddir

To remove all the functions:

unfunction *

To remove all the functions that begin with "DD":

unfunction dd*

You can delete all matching functions except for those specified by enclosing the exceptions in parentheses. For example, to remove all functions beginning with "f" except for func1 and func2:

unfunction (func1 func2) f*

If you keep functions in a file that can be loaded with the FUNCTION /R command, you can remove the functions by using the UNFUNCTION /R command with the same file name:

unfunction /r function.lst

This is much faster than removing each function individually in a batch file, and can be more selective than using UNFUNCTION *.

Options:

	/G	Remove the function(s) from the global list.

	/L	Remove the function(s) from the local list.

	/Q	Prevents UNFUNCTION from displaying an error message if one or more of the functions does not exist. This option is most useful in batch files, for removing a group of functions when some of the functions may not have been defined.

	/R	Read the list of functions to remove from a file. The file format should be the same format as that used by the FUNCTION /R command. You can use multiple files with one UNFUNCTION /R command by placing the names on the command line, separated by spaces:

unfunction /r function1.lst function2.lst

UNFUNCTION /R will read from stdin if no filename is present and input is redirected.

	UNGZIP	Not in LE

	Purpose:	Add, update, or delete files in a .gz (GZIP) archive

	Format:	GZIP [/A:[[-][+]rhsdaecjot] /E /O /Q /V] [gziparchive] path

	gziparchive	The gzip file to work with

	path	The path where files will be extracted

	/A:... (attribute switch)	/Q(uiet)

	/E(xtract)	/V(iew)

	/O(verwrite)	

See also GZIP.

File Selection

Supports attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Usage:

UNGZIP is compatible with the archives created by the Linux / UNIX gunzip utility, and supports RFC 1952.

You can specify a pathname for gziparchive. If you don't provide an extension, and the filename as entered doesn't exist, GZIP adds ".gz". If you don't specify an operation, UNGZIP will default to Extract.

Option:

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/E	Extract (default).

	/M	Delete the files from the disk after adding them to the gzip file.

	/O	Overwrite existing files.

	/Q	Don't display the filenames as they are extracted from the archive.

	/V	View the list of files in the zip file (date, time, and filename). Due to the limitations of the GZIP format, this can only display the first file in the archive. If the file was compressed with lzw, it will not have a header, so it cannot be viewed.

UNSET

	Purpose:	Remove variables from the environment or the registry

	Format:	UNSET [/D /E /Q /S /U /V /R file... (name ...)] name [name...]}]

or

UNSET *

	name	One or more variables to remove (wildcards accepted except for registry variables).

	file	One or more files from which to read variables to be removed.

	/D(efault)

	/S(ystem)

	/E(nvironment)

	/U(ser)

	/Q(uiet)

	/V(olatile)

	/R(ead)

	

See also: ESET and SET.

Usage:

UNSET removes one or more variables from the environment or from the Windows Registry.

For example, to remove the environment variable CMDLINE:

unset cmdline

If you use the command UNSET *, all of the environment variables will be deleted:

unset *

You can delete all matching variables except for those specified by enclosing the exceptions in parentheses. For example, to remove all variables beginning with "v" except for var1 and var2:

unset (var1 var2) v*

UNSET can be used in a batch file, in conjunction with the SETLOCAL and ENDLOCAL commands, to clear the environment of variables that may cause problems for applications run from that batch file.

For more information on environment variables, see the SET command and the general discussion of the environment.

Note: You cannot use UNSET with GOSUB variables.

Use caution when removing environment variables, and especially when using UNSET *. Many programs will not work properly without certain environment variables; for example, TCC depends on PATH.

Registry Variables: Default, System, User, and Volatile registry variables can be manipulated with the UNSET command's /D, /S, /U and /V switches, respectively. To remove the variable from both the registry and from the local environment, use both the /E switch and the registry variable selection switch together. (You cannot use wildcards for the variable name.) For example, to remove the volatile variable myvar from both the registry and the local environment, use:

unset /v /e myvar

Use caution when directly removing registry variables as they may be essential to various Windows processes and applications.

Options:

	/D	Delete a default variable from the registry (HKCU\.DEFAULT\Environment).

	/E	When used together with one of /D, /S, /U, or /V, unsets both the registry variable and the local environment variable.

	/Q	Prevents UNSET from displaying any error messages. (Windows XP will return an error if you try to remove a variable that doesn't exist; Windows 7 will not.)

	/R	Read environment variables to be UNSET from a file. This is much faster than using multiple UNSET commands in a batch file, and can be more selective than UNSET *. The file format may be the same as that used by the SET /R command (see SET for more details), or it could just be one variable per line, wildcards not processed.

UNSET /R will read from STDIN if no filename is present and input is redirected.

	/S	Delete a system variable from the registry (HKLM\System\CurrentControlSet\Control\Session Manager\Environment).

	/U	Delete a user variable from the registry (HKCU\Environment).

	/V	Delete a volatile variable from the registry (HKCU\Volatile Environment)

	UNSETARRAY	Not in LE

	Purpose:	Remove array variables

	Format:	UNSETARRAY [/Q] name [name...]

or

UNSETARRAY *

	name	One or more array variables to remove (wildcards accepted).

	/Q(uiet)

See also: SETARRAY.

Usage:

UNSETARRAY removes one or more array variables.

For example, to remove the array variable ARRAY1:

unsetarray array1

If you use the command UNSETARRAY *, all of the array variables will be deleted:

unsetarray *

You can delete all matching array variables except for those specified by enclosing the exceptions in parentheses. For example, to remove all array variables beginning with "v" except for var1 and var2:

unsetarray (var1 var2) v*

For more information on array variables, see the SETARRAY command.

Options:

	/Q	Prevents UNSETARRAY from displaying an error message if one or more of the array variables do not exist. This option is most useful in batch files, for removing a group of arrays when some of the arrays may not have been defined.

	UNTAR	Not in LE

	Purpose:	Extract files from .TAR archives

	Format:	UNTAR [/A:[[-][+]rhsdaecjot] /C /D /E /F /G /Net /O /P /Q /TEST /U /V] tararchive path file ...

	ziparchive	The .tar file to work with

	path	The path where files will be extracted

	file	The file(s) to extract

	/A:... (attribute switch)	/O(verwrite)

	/C(ontents)	/P(ercent)

	/D(irectory)	/Q(uiet)

	/E(xtract)	/TEST

	/F(reshen)	/U(pdate)

	/G(zip)	/V(iew)

/N (defaults)

See also TAR.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Usage:

UNTAR is compatible with tar archives created in Linux / UNIX. Unlike .zip archives, .tar archives are not compressed unless you use the gzip option. If you don't specify any arguments, UNTAR will display its command dialog.

You can specify a pathname for tararchive. If you don't provide an extension, and the filename as entered doesn't exist, UNTAR adds ".tar". If you don't specify an operation, UNTAR will default to Extract.

UNTAR supports wildcards for the tar archive name and for the filenames to extract.

path specifies the path where files will be extracted. If path is not specified, files are extracted to the current directory.

UNTAR supports gzip decompression, and can be used to extract .tar.gz archives.

UNTAR sets two internal variables:

	%_untar_files	The number of files extracted

	%_untar_errors	The number of errors

Options:

	/=	Display the UNTAR command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line.

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/C	Display (on standard output) the contents of a file in the tar archive.

	/D	Recreate the directory structure saved in the tar file.

	/E	Extract the specified file(s). (This is the default.)

	/F	Extract only those files that currently exist in the target folder, and which are older than the file in the zip archive.

	/G	Use Gzip decompression.

	/N	 Disable one or more default behaviors:

	e	Don't display errors.

	t	Don't update the CD / CDD extended directory search database (JPSTREE.IDX).

	/O	Overwrite existing files. UNTAR normally prompts before overwriting an existing file; /O will suppress the prompt.

	/P	Display the progress (0 - 100%) for each file as it is extracted.

	/Q	Don't display filenames as they are extracted.

	/TEST	Test the integrity of the TAR file (header and contents). Any errors will be displayed on STDERR.

	/U	Extract files which either don't exist in the target folder, or which are older than the file in the zip archive.

	/V	View the list of files in the archive (date, time, size, and filename).

	UNZIP	Not in LE

	Purpose:	Extract files from .ZIP archives

	Format:	UNZIP [/A:[[-][+]rhsdaecjot] /C /CRC /D /E /F /I /Nt /P /O /Q /S"password" /TEST /U /V] ziparchive path file ...

	ziparchive	The Zip file to work with

	path	The path where files will be extracted

	file	The file(s) to extract

	/A:... (attribute switch)	/O(verwrite)

	/C(ontents)	/P(ercent)

	/CRC	/Q(uiet)

	/D(irectory)	/S"password"

	/E(xtract)	/TEST

	/F(reshen)	/U(pdate)

	/I (descriptions)	/V(iew)

/N

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Usage:

You can specify a pathname for ziparchive. If you don't provide an extension, and the filename as entered doesn't exist, UNZIP adds ".zip". If you don't specify an operation, UNZIP will default to Extract. If you don't specify any arguments, UNZIP will display its command dialog.

UNZIP supports wildcards for the zip archive name and for the filenames to extract. UNZIP will prompt before overwriting existing files. Your options at the prompt are explained in detail under Page and File Prompts.

path specifies the path where files will be extracted. If path is not specified, files are extracted to the current directory.

UNZIP will automatically use the Zip64 extensions if the archive is in Zip64 format.

UNZIP sets two internal variables:

	%_unzip_files	The number of files extracted

	%_unzip_errors	The number of errors

Option:

	/=	Display the UNZIP command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line.

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/C	Display (on standard output) the contents of a file in the zip archive.

	/CRC	Display the file CRCs (must be used with /V).

	/D	Recreate the directory structure saved in the zip file.

	/E	Extract the specified file(s). (This is the default.)

	/F	Extract only those files that currently exist in the target folder, and which are older than the file in the zip archive.

	/I	Save the "File Comment" (if any) for each extracted file to the NTFS description or the DESCRIPT.ION file.

	/Nt	 Don't update the CD / CDD extended directory search database (JPSTREE.IDX).

	/O	Overwrite existing files. UNZIP normally prompts before overwriting an existing file; /O will suppress the prompt.

	/P	Display the progress (0 - 100%) for each file as it is extracted.

	/Q	Don't display filenames as they are extracted.

	/S	Use the specified password to extract the file(s) from an encrypted archive. If you don't provide a password on the command line, UNZIP will prompt you to enter one.

	/TEST	Test the integrity of the ZIP file (header and contents). Any errors will be displayed on STDERR.

	/U	Extract files which either don't exist in the target folder, or which are older than the file in the zip archive.

	/V	View the list of files in the archive (date, time, size, compression ratio, and filename). If the zip file is password protected, UNZIP will append a * after the filename.

	USBMONITOR	Not in LE

	Purpose:	Monitor USB device connection and disconnection

	Format:	USBMONITOR [/C [name]]

USBMONITOR name CONNECTED | DISCONNECTED n command

	name	Device name

	n	Number of repetitions (or FOREVER)

	command	Command to execute when condition is triggered

/C(lear)

Usage:

The USB device name can include wildcards. You can use either the device ID or the "friendly" name for the device.

The command line will be parsed and expanded before USBMONITOR is executed, so if you want to pass redirection characters or variables to command you will need to protect them (by enclosing in single back quotes, doubling the %'s, or using command grouping).

If the last argument on the line is a single (, it is interpreted as the beginning of a command group. USBMONITOR will append the following lines (in a batch file) or prompt you for more input (at the command line) until it gets a closing).

If you don't enter any arguments, USBMONITOR will display the USB devices it is currently monitoring.

The monitoring runs asynchronously in a separate thread. When the condition is triggered, the command will be executed immediately. This may cause problems if you try to write to the display or access files while the main TCC thread is also performing I/O. You may need to use START or DETACH in command to avoid conflicts.

USBMONITOR creates two environment variables when a device is connected or disconnected that can be queried by command. The variables are deleted after command is executed.

	_usbdeviceid	The device ID (this will usually have special characters like & in the name, so you will probably need to use double quotes around the variable name to prevent TCC from parsing the special characters)

	_usbname	The "friendly" name of the device

There is another variable that is updated after each trigger:

	_usbcount	The number of times the command has been triggered

Options:

	/C	If name is specified, remove the monitor for that USB device. Otherwise, remove all USB monitors.

	VBEEP	Not in LE

	Purpose:	Flash the screen and beep the speaker

	Format:	VBEEP [frequency duration ...] [asterisk | exclamation | hand | question | ok]

	frequency	The beep frequency in Hertz (cycles per second).

	duration	The beep length in 1/18th second intervals.

	asterisk	Plays the system default "asterisk" sound.

	exclamation	Plays the system default "exclamation" sound.

	hand	Plays the system default "hand" sound.

	question	Plays the system default "question" sound.

	ok	Plays the system default "ok" sound.

See also: the Length and Frequency configuration options.

Usage:

VBEEP flashes the screen (by setting all attributes to their inverse), and generates a sound through your computer's speaker. You can use it in batch files to signal that an operation has been completed, or that the computer needs attention.

64-bit versions of Windows do not support the frequency/duration syntax of VBEEP.

You can include as many frequency and duration pairs as you wish. No sound will be generated for frequencies less than 20 Hz.. The default value for frequency is 440 Hz; the default value for duration is 2.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

VER

	Purpose:	Display the TCC and operating system versions

	Format:	VER [/R]

/R(evision)

Usage:

Version numbers consist of a one or two-digit major version number, a separator, and a one- or two-digit minor version number. VER uses the default decimal separator defined by the current country information. The VER command displays version numbers for both TCC and Windows:

[c:\] ver

Take Command 14.0.25 Windows 7 [Version 6.1.7600]

Option:

	/R	Display the TCC and operating system internal revision level (if any), plus your registered name.

VERIFY

	Purpose:	Enable or disable disk write verification or display the verification state

	Format:	VERIFY [ON | OFF]

Usage:

Disk write verification cannot actually be enabled under Windows. TCC supports VERIFY as a "do-nothing" command, for compatibility with CMD. This avoids unknown command errors in old batch files which use the VERIFY command. You can set verification for file copying with the COPY /V option.

If used without any parameters, VERIFY will display the state of the verify flag:

[c:\] verify

VERIFY is ON

	VIEW	Not in LE

	Purpose:	Display the contents of files

	Format:	VIEW [/A:[[-|+]rhsadecijopt /A /B /E /FIX /FLAT / GB /H /L /L:n ?LEN:n /O:xx /P /R /S:xx /T /TEXT /VH /W] file ...

file One or more files.

	/A: (Attribute select)

	/LEN:n (wrap length)

	/A(SCII mode)

	/O:xx (start at offset)

	/B (EBCDIC)

	/P(rint)

	/E (start at end)

	/R (browse last directory)

	/FIX

	/S:xx (search)

	/FLAT

	/T (file tail)

	/GB (greenbar)

	/TEXT

	/H(ex)

	/VH (vertical hex)

	/L(ast file)

	/W (Take Command tab window)

	/L:n (start at line n)

	

See also LIST.

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Usage:

VIEW provides a fast and flexible way to view a file, without the overhead of loading and using a text editor. VIEW is a replacement for the old LIST command.

For example, to display a file called MEMO.TXT:

view memo.txt

Note: VIEW is primarily intended for displaying the contents of ASCII, Unicode, and EBCDIC text files (i.e. alphanumeric characters arranged in lines separated by CR/LF). It can be used for other files which contain non-alphabetic characters or unusual line separators, but you may need to use hexadecimal mode (see below) to display or search these files.

If you don't specify any filenames on the VIEW command line, VIEW will first check to see if standard input has been redirected (i.e., with a pipe like "DIR | VIEW"). If so, VIEW will display the contents of standard input. If not, VIEW will display a dialog to allow you to select files to display.

VIEW can view CSV files as tables. CSV files are typically used to represent tabular data, where each line in the file represents a row of a table. Each line contains the text of each column in the row, separated by a comma (although other characters can be used, such as a tab). By default, VIEW will automatically recognize CSV files and will display them as a table - where all the columns have the same width (much like a spreadsheet). Although unlike a spreadsheet, the column widths in V are fixed (determined by the longest entry in the column) and cannot be resized. You can press the arrow button next to the new CSV Mode button in the toolbar to customize the CSV behavior. Press the CSV Mode button to toggle between CSV mode and standard text mode.

Line Wrapping:

When a line is too long to fit in the view, horizontal scroll bars appear at the bottom of the view, allowing you to scroll through the entire line. The horizontal scroll bars will appear when at least one line of the file being viewed is wider than the width of the view.

Sometimes scrolling through lines is not very convenient, particularly if a file contains many really long lines. In this case, lines can be wrapped. Lines may be wrapped in several ways:

Wrap to Screen

The lines are wrapped so that all text fits inside the file view. In this case, the horizontal scroll bars disappear. Screen wrapping may be toggled by selecting the Wrap to Screen command from the View menu, pressing the Wrap to Screen button on the toolbar, or by pressing Alt-W. Wrapping text to the screen may be permanently enabled by setting the Wrap lines to screen option in the Preferences Dialog box.

Wrap to Length

In this case, the lines are wrapped whenever they reach the wrap length. Wrapping may be toggled by selecting the Wrap to Length command from the View menu, pressing the Wrap to Length button on the toolbar, or by pressing Alt-L. The wrap length may be quickly changed by selecting the Set Wrap Length command from the View menu, or by pressing Ctrl-W. You may enter a new wrap length, or select a previously used length from the list.

Wrap on Word Boundary

Normally, lines will be wrapped at the exact position where they exceed the width of the view (if wrapping to screen), or the wrap length - even if it happens to be in the middle of a word. To ensure that lines are not split mid-word, select the Wrap on Word Boundary option from the Preferences Dialog box.

Hex Mode:

Hex mode displays a file as a series of hexadecimal (base 16) numbers together with the corresponding ASCII character equivalent (this is also known as Debug Format).

The first 8 digits on each line represents a hex address which indicates the position (or offset) of the corresponding line in the file. This is followed by up to 16 hex numbers (or bytes) which correspond to the file data. The right hand side of the view consists of the ASCII character representation of the corresponding file data If the hex byte does not correspond to a printable ASCII character, it is displayed as a "." (dot).

Split Windows:

The File window can be split in two by clicking on the Split Screen button on the toolbar and selecting Horizontal or Vertical Split Mode. It can also be split from the Split submenu of the View menu, or by pressing Alt+S. This allows you to view different parts of the same file in different windows.

Note that both windows must use the same display mode. For example, you cannot have one window in hex mode and the other in text mode. Also, if you enable line wrapping, the wrapping will apply to both windows.

The Ruler:

The ruler makes it easy to determine the position of a particular character. The ruler is displayed at the top of the File View and its format depends on the mode of the view.

If the view is in Text mode, the ruler consists of a sequence of incrementing numbers (starting at 1) which indicate the column number of the character below. In this case, the length of the ruler is determined by the length of the longest line in the file.

If the view is in Hex mode, the ruler always consists of 16 hex offsets (from 00 to 0F) which indicate the offset from the start of the line of the corresponding hex bytes displayed below.

The ruler may be dragged over any part of the file. The floating ruler may be removed by either double-clicking on it or by dragging it back to the top.

The ruler numbering usually starts at 1. To start from 0, right-click on the ruler with the Control key pressed and select the required option. Alternatively, you can press Ctrl+Alt+R to toggle the starting column.

Up to 10 floating rulers may be displayed while viewing a file. To create a new ruler simply drag it from the top (fixed) ruler. To close a ruler, double click on it. To close all rulers (but to remember their position), double click on the fixed ruler. To redisplay the floating rulers in their last position, double click again on the fixed ruler.

Right-clicking (or shift-clicking) on the ruler will cause a vertical grid line to be drawn at the clicked column position. The grid line will disappear once the button is released.

Options:

	/=	Display the VIEW command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line.

	/A:	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes.

	/A	View the file in ASCII mode. This is the default mode and will only need to be specified in order to override an existing EBCDIC mode.

	/B	View the file in EBCDIC mode. VIEW normally automatically determines if a file is EBCDIC and automatically sets this mode.

	/E	Start viewing the file from the end instead of the beginning.

	/FIX:n	When viewing a file, the display may be fixed at a certain column position so that any text to the left of the fixed column will always be visible (ie, it will not scroll off the screen).

	/FLAT	Enables Flat Text Mode. This is a cross between text and hex modes. The file is displayed as text, however, control characters like line feeds and tabs are not expanded, and the file is always wrapped at the specified wrap length.

	/GB	 Enables Greenbar Mode. Each alternating line is in a different color.

	/H	View the file in Hex mode.

	/L	Display the last file that was viewed. (This will be the first file in the Recent Files list.)

	/L:n	Start displaying the file from line number n. A solid blue line will appear at the top of the file, indicating that a non-zero start offset is being used.

	/LEN:n	Set the wrap length to n.

	/O:xx	Start displaying the file from offset xx.

	/P	Print the file and exit VIEW when finished.

	/R	When started with no parameters, VIEW will browse the current directory. By specifying the /R option, VIEW will display the directory that it last browsed.

	/S	The /S option is used to tell VIEW to start displaying the file at the position of a string match. The format of the /S command line option is as follows:

 /S:SearchString /SO:[CWRHUB] /SN:n /SC:Columns

 where SO can contain a series of letters which correspond to the options in the search dialog box. These can be one of:

	C	Match case

	W	Word Only

	R	Regular Expression

	H	Hex/Binary

	U	Unicode

	B	Search backwards (from end of file)

SN indicates which occurrence of the string to find. By default, the first match is found (n=1).

SC can be used to restrict the search to certain columns.

If the search string contains spaces, you must enclose it in double quotes.

	/T	Enable File Tailing. If data is added to the file while you are viewing it, it will automatically be updated. There is no need to press the Refresh button to see any changes since the file was loaded. This is particularly useful when viewing log files while they are still being updated.

	/TEXT	Open the files in text mode (opposite of /H). (This is the default.)

	/VH	Display the file in Vertical Hex Mode. This is a cross between Text and Hex modes. The file is displayed one line at a time (just as in text mode). However, each line is followed by 2 lines containing the hex code of each character in the line.

	/W	Display the VIEW window in a Take Command tab window.

VIEW Command Line Options

Command line options may be entered on the VIEW command line.

For example,

 VIEW FileName [options]

The following options are valid:

		/A	

	View the file in ASCII mode. This is the default mode and will only need to be specified in order to override an existing EBCDIC mode.

		/B	

	View the file in EBCDIC mode.

	/E

	V will start viewing the file from the end instead of the beginning.

	/FLAT

	Enables Flat Text Mode

	/GB

	Enables Greenbar Mode

	/H

	This will force the file to be viewed in Hex mode.

	/I

	A new instance of V will be started (multiple calls to VIEW are usually handled by a single instance of V)

	/ICRCR

	Enables the Ignore Consecutive CRs option

	/IFF

	Enables the Ignore Form Feed option

	/L

	V will display the last file that it viewed. This will be the first file in the Recent Files list.

	/L:nn

	V will start displaying the file from line number nn

	/LEN:nn

	Sets the wrap length to nn

	/O:xxxx

	V will start displaying the file from offset xxxx

	/P

	Indicates that the specified file(s) are to be printed. Click here for further printing options.

	/R

	When started with no parameters, V will browse the current directory. By specifying the /R option, V will display the directory that it last browsed. Note that this option is automatically added to all shortcuts that V creates for itself.

	/T

	Enable File Tailing

	/TEXT

	This forces a file to be opened in text mode (opposite of /H)

	/VFONT

	See Font Options

	/VH

	The file will be viewed in Vertical Hex Mode

	/OEM

	V will display the file using the DOS/OEM character set (if available).

	/OEMP

	V will use the DOS/OEM character set when printing.

	/ANSI

	V will use the default character set.

Further command line options are explained in the following sections:

	

		/Delete Option

		/S Option

		/Fix Option

		Font Options

		Printing Options

		Text Only Printing Options

		EBCDIC Options

Notes

The options may also appear before the file name(s)

The options are not case sensitive.

You can use an equals (=) instead of a colon (:). For example, /L=20 instead of /L:20

/Delete Option

The /delete option is used to tell V to delete the file once it has finished viewing it.

This option may be necessary if you are using V as an external file viewer. When using external file viewers, programs usually create temporary files and then launch the file viewer to display the temporary file. It is up to the program that launches the file viewer to delete any temporary files it has created.

However, not all programs are well behaved and it is sometimes not possible to delete the file because V may still have the file open. If you know that the program in question always creates temporary files before it passes them to V, you should use the /delete flag.

*** Please use this option with caution ***

Find String Option: /S

The /S option is used to tell V to start displaying the file at the position of a string match.

The format of the /S command line option is as follows:

V Filename /S:SearchString /SO:[CWRHUB] /SN:n /SC:Columns

where

SO can contain a series of letters which correspond to the options in the search dialog box. These can be one of:

C Match case

W Word Only

R Regular Expression

H Hex/Binary

U Unicode

B Search backwards (from end of file)

SN indicates which occurrence of the string to find. By default, the first match is found (n=1).

SC can be used to restrict the search to certain columns.

If the search string contains spaces, you must enclose it in double quotes.

Examples

Start viewing at the second occurrence of "Error"

V Filename /S:Error /SN:2

Start viewing at the last line that contains the *word* "Error"

V Filename /S:Error /SO:WB

Note that the first example will match "errors", whereas the second will not.

Start viewing at the first line that *begins* with "Error Log"

V Filename /S:"^Error Log" /SO:R

Note

The /S parameter will not work on wild cards - you must specify a valid file name.

For example, you cannot specify "V *.txt /S:Error" hoping that V will display the first txt file that contains "Error"

/Fix Option

The /FIX option tells V to fix the columns when viewing the specified file(s).

The column position may also be specified on the command line.

For example,

 V TABLE.TXT /FIX:6

If no column position is specified, the most recent fixed column position is used.

To disable fixed columns, specify a column position of zero. That is,

 V TABLE.TXT /FIX:0

Font Options

You may specify the display font on the command line by using the VFONT option as follows:

/VFont:"Font Name",size

For example:

V Filename /VFont:"Courier New",10

Notes

The size option is optional. If not specified, it will default to 10 point.

The /FONT option is used to specify what font will be used when printing.

Viewing Redirected Output

When using a Command Prompt, it is awkward to view the output of a command (like DIR or GREP) when that command outputs more lines than can fit on the screen.

Sometimes, the Command Prompt allows you to scroll back through the output. However, you still can't search, or select and copy the output.

Typically, the more command is used as a filter to pause the output a screen at a time. However, it is still very limited - you can't scroll back or search.

You can solve all the above problems by using V to view the redirected output. You will be able to scroll and search the output, and even save it to a file.

No option is required to view redirected output. If you do not provide a file name on the command line, V will automatically check if there is any redirected output.

Printing Options

The /P option is used on the command line to print the specified file(s). V will immediately start printing the file (in a minimized state), and will exit when it has finished. If you have V installed in the tray, a separate instance of V will be launched to do the printing.

The Print Dialog box will not appear when printing from the command line (unless the /PD option is specified). All the current print settings will be used for printing. Most of these settings can be overridden by specifying them on the command line. The following command line options are available:

/Portrait

/Landscape

/2up

If one of the above 3 options is used, the /P option is implied and does not need to be specified.

	/Font:"Font Name",size	 eg, /Font:"Courier New",10

	/Printer:"Printer Name"	 eg, Printer:"HP LaserJet III"

	/AM:0.5	 Set ALL margins to 0.5 inches

	/LM:0.5	 Left margin

	/RM:0.5	 Right

	/TM:0.5	 Top

	/BM:0.5	 Bottom

	/Header:"Header Text" 	 /Header:"%f;;Page %p"

/Footer:"Footer Text"

/Copies:2

/From:2 /To:3 Print From Page 2 to Page 3

/L1:1 /L2:200 Print From Line 1 to Line 200

	/Pagelen:60	 Override Page Length

	/Wrap	 Wrap Long Lines

	/Wrappage	 Wraps long lines onto a new page instead of onto a new line

	/EOL	 Print End of Line

	/PLN	 Print Line Numbers

	/IFFP	 Ignore Form Feeds

	/ODD	 Only print odd numbered pages

	/EVEN	 Only print even numbered pages

	/PX	 Use Text Only printing

	/PB	 Use Raw/Binary printing

	/PGB	 Enables Greenbar printing

	/Profile:"Profile Name"	 Use the settings stored in the specified printer profile

You may also specify the /PD option which will cause the Print Dialog box to be displayed, allowing the user to override any print options.

If your printer supports duplexing (double sided printing), you may also specify one of the following options:

/dups Enable duplexing with short edge binding

/dupl Enable duplexing with long edge binding

If you do not specify a print setting, the current (most recent) setting will be used. To disable a setting, prefix the corresponding option with NO.

For example, if the default setting was to print a Header, you would have to specify the /NOHEADER option to disable the header. You can also use, NOFOOTER, NO2UP, NOWRAP, NOEOL, NOPLN and NOPAGELEN.

/NOP option

When the /P option is used (or implied), V will immediately start to print the file. However, if you would like the user to be able to view the file before it is printed, you need to specify the /NOP option. V will retain the command line parameters and use them when the user decides to print the file.

/PAGELIMIT:xxx option

The /PAGELIMIT option is used to specify the maximum number of pages that can be printed. This can be used to prevent users from accidentally printing the entire contents of very large files.

Notes

Case is not important (ie, /Font or /font can be used).

Make sure that there is no space before or after the ":" in each option, and no space before or after the comma separating the font name and font size.

The header text, printer name and font name should be enclosed in "quotes".

If not specified, the default margins will be used. However, if one margin is specified on the command line, they must ALL be specified. Any margin not specified will default to ZERO.

Text Only Printing Options

The Text Only Printing options can be entered on the command line.

They correspond to the options in the Text Only dialog box, and are as follows:

	/TOAM:nn	 Set *all* margins to nn

/TOLM:nn

/TORM:nn

/TOTM:nn

	/TOBM:nn	 Set left, right, top and bottom margins

	/TOW:nn	 Set page width to nn

	/TOH:nn	 Set page height to nn (ie, page length)

	/TOLD:n	 Set the Line Delay to n

	/TOPD:n	 Set the Page Delay to n

	/TODISABLE	 To disable Text Only printing

	/TOSOF:xxx	 String to send before the start of file is printed

	/TOEOF:xxx	 String to send at end of file

	/TOEOL:xxx	 String to send after each line

	/TOEOP:xxx	 String to send after each page

To include control characters in a string, you must specify their 2 character hex code prefixed by a "%". For example to send a CR/LF at the end of each line and a FF (form feed) at the end of each page, you would specify the following options:

 /TOEOL:%0d%0a /TOEOP:%0c

EBCDIC Options

You can specify the EBCDIC record format and record length by using the RECFM and LRECL options.

/RECFM=xxx

Use this to specify the record format. The record format can be one of V, VB, F or U. If the file uses carriage control, you can also specify the type of carriage control by appending one of A, M or Z. An S may be appended to signify that the file contains ASCII characters (instead of EBCDIC).

/LRECL=nn

Use this to specify the record length for fixed length files (RECFM=F). This is not required for RECFM=V/VB/U.

Examples

 V Filename /RECFM=F /LRECL=132

 V Filename /RECFM=FM /LRECL=80

 V Filename /RECFM=VBA

 V Filename /RECFM=VS

Click here for further details on EBCDIC record formats

Note

V can usually auto-detect RECFM=V/VB files, so it is not necessary to specify these formats on the command line. However, V cannot detect if the file contains carriage control. If it does, you will need to use the RECFM option to specify the type of carriage control (eg, /RECFM=VA).

Sending Error Reports

If V crashes, it will display a message saying that it encountered an unexpected problem and that it cannot continue.

Press the Send button to send a detailed report to fileviewer.com for analysis.

Error reports can also be sent to fileviewer.com by selecting Send Error Report from the Help menu

You will be presented with a list of crash files (Crash-xxxx.dat) and a log file (V.log). Simply select the files that you want to send and press the Send button.

Please include a description of what you were doing just before the crash.

The File View

The File View is the view in which the file is displayed. The view can be in one of two modes - Text and Hex, and can be configured in several ways.

The font in which the file is displayed may be selected from the Fonts section of the Preferences Dialog box. Note that V only supports non-proportional (or fixed pitch) display fonts - like Courier.

Right-clicking on any part of the File View will display a pop-up menu containing most of the available commands.

The following sections describe the File View in greater detail:

 The Toolbar

 Text Mode

 Hex Mode

 Unicode Files

 Flat Text Mode

 End of Line

 Tabs

 Start Offset

 EBCDIC

 The Ruler

 Line Numbers

 Line Wrapping

 Column Fixing

 Line Lengths

 OEM Character Set

 Bookmarks

 Scrolling

 Searching

 Goto

 Block Marking

 File Chunks

 Greenbar Mode

 File Tailing

Click here for details on how to configure V to view multiple files.

The Toolbar

Below is the default toolbar. It can be customized so that the buttons are re-arranged or deleted (right-click on the toolbar and select Customize).

[image: FileToolbar]

[image: BDirectory] Directory

Not available.

[image: BRefresh] Refresh

Refreshes (or reloads) the file. It is possible that the file being viewed is also being modified by another program (eg, a log file). In order to be able to view any data appended to the file since the file was opened, you need to refresh it (unless File Tailing is enabled).

[image: BLeft][image: BRight] Previous/Next

Displays the previous/next file in the file list. If you select several files in the Directory View, the file list will consist just of the files selected, otherwise the file list will consist of all files in the directory. If you position the mouse over the Previous/Next buttons, the name of the corresponding file will be displayed. Note that these buttons work differently from the Back/Forward buttons in a browser.

[image: BDown] File List

This brings up a list box containing all the files in the current file list. As above, if you have selected several files in the Directory View, this list will only contain the selected files. Otherwise, it will contain all the file in the current directory. To view another file, simply select it from the file list. Note that this feature is only available once V has been registered.

[image: BFind] Find

Searches for a string.

[image: BFindNext][image: BFindPrev] Find Next/Find Previous

Searches for the next (or previous) occurrence of a string.

[image: BGoto] Goto

Goes to a specified position in the file. Click here for further details.

[image: BClipBoard] Clipboard

Copies (or appends) selected text to the clipboard. Click here for further details.

[image: BText] Text Mode

Displays the file in Text Mode

[image: BHex] Hex Mode

Displays the file in Hex Mode

[image: BWrapScreen][image: BWrapLen] Wrap To Screen/Wrap To length

Click here for further details on line wrapping.

[image: BLineNumbers] Line Numbers

Toggles line numbers on/off in Text mode.

[image: BEOL] EOL

This specifies whether an End Of Line character will be displayed at the end of every line. This is useful when viewing files with trailing spaces. Note that this option is not available in Hex mode. The character used as the End Of Line terminator may be specified in the Fonts tab of the Preferences dialog box. The EOL mode can also be toggled by pressing the Enter key. Note that the EOL character will not be displayed at the end of a line that has been wrapped. It will only be displayed if it corresponds to an actual end of line character in the file.

[image: BTail] Tail

This enables File Tailing

[image: BGreenbar] Greenbar

Clicking on this button enables/disables Greenbar Mode. Clicking on the arrow portion of the button allows you to modify the Greenbar Options.

[image: BTools] Tools

Clicking the Tools button displays a further menu where you may select one of the following:

[image: BMD5] MD5/CRC32

This calculates the MD5 and CRC32 of the file being viewed.

[image: BWC] Word/Line Count

This counts the number of words and lines in the file.

[image: BPlus][image: BMinus] Zoom

You may easily increase (or decrease) the size of the current font by using the + and - keys. This does not do a "bitmap zoom", but simply selects the next point size in the current font. If a larger (or smaller) point size is not available, nothing will happen. Note that this will not work properly with the Terminal font.

[image: BSend] Send

This will construct an email message using your email client and will attach the file being viewed. Note that this will only work if MAPI (or Windows Messaging) is installed on your system.

Text Mode

The Text mode displays the contents of a file exactly as they are stored on disk - much like an editor does.

The Text mode may be enhanced by adding line numbers, adding a ruler and wrapping lines. These topics are discussed further in later sections.

When V opens a file, it determines whether it is a text or binary file, and displays the file in Text or Hex mode respectively. Basically, text files contain only alphanumeric, punctuation and new line characters. If files contain characters other than these, they will be displayed in Hex mode.

It takes a little bit longer for files to be displayed in Text mode rather than Hex mode. Files that are loaded in Hex mode will display almost instantaneously - regardless of size (1 byte or 500Mb). However, displaying files in Text mode is different. To display the file properly (and to handle the scroll bars correctly), V needs to know the number of lines in the file, and also the length of the longest line. As files get larger, it naturally takes longer to do this. Normally, you will not notice any delay unless the files are at least 8Mb in size.

File Chunks

To enable fast loading of even very large files (hundreds of Mb to several Gb), V can view files in chunks, instead of loading the entire file. Click here for further details on file chunks.

File Tailing

If you want V to automatically refresh a file as it is being viewed, you need to enable File Tailing.

Click here for further details.

Notes

Binary files (like ZIP and EXE files) can be viewed in Text mode, although it usually doesn't make sense to do so. If such files are viewed in text mode, many strange characters will be displayed. These strange characters correspond to non-printable (or control) characters and will differ depending on which font is selected.

Sometimes V can incorrectly decide that a text file is a binary file, and display it in Hex mode. This usually happens if a file contains an unexpected control character (eg, line drawing characters). In this case, just click on the Text icon on the toolbar (or press Alt-H) to display the file in Text mode. If you find that V is incorrectly displaying most of your text files in Hex mode, you can force V to always view them in text mode by enabling the Always Open as Text option in the Preferences Dialog box. However, by enabling this option, even ZIP and EXE files will initially be displayed as text.

Unicode Files

Most text files are stored using ASCII characters - each character is encoded using one byte (8 bits). This means that we can have a maximum of 256 different characters. This isn't a problem in most English speaking environments, but it does become a problem once you start encoding characters in different languages.

Unicode is a standard for encoding characters that tries to address the problem of encoding all possible international characters into a single, unified format.

As with most standards, there are several flavors to choose from. V supports UCS-2 and UTF-8. (See the note below regarding UTF-16)

Status Bar Indicator

V will automatically detect most Unicode files and display them accordingly, including files with foreign characters. UNI will be displayed in the status bar to indicate that the file is a Unicode file. ANS (for ANSI) will be displayed in the status bar when the file is not a Unicode file.

If V does not guess the correct encoding, you can click on the UNI/ANS indicator in the status bar and select the correct encoding (assuming that you know what it is).

Font Substitution

V does not support font substitution (or font fallback). Under font substitution, if the selected font does not contain a particular character, the program will try to use another font to display that character. Since V does not do font substitution, it is very important to use a font that contains all the characters to be displayed. In particular, the standard Courier font should not be used to display Unicode files - Courier New should be used instead.

UCS-2 vs UTF-16

Strictly speaking, V does not fully support UTF-16 - it only supports UCS-2 (which is the outdated predecessor to UTF-16).

UCS-2 is a fixed length encoding that encodes all characters to a 16 bit value (from 0 to FFFF). UTF-16 is a variable length encoding capable of encoding the entire Unicode range of characters. In particular, UTF-16 can be used to encode characters greater than FFFF.

However, in most cases, UCS-2 and UTF-16 are identical. If users encounter any problems viewing Unicode files, please contact v@fileviewer.com (preferably attaching a copy of the Unicode file).

Notes

V does not support UTF-32

V does not support RTL (Right To Left) display

Flat Text mode

This is a cross between text and hex modes.

The file is displayed as text, however, control characters like line feeds and tabs are not expanded, and the file is always wrapped at the specified wrap length.

This is useful for displaying files of fixed length records, where records may contain control characters (eg, packed decimal fields).

See the Wrap Here section for details on how to quickly wrap lines at different line lengths.

End of Line (EOL)

When displaying files in text mode, V will automatically start a new line whenever a line terminator is encountered (unless the file is displayed in Flat Text or Wrap to Length mode).

Most files created on Windows use a Carriage Return/Line Feed pair as a line terminator (CR/LF) . That is, a Carriage Return followed by a Line Feed. However, some files use a single CR or a single LF as a line terminator. V will also start a new line whenever a single CR or LF is encountered.

The End of Line submenu (on the View menu) allows you to configure how you want V to handle line terminator characters.

Display EOL Marker

Enabling this will display the End Of Line marker at the end of every line. This is equivalent to pressing the End of Line button on the toolbar. The character displayed as the EOL marker can be set in the Fonts section of Preferences.

Ignore Form Feeds

Form feed characters (ASCII 12 or Ctrl-L) are generally used to signify a page break. V uses form feeds to start a new page when printing, and also treats a form feed as a line terminator (since a new page implies a new line.

If you do not want V to treat a form feed as a line terminator, you can enable this option. The form feed character will still be displayed, but a new line will not be started. Note that this option only applies to viewing files. If you also do not want V to start a new page when printing, you need to enable "Ignore Form Feeds" on the Print dialog box.

Customize EOL Options

If you want to change any of the default EOL options, select Customize EOL Options from the End Of Line submenu.

Select Use Default EOL Options to revert to the default EOL behavior.

The following options are available:

Ignore Single CR (without LF)

This requires a CR to be following by a LF for it to be treated as a line terminator.

Ignore Single LF (without CR)

This requires a LF to be following by a CR for it to be treated as a line terminator.

Ignore Consecutive CRs

Some files have a strange EOL combination - CRCRLF. That is, 2 carriage returns followed by a line feed. Some users want this displayed as 2 lines, others as one. By default, V will treat this a 2 line terminators. If you enable this option, V will ignore the first CR and treat CRCRLF as a single line terminator.

Use the following Custom EOL characters(s)

Enable this option if you want to set custom EOL characters. Simply enter the characters in the space provided. V will start a new line whenever it encounters any of these characters. Multiple EOL characters are allowed, but each character will be treated as an EOL. That is, multiple characters will not be treated as a multiple character EOL combination.

Disable default EOL characters

When setting custom EOL characters, the default EOL characters (CR, LF) will still be treated as line terminators. Enable this option if you do not want CR and LF to be treated as line terminators.

Tabs in Text Files

When displaying text files, tabs will be expanded according to the number of characters specified in Tab Size.

Specifying a Tab Size of 1 causes tabs to be treated as spaces.

Tabs may also be made visible by selecting "Tabs->Show Tabs" from the View menu. In this case, a tab will not be expanded and will be displayed according to the corresponding character in the selected font.

Start Offset

V allows you to specify a non-zero start of file position - any data before this position will be ignored.

To set the start offset, right-click on the position in the file where you want to start viewing from and select View/Layout->StartOffset->StartFromHere

Alternatively, you can specify an absolute position by selecting Set Offset from the above right-click menu or from the main View->StartOffset menu.

A solid blue line will appear at the top of the file, indicating that a non-zero start offset is being used.

Note that the start offset is not "sticky". That is, it is reset to zero once a new file is viewed.

This is useful if you want view files with fixed line lengths, but the fixed lines do not begin from the start of the file.

The Status Bar

The status bar of the File View usually consists of 3 panes:

Pane 1 - Current Position

Usually this will contain the current line number. If you press the left mouse button at any position and keep it pressed, the corresponding line number and column will be displayed. If you have enabled "Hex offset in status bar" (in the File Options tab of Preferences), the hex offset of the position will also be displayed.

In Hex mode, the corresponding file offset will be displayed. Also, as a block is being highlighted, the start and end positions of the block are displayed, as well as the number of characters highlighted.

The offsets are displayed in both hex and decimal. For example,

"Offset: 669h->8e8h (1641d->2280d) Len=640 (280h)"

Note that as long as a block of text remains highlighted, its details will be displayed in this pane - even if the block has been scrolled out of view.

Pane 2 - Position as Percentage

This displays a number between 0 and 100 and represents the current line (ie, the last line in the view) as a percentage of the number of lines in the file.

If the file is paginated, the current page number and the total number of pages will be displayed instead of the percentage.

Pane 3 - File Details

This displays the file size, the number of lines in the file and the date and time the file was last modified.

Unicode and EBCDIC

When V displays Unicode or EBCDIC files, UNI or EBC will be displayed in the status bar. You may click on this area of the status bar to display a menu of available options.

Notes

When the file is being displayed as chunks, a fourth status pane appears which displays which chunk is currently being viewed.

Left-clicking on a character while viewing a file displays the hex offset of the character on the status bar (providing the Hex Offset option is enabled in Preferences).

EBCDIC Mode

EBCDIC stands for Extended Binary Coded Decimal Interchange Code, and is the character set used by most IBM mainframes to store documents (in preference to the more commonly used ASCII character set).

If you try to view an EBCDIC file with a standard ASCII file viewer/editor (eg, notepad), the text will appear as a stream of unprintable control characters. For example, the EBCDIC code for the number zero is hex F0, which is not a printable character in ASCII.

When V opens a file, it automatically tries to determine if it is ASCII or EBCDIC. If a file is EBCDIC, EBC will be displayed on the bottom status bar.

If an EBCDIC file is incorrectly displayed as ASCII, you can view it as EBCDIC by pressing Alt+B (or selecting EBCDIC from the View menu).

Once in EBCDIC mode, you may modify EBCDIC viewing options by selecting EBCDIC Options from the View menu, or by clicking on EBC in the status bar.

V views EBCDIC files by mapping each EBCDIC character to the ASCII equivalent before displaying. However, there are at least 6 incompatible versions of EBCDIC (all having non-contiguous letter sequences and missing punctuation characters). In order to support all of these mappings (and more), V defines a default mapping which can then be modified in the EBCDIC tab of the Preferences.

V supports files with variable length records (RECFM=V) and fixed length records (RECFM=F).

Click here for further details on viewing EBCDIC files.

The Ruler

The ruler makes it easy to determine the position of a particular character - you will no longer leave finger prints on your monitor as you count!

The ruler is displayed at the top of the File View and its format depends on the mode of the view.

Text Ruler

[image: _bm4]

If the view is in Text mode, the ruler consists of a sequence of incrementing numbers (starting at 1) which indicate the column number of the character below. In this case, the length of the ruler is determined by the length of the longest line in the file.

Hex Ruler

[image: _bm5]

If the view is in Hex mode, the ruler always consists of 16 hex offsets (from 00 to 0F) which indicate the offset from the start of the line of the corresponding hex bytes displayed below.

Floating the Ruler

The ruler may be dragged over any part of the file. The floating ruler may be removed by either double-clicking on it or by dragging it back to the top.

Starting Column

The ruler numbering usually starts at 1. To start from 0, right-click on the ruler with the Control key pressed and select the required option. Alternatively, you can press Ctrl+Alt+R to toggle the starting column.

Multiple Rulers

Up to 10 floating rulers may be displayed while viewing a file. To create a new ruler simply drag it from the top (fixed) ruler. To close a ruler, double click on it. To close all rulers (but to remember their position), double click on the fixed ruler. To redisplay the floating rulers in their last position, double click again on the fixed ruler.

Displaying Grid Lines

Right-clicking (or shift-clicking) on the ruler will cause a vertical grid line to be drawn at the clicked column position. The grid line will disappear once the button is released.

The color of the grid line can be customized in the File View section of Customize Colors (selected from the View menu).

Notes

●In Text mode, the ruler can be shifted by one character to the right (ie, the first column will be treated as column 0 instead of column 1) by setting the Start Text Ruler at 0 option in the Preferences Dialog box.
●The ruler is always displayed in the same font as the file.
●The floating ruler and grid lines only become fully functional once V has been registered.

File Line Numbers

When viewing the file in Text mode, the corresponding number of the line can be displayed to the left of the line by enabling the Line Numbers option in the View menu. The line numbers display can also be toggled by pressing the line numbers icon in the toolbar.

Look at the Line Numbers Configuration section for further details on how to customize the line number display.

Line Numbers in Chunks

If a file is being viewed in chunks, V will display the correct line numbers as long as consecutive chunks are loaded. However, if you load a chunk without having viewed the previous chunk, V will start the line numbers from 1.

For example, if you load the last chunk in the file after having loaded the first chunk, the line numbers in the last chunk will start from 1. If you need to know the exact line number, you will have to load the entire file.

Notes

Line numbers always start at 1.

The line numbers are not fixed. That is, the line numbers are scrolled off the screen when the line is scrolled horizontally. You can fix the line numbers (so they do not scroll) by enabling Fix Line Numbers from the Fix LHS submenu of the View menu.

Although line numbers in Text mode are optional, the hex addresses in Hex mode are always displayed.

Line Wrapping

When a line is too long to fit in the view, horizontal scroll bars appear at the bottom of the view, allowing you to scroll through the entire line. The horizontal scroll bars will appear when at least one line of the file being viewed is wider than the width of the view.

Sometimes scrolling through lines is not very convenient, particularly if a file contains many really long lines. In this case, lines can be wrapped. Lines may be wrapped in several ways:

Wrap to Screen

The lines are wrapped so that all text fits inside the file view. In this case, the horizontal scroll bars disappear. Screen wrapping may be toggled by selecting the Wrap to Screen command from the View menu, pressing the Wrap to Screen button on the toolbar, or by pressing Alt-W. Wrapping text to the screen may be permanently enabled by setting the Wrap lines to screen option in the Preferences Dialog box.

Wrap to Length

In this case, the lines are wrapped whenever they reach the wrap length. Wrapping may be toggled by selecting the Wrap to Length command from the View menu, pressing the Wrap to Length button on the toolbar, or by pressing Alt-L.

The wrap length may be quickly changed by selecting the Set Wrap Length command from the View menu, or by pressing Ctrl-W. You may enter a new wrap length, or select a previously used length from the list.

Wrap on Word Boundary

Normally, lines will be wrapped at the exact position where they exceed the width of the view (if wrapping to screen), or the wrap length - even if it happens to be in the middle of a word. To ensure that lines are not split mid-word, select the Wrap on Word Boundary option from the Preferences Dialog box.

Wrap Here

Flat text mode allows you to display the text file as fixed length records by specifying a record length (or wrap length).

Using the "Wrap Here" command, you can easily change the wrap length without actually entering a number.

All you do is right click on the position where you want the first record to end (or wrap) and then select "Wrap Here" from the Wrap menu.

Note

The Wrap Lines to screen option in the Preferences Dialog box, does not apply to printing. There is a separate option in the Print Dialog box which enables line wrapping when printing. However, the Wrap on Word Boundary option applies to both printing and display.

Column Fixing

When viewing a file, the display may be fixed at a certain column position so that any text to the left of the fixed column will always be visible (ie, it will not scroll off the screen). To do this, select the Fix Column option from the View menu. Select Set Fixed Column to specify the column position.

You may also just fix the line numbers by selecting the Fix Line Numbers option from the View menu.

Note: Unregistered versions cannot fix the display past column 6.

DOS/OEM Character Set

Most Windows applications use the ANSI character set to display text. The actual character displayed depends on the font selected.

Before Windows and GUI programs existed (in the DOS days), special line drawing characters were used to "draw" simple boxes and frames in standard text files. These special characters were a part of what was called the OEM or IBM character set.

Windows (True Type) fonts do not usually support these line drawing characters. These characters will usually be replaced by some strange symbol.

However, some fonts (like Courier New) support both ANSI and OEM character sets. By selecting the DOS/OEM Char Set option (from the View menu) the OEM character set will be selected (if available), and your lines and boxes will be drawn correctly.

Note that this will only work if the selected font supports the OEM character set. If it doesn't, this option will have no effect. For example, an OEM character set is available for Courier New but not for Courier.

Display Fonts

The file is displayed using the currently selected Screen Font which is specified in the Preferences.

If you find that you regularly use different fonts, you may create a fonts list and then select the required font from the Fonts menu.

To create or modify the fonts list, select Fonts->Organize from the View menu.

Organizing fonts is similar to Organizing Favorites or User Commands.

Once a font has been added to the list, it may be selected from the View->Fonts menu.

A shortcut key can also be assigned to a font so that the font will always be selected whenever the corresponding shortcut key is pressed.

Note: V maintains different fonts for text and hex modes.

Greenbar Mode

Files can be viewed (and printed) with a greenbar effect. This is where each alternating line is a different color. To enable, simply press the Greenbar icon in the toolbar.

Greenbar Options

The greenbar effect can be customized by clicking on the small arrow next to the Greenbar icon on the toolbar.

Greenbar Background Color

Click on this button to select the Greenbar color. Right-click on the button to select one of several pre-defined colors. You can select a different greenbar color for display and printing.

Number of lines to greenbar

By default, the greenbar color will alternate after every line. This option allows you to increase the number of consecutive lines that are "greenbarred".

Start greenbar at line 1

Enable this option if you want the greenbar coloring to start from line 1.

Do not greenbar line numbers

If you enable this option, the greenbar colors will not extend to the line number portion of the line.

Do not change color for wrapped lines

Enabling this option ensures that the greenbar color does not change if it has been wrapped. That is, the entire line will be displayed in the same color, regardless of how many lines it wraps to.

File Attributes / Line Lengths

If the File Attributes command is selected in text mode, the dialog box that displays the file attributes will contain an extra 4 lines of file details:

Longest Line

Displays the length (and number) of the longest line in the file.

Shortest Line

Displays the length (and number) of the shortest line in the file - including empty lines. That is, if the file contains an empty line, this length will be zero.

Shortest non-empty

Displays the length (and number) of the shortest non-empty line in the file. That is, this length will never be zero

Line Terminator

Displays the character (or character pair) used by the file to delimit lines. Depending on the origin of the file, the character(s) used to terminate lines are usually one of:

	CR

	The terminator is a single carriage return character (hex 0D). This terminator is uncommon.

	LF

	The terminator is a single line feed character (hex 0A). This is the standard terminator used on Unix systems.

	CR/LF

	A carriage return followed by a line feed is used to terminate lines. This is the standard terminator used on PC based systems.

	LF/CR

	As above, but the line feed is placed before the carriage return. This is very uncommon.

	CR/CR

	Two carriage returns are used to terminate lines. This is also very uncommon.

Notes

This extra information is not displayed if the file is being viewed in hex mode, or if the File Attributes command has been selected from the Directory View.

If multiple lines share the same length, only the first line in the file with that length is displayed.

If a file chunk is being viewed, the line length information only applies to the lines in that chunk, and not the entire file.

The number of lines in the entire file (together with the total number of words) may be displayed by selecting Word/Line Count from the Tools menu.

File Hex Mode

Use this command to view a file in Hex format. This mode is generally used for binary (non-text) files, although text files can also be viewed in Hex mode.

Vertical Hex mode can be enabled by selecting Text+Vertical Hex from the View menu (or by pressing Alt+J). This is a cross between Text and Hex modes.

Click here for further details on viewing files in hex (and vertical hex) mode.

File Tailing

File Tailing refers to the ability to automatically refresh a file as it is being modified.

By default, File Tailing is disabled. To enable it, press the Tail icon on the toolbar (or select Tail from the File menu).

If data is added to the file while you are viewing it, it will automatically be updated. There is no need to press the Refresh button to see any changes since the file was loaded.

This is particularly useful when viewing log files while they are still being updated.

Because there is some overhead in File Tailing, it is best not to enable it when it is not needed. To overcome the problem of the user accidentally leaving File Tailing enabled, V always disables File Tailing on startup.

If you want V to restore its previous Tailing state on startup, enable "Save File Tailing state" (in the File Options tab of Preferences).

Tailing on Network Drives

Tailing relies on notifications from the operating system whenever a file has been modified. These notifications are not always sent for network drives. In particular, they are usually not sent for Unix network drives. Under such circumstances, file tailing will not work.

Note

File Tailing only applies if data is added to the end of the file. If any other part of the file is updated, V will not automatically update it.

Viewing the Clipboard Contents

The File menu contains a View Clipboard submenu that displays the different types of data that are stored in the Windows clipboard (if any). Selecting the various data types will cause V to view the corresponding data just like it was viewing a file.

Notes

V can only view the clipboard data as text/hex. It cannot launch another program to view the clipboard data. For example, it cannot launch your image viewer to view bitmap data. However, you can save the data to a file and then use your image viewer to view that file.

Some data types cannot be viewed. If this is the case, the data type will be disabled on the menu.

The clipboard contents can be printed - just like a normal file.

Customizing Colors

Select Customize Colors from the View menu to customize the colors that V uses to display the file.

Once Use Default Colors has been disabled, the following colors can be customized:

Normal Background/Text

The colors used to display the file.

Highlighted Background/Text

These colors are used to display highlighted/selected text. By default, these colors are the inverse of the text colors. That is, the background color is the text color and the text color is the background color.

Search Line Background/Text

When searching, the found text is displayed using the above highlighted colors.

Only the portion of the line that contains the found text will normally be highlighted. However, the part of the line that does not contain the found text may also be displayed in a different color to the standard text color. Doing this makes it easier to distinguish the line which contains the found text, especially if the found text is scrolled off the screen.

Highlight All Background/Text

These colors are used to display all string matches when the Highlight All option is enabled in the Search Bar.

Highlight All Line Background/Text

These colors are used to display the non-highlighted portion of all lines that contain a Highlight All match.

Line Numbers Normal/Highlight All

The first color is used to display line numbers (and addresses in HEX mode). It is also used to display text in fixed columns.

The second color will be used to display the line number for all lines that contain a Highlight All match.

Current Line Background

This color is used to draw the background of the current line.

Bookmark Background

This background color is used to display bookmarked lines.

Grid Line

This color is used to draw the Grid Lines when right-clicking on the ruler.

Block Marker

This color is used to draw the start of block marker. A block marker is created by right-clicking on a position in the file and selecting Mark Block->Start Point.

Split File View

The File window can be split in two by clicking on the Split Screen button on the toolbar and selecting Horizontal or Vertical Split Mode. It can also be split from the Split submenu of the View menu, or by pressing Alt+S. This allows you to view different parts of the same file in different windows. Below is an example of a file which has been split horizontally.

[image: SplitFileView]

Synchronized scrolling is enabled by default. Click here for further details on synchronized scrolling.

Note that both windows must use the same display mode. For example, you cannot have one window in hex mode and the other in text mode. Also, if you enable line wrapping, the wrapping will apply to both windows.

Split View Synchronized Scrolling

By default, synchronized scrolling is enabled when the file view is split.

For example, if the file is split horizontally, you can use either of the horizontal scrollbars to scroll both views simultaneously (the vertical scrollbars work independently of each other). Similarly, if the file is split vertically, either of the vertical scrollbars can be used to scroll both views vertically.

You can disable synchronized scrolling by pressing the Split Screen button on the toolbar and selecting Split Options. This allows you to modify the following options:

Disable Horizontal Synchronized Scrolling (in Horizontal Split Mode)

This disables horizontal synchronized scrolling when the file view is split horizontally. When enabled, the horizontal scrollbars will work independently of each other. Note that vertical scrolling is never synchronized when the file view is split horizontally.

Disable Vertical Synchronized Scrolling (in Vertical Split Mode)

This disables vertical synchronized scrolling when the file view is split vertically. When enabled, the vertical scrollbars will work independently of each other. Note that horizontal scrolling is never synchronized when the file view is split vertically.

Multiple File Windows

By default, every file you view will be displayed in a separate window. If you prefer to only have one file window open at a time, enable "Use existing File window to view new file" in the Window Layout tab of Preferences.

Arranging File Windows

By default, when you view multiple files, the file windows will be positioned so that the new file window slightly overlaps the previous window. If you rearrange the multiple window position, V tries to maintain this position when it opens multiple files.

You can tile the files by selecting the desired tiling option from the Window Layout menu (Vertical, Horizontal or Auto-Arrange). If you tile the files vertically, each file window will have the same height as the screen. Each window will have the same width and be placed next to each other so they completely fill up the screen.

The image below shows 2 file windows, tiled vertically.

[image: MultiVertical]

Automatic Tiling

Multiple file windows can be automatically tiled by enabling "Automatically Tile multiple file windows" in the Window Layout tab of Preferences. That is, once a second (and subsequent) file is opened, V will automatically tile all the file windows.

File windows can also be "Auto-Arranged". Click here for further details.

Auto-Arranging File Windows

File windows can be auto-arranged based on a "grid size" which you define in the Window Layout tab of Preferences.

To see how auto-arranging works, consider a grid size of 3 x 3. With 2 or 3 windows open, they will be tiled vertically. When the user opens up a fourth file, they will be displayed in a 2 x 2 grid (as in the image below). When a user opens up a fifth and sixth file, the first 3 files will be displayed on the top and the remaining 2 (or 3) files will be displayed on the bottom. If the user opens up a seventh file, V will display the files in 3 rows of windows. The first 2 rows will contain 3 windows each, and the third will contain the seventh file. The eighth and ninth file will also be displayed on the 3rd row.

Because the grid size is only 3 x 3, the automatic arranging will stop with the ninth file. Should the user open up a tenth file, it will be displayed in a normal overlapping window.

[image: MultiTiled]

Synchronized Scrolling

When multiple files are open, scrolling can be synchronized by right-clicking on the scrollbar and selecting Synchronize Scrolling. Once enabled, whenever one window is scrolled (either via the keyboard or the mouse), all other file windows are also scrolled by the same amount.

Horizontal and vertical scrolling are separate. Enabling synchronized scrolling by right-clicking on the vertical scrollbar will only synchronize vertical scrolling. If you also want horizontal scrolling to be synchronized, you also need to right-click on the horizontal scrollbar and select Synchronize Scrolling.

Notes

Synchronized scrolling only applies to multiple file windows - it does not apply to the directory listing.

This is different to the synchronized scrolling which is available when the file view is split.

Hex Mode

Files displayed in hex mode look something like this:

[image: _bm6]

Hex mode displays a file as a series of hexadecimal (base 16) numbers together with the corresponding ASCII character equivalent (this is also known as Debug Format).

The first 8 digits on each line represents a hex address which indicates the position (or offset) of the corresponding line in the file. This is followed by up to 16 hex numbers (or bytes) which correspond to the file data.

The right hand side of the view consists of the ASCII character representation of the corresponding file data If the hex byte does not correspond to a printable ASCII character, it is displayed as a "." (dot).

If the Display ALL hex codes option is enabled, all codes will be displayed on the right hand side instead of a dot. The character displayed depends on the selected font, and will usually not be unique for each control character.

Click here for a description of the various hex formats available.

Note

By default, each line displays 16 bytes of data, although the line length can be changed

Hex Formats

When in Hex Mode, the file may be viewed in one of several hex formats which are selected from the View menu (under Hex Formats) or from the right-click menu (Layout->Hex Formats).

The available formats are:

Byte

This is the default format. Each character in the file is displayed as an individual hex code (from 00 to FF).

Decimal

As above, but each byte is displayed in DECIMAL (from 0 to 255).

Octal

As above, but each byte is displayed in OCTAL (from 0 to 377).

Word

The data in the file is displayed as 16-bit words (always in hex)

DWord

The data is displayed as 32-bit double words (in hex)

Double DWord

The data is displayed as 64-bit quad-words (in hex)

Flip Ends

This only applies when in Word, DWord or Double DWord mode. The "ends" of each "word" are "flipped". This makes it easier to view data that is stored in little-endian format.

By default, each line displays 16 bytes of data, although the line length can be changed.

Note

The file offsets are always displayed in Hex.

Hex Line Length

By default, each line in hex mode contains 16 bytes.

This can be changed by selecting "Hex Formats"->"Set Hex Line Length" from the View menu (or pressing Ctrl-W).

The line length must be a multiple of the format size.

For example, if the data is being displayed as "words", the length must be a multiple of 2 (the size of a word).

Hex Font

A different font can be used to display files in text and hex modes, although by default, these fonts are the same.

If you change the font in hex mode, the font will not be changed in text mode.

Vertical Hex Mode

Vertical Hex Mode is enabled by pressing Alt+J (or selecting Text + Vertical Hex from the View menu). Vertical Hex mode looks as follows:

[image: _bm7]

The file is displayed one line at a time (just as in text mode). However, each line is followed by 2 lines containing the hex code of each character in the line.

The 2 lines need to be read vertically. That is, the first line contains the first nibble (4 bits) of the code and the second line contains the second nibble.

In the example above, the first character in line 1 is ZERO, which is 30 in hex. Therefore, the first character in line 2 is 3 and the first character in line 3 is 0.

Searching

The Find command allows you to search for a string (or sequence of bytes) in the file being viewed. It may be selected from the toolbar, the Edit menu, from the right-click menu or from a keyboard shortcut.

When you select the Find command, you will be presented with the Find dialog box, where you can specify your search. The Find dialog box contains the following:

[image: FindDialog]

Note that a Search Bar can also be displayed at the bottom of the file window. Click here for details.

Search for

Enter the string to search for.

Click here for several different ways of entering the search string.

Match Case

Usually V will ignore case (upper and lower) when searching for strings. Check this option if you only want V to find strings that exactly match the case of the string entered. Note that this option is disabled if the Binary Data option is checked.

Whole Word Only

Check this option if you are only interested in matching the entered text when it appears as a word. For example, searching for the string "soft" will usually find a match in "software". Setting this option, will not find a match in "software".

Regular Expression

This option indicates that the string specified in "Search For" is a regular expression.

Binary Data (Hex)

This option indicates that the search string is a sequence of hex bytes rather than a text string.

Direction

This specifies the direction of the search. If Forward is selected, the file is searched from the beginning to the end. If Back is selected, the search begins from the end of the file and goes backwards.

Unicode

This will search for the Unicode equivalent of the specified string. This is useful if you want to search for strings in a Win32 executable. If the file being viewed is a Unicode file, there is no need to enable this option.

Search from

Specifies from where the search is to commence. If Start is selected, the search will begin from the start of the file. If Current is selected, the search will begin from the current line. If the direction of the search is backwards, the Start option will be replaced with End. By selecting End, the search will commence from the end of the file.

Columns

You may restrict the search to a particular column or range of columns. Click here for further details on specifying column ranges.

Flip Search String

When viewing hex files in flipped mode, the this option is available to also flip the entered search string before searching.

Display Search Bar at bottom of the file window

This will display a Search Bar at the bottom of the file window that can be used instead of the Search dialog for searching.

Press the Count All button to count the number of times the search string appears in the file.

Press the Bookmark button to bookmark the lines that contain the search string.

Press the Options button to modify the search options.

The Search Again command (or Find Next) will search for the next occurrence of the entered text. Use Alt+A to continue the Find Next onto the next file.

Cancelling the Search

If V has not found the specified string within 5 seconds, it will display a dialog box which will let you cancel the search by pressing the "Cancel" button.

Notes

The Find Next command will always search forwards even if the previous search was backwards.

Ctrl+F3 can be used to search for the next occurrence of any highlighted text.

The search history is limited to 5 strings if V is not registered.

Search String

In its simplest form, a search string consists of a sequence of text characters.

By enabling the Binary Data (Hex) option, the search string is treated as a sequence of hex bytes (eg, FF096C3A). Do not enter any spaces between the hex bytes.

You can also use specify hex characters within a text string by using the \x hex notation. For example, the above sequence of hex bytes can also be entered as:

 "\xff\x09\x6c\x3a"

If you use the \x notation, you will need to first enable "Allow hex characters in text search string" in the Search Options.

Notes

Case is not significant when entering hex data

When using \x notation, do not enable the Binary Data option

If \x notation is enabled and you actually want to search for "\x", you will need to enter "\\x"

Search Options

Pressing the Options button in the Find dialog box will allow you to modify several search options.

Find Next from Current Position

The Find Next (or Previous) command will find the string immediately after (or before) the last string found - even if you have changed the file position. Enable this option to commence the search from the current file position (instead of the previous match).

Find Next from next line

By enabling this, V will ignore the rest of the line when doing a "Find Next" and will begin searching from the start of the next line.

Wrap to Start

By enabling this, V will continue searching from the start of the file once the end of the file is reached.

Do not center found text

This causes found text to always be displayed on the top line of the window - instead of being centered.

Do not center found text if it is already on screen

By enabling this option, if the string you are searching for is already visible, the window will not be scrolled when the string is highlighted.

Only "beep" if search fails

Enabling this will stop V displaying a "String not Found" message when no match is found.

Instead, a short beep will sound.

Always Start Ctrl-F search from the beginning

By default, pressing Ctrl-F (or starting a search) will start the search from the current position. Enabling this option will cause the search to always start from the beginning of the file.

Allow hex characters in text search string

This enable the use of the \x prefix to indicate a hex character when entering text strings.

Disable "Match Case Toggling" (using the \ key)

This disables Match Case Toggling. That is, the \ key behaves just like the / key.

Search Count

Pressing the Count button in the Find dialog box will count the number of times the search string appears in the file.

The number of matches found will be displayed on the screen as V is counting. Press the Cancel button to stop the count.

If any text is selected before starting the count, the number of times the search string appears in the selection will also be displayed

Note: Each instance of the specified string is not highlighted after the count is complete.

Search Skip

Pressing the Skip button in the Find dialog box lets you skip over a specified number of matches.

For example, you can use this to find the 100th occurrence of a string in a file or to skip over 100 matches before continuing your search.

When the button is pressed, simply enter the number of matches to skip and press OK.

Column Search

When searching a file for text, you may restrict your search to a column or range of columns.

To do this, you must enable the Columns checkbox and enter the column (or range) in the space provided. The most recently used columns may be selected from the drop-down list box.

Only text that begins in the column (or lies in the column range) will be matched.

You may specify a column range in one of 2 ways:

	n-m

	Match strings that start anywhere between columns n and m

	n-

	Match strings that start anywhere after (and including) column n

You may also specify more than one column range by separating them with commas. The following are examples of valid column specifiers:

	1

	Match if text starts at column 1 (ie, start of the line)

	1-10

	Match if text starts in columns 1 to 10

	1,12,80

	Match if text starts in column 1 or 12 or 80

	1-5,20-29,80-

	Match if text starts in columns 1 to 5, or columns 20 to 29, or starts anywhere after (and including) column 80

		

Using Regular Expressions to search for data in columns

Regular expressions can also be used to search for text in columns (and even for text not in a certain column).

Tips on using the Keyboard

The following keys can be used to initiate a search:

Normal Find

/ and Ctrl+F.

Find Next

F3, A, Ctrl+L, Ctrl+N

You can also use the SPACE key if Use SPACE as Find Next is enabled in the Keyboard tab of Preferences.

Ctrl+F3 can be used to search for the next occurrence of any highlighted text.

Alt+A (and Alt+F3) will continue searching the "next file" if no further matches are found in the file being viewed.

Find Previous

To search backwards, use any of the Find Next keys with the SHIFT key pressed.

Backwards Search

Using ? will always initiate a backwards search. That is, a normal search with the Direction option set to Back.

Match Case toggle

Using \ will initiate a search with the default "Match Case" option toggled.

That is, if you perform a normal search (eg, using /) with the Match Case option disabled, pressing "\" will initiate a search with the Match Case option disabled. If you perform a normal search with the Match Case option enabled, using "\" will disable the Match Case option.

You can disable this behavior by enabling Disable "Match Case Toggling" (using the \ key).

Scrolling

The File View may be scrolled in the standard ways - via the keyboard or the scroll bars.

Using the keys

PageUp and PageDown

Scroll the view one screen-full at a time in the specified direction.

UpArrow and DownArrow

Scroll the view vertically one line at a time.

LeftArrow and RightArrow

Scroll the view horizontally, one column at a time.

Ctrl-LeftArrow and Ctrl-RightArrow

Scroll the view horizontally by the width of the view.

Ctrl-Home and Control-End

Ctrl-End scrolls the window so the end of the current line is visible. Ctrl-Home scrolls the window to its leftmost position.

Home/End

The Home key goes to the start of the file and the End key goes to the end of the file.

If the Use Space as PgDown option is enabled, the SPACE key will behave like PageDown and Shift-SPACE will behave like PageUp.

Using the scroll bars

If you click on the arrows on either side of the scroll bars (vertical or horizontal), the view is scrolled by one line (or column) in the appropriate direction. Clicking on the area below the vertical scroll box (or slider) is equivalent to pressing PageDown and clicking on the area above the scroll box is the same as pressing PageUp. Similarly, clicking to the right of the horizontal scroll box will scroll the view to the right by the width of the view and clicking to the left will scroll the view to the left.

Dragging the vertical slider allows you to quickly move the file position. You may enable smooth scrolling in order to improve the file display while dragging.

Current Line Marker

Pressing the Up/Down arrow keys will move the current line marker (instead of scrolling the window). The window is only scrolled when the line marker reaches the bottom (or top) of the window. If you would like the window to always scroll on an arrow key, enable Always scroll window when using arrow keys in the File Options tab of Preferences.

If the window is scrolled using the scroll bars (with the mouse), V will automatically move the current line marker accordingly. If you prefer the current line marker to stay where it is, enable Do not move current line marker when using scroll bars.

Continuous scrolling

The view may also be scrolled continuously in the vertical direction. This is basically equivalent to continually pressing the UpArrow or DownArrow key.

To commence continuous scrolling, simply press Ctrl+Shift+DownArrow or Ctlrl+Shift+UpArrow depending on the direction in which you want to scroll. The view will then start to scroll automatically. The speed of the scrolling may be increased by pressing the + (PLUS) key and decreased by pressing the - (MINUS) key.

Continuous scrolling may be stopped by pressing the ESC key and paused by pressing SPACE. Once paused, the scrolling may be re-started by pressing SPACE again, or terminated by pressing ESC.The scrolling will stop when the top (or bottom) of the file is reached.

IntelliMouse Support

V makes full use of the Microsoft IntelliMouse. Click here for details.

Customizing the keys

All of the cursor keys can be customized by selecting Customize Keyboard from the Tools menu. For example, you can change the behavior of the Home/End keys so they go to the start/end of the line instead of the start/end of the file. The commands corresponding to the cursor keys (such as Line Up/Line Down) can be found in the Other submenu of the FILE commands.

Smooth Scrolling

The slider on the vertical scrollbar may be dragged to quickly change the position of the file. V will continually try to redisplay the file as the scrollbar is being dragged.

If you find the screen refresh during scrolling annoying, you may try to make it "smoother" by enabling "Smooth Scrolling" in the File Options section of Preferences.

To do this, you must specify a Smooth Delay which will be used to "slow down" the speed of the scrolling. Typically, a delay of between 50 and 200 will be used. If no delay is entered, V will use a delay of 180.

The delay specified will depend on the speed of your system. If you find the scrolling too slow, enter a smaller delay. If the screen "flashes" too quickly during scrolling, enter a larger delay.

Note

The V smooth scrolling is different from, and independent of the "smooth scrolling" which is available in programs like Internet Explorer.

IntelliMouse Support

The Microsoft IntelliMouse is a mouse with a small wheel between the two mouse buttons. The wheel can be used to scroll windows without having to move the cursor over the scroll bars.

V supports the IntelliMouse as follows:

When viewing a file, scrolling the IntelliMouse wheel will scroll the document three lines at a time.

●If the SHIFT key is pressed while scrolling the wheel (or if the wheel itself is pressed), the document will be scrolled a screen at a time.
●If the wheel is scrolled while it is pressed and the SHIFT key is also pressed, continuous scrolling will begin. Pressing the wheel will pause/restart the scrolling. Pressing the wheel while the SHIFT key is pressed will stop the scrolling.
●If the CONTROL key is pressed as the wheel is scrolled, the Previous/Next document in the File List is displayed.

Note

In order for the operations requiring a wheel press to work correctly, you must "Turn on the wheel button" in the IntelliMouse setup (in the Control Panel) and set the "Button Assignment" to "Default".

Goto

The Goto dialog box allows you to specify a location in the file to jump to. The specified location will be displayed at the very top of the File View. You may enter the location either as a Line Number, Column Number, Offset, Page#, Record# or Chunk by selecting the appropriate option.

Note that Page# is only enabled if the file is paginated.

Record Numbers

A record is different from a line in that it is always a fixed length (and it doesn't have to end with a newline character).

If the file being viewed consists of fixed length records, the record length will automatically be placed in the Length field. If the file does not consist of fixed length records, you may specify your own record length (although it probably wouldn't make much sense to do this).

The other options in the Goto dialog box are:

Hex

This specifies that the Offset entered is in hex instead of decimal.

From End of File

This indicates that the specified location is to be treated as being from the end of the file. For example, if you enter a Line Number of 100, V will position the view 100 lines from the end of the file.

Notes

It is quite valid to goto a file offset while in text mode. In this case V will simply goto the line which corresponds to the offset entered.

On the other hand, it is not possible to goto a particular line number if the file is opened in Hex mode (unless the file has also been opened in Text mode). In this case, the Line Numbers option in the Goto dialog box is disabled.

If the file is being displayed in chunks, the numbers in the Goto dialog box are relative to the start of the file. Click here for further details.

Goto and Chunks

All entries in the Goto dialog are relative to the start of the file, regardless of which chunk is currently being viewed.

For example, if you were viewing the last chunk of a file, going to line 1 will take you to the very first line of the file (not the first line of the chunk).

You can also enter numbers outside the current chunk.

For example, if you were viewing the first chunk (which contained 1000 lines), you could enter line 5000 in the Goto dialog.

In this case, V would load the chunk that contained line 5000.

Note that V may take some time to locate the required position (especially if you are viewing a very large file). If the time taken is more than five seconds, a Cancel button will be displayed which will allow you to stop the goto operation.

Note

This behavior was introduced in Version 7. In prior versions, the line number was restricted to the current chunk.

Bookmarks

Bookmarking allows you to remember the current file position so that you can easily return to it.

V implements two types of bookmarking - numbered and traditional.

Numbered bookmarking allows you to create up to 10 bookmarks (numbered from 0 to 9). Click here for further details.

Traditional bookmarking allows you to bookmark a line by pressing Ctrl+F2. Pressing Ctrl+F2 again will clear the bookmark. Unlike numbered bookmarks, there is no limit to the number of traditional bookmarks you can have.

Bookmarked lines will be displayed in a different color. When multiple lines have been bookmarked, pressing F2 will take you to the next bookmark in the file and pressing Shift+F2 will take you to the previous bookmark in the file. All bookmarks in the file can be cleared by pressing Ctrl+Shift+F2 or by selecting Bookmarks->Clear All Bookmarks from the Edit menu.

Search and Bookmark

The Search dialog box contains a Bookmark button. Pressing this button will bookmark all lines that contain the search string. If you are using the Search Bar, you can right-click on the Find Next button (down arrow) to bookmark lines containing the search string. The number of bookmarked lines will be displayed in the status bar.

All bookmarked lines can be copied to the clipboard by selecting Copy Bookmarked Lines from the Bookmarks submenu of the Edit menu. All bookmarked lines can be saved to a file by selecting Save Bookmarked Lines from the same submenu.

By default, V will clear all bookmarks when it exits. If you want the bookmarks saved so they will be available every time you view the file, enable Save Bookmarks on Exit in the File Options tab of Preferences.

Note

The color of the bookmarked lines can be changed by selecting Customize Colors from the View menu.

Numbered Bookmarks

Up to 10 bookmarks (numbered from 0 to 9) may be set by either selecting the appropriate bookmark number from the Edit->Bookmark->Set Numbered menu, or by pressing Alt-0 to Alt-9 (for bookmarks 0 to 9 respectively). Bookmarked lines are displayed in a different color.

Once a numbered bookmark has been set, it may be restored by selecting it from the Edit->Bookmark-> Goto Numbered menu. Alternatively, it may be restored by pressing Ctrl-0 to Ctrl 9.

Numbered bookmarks are global. That is, you can save a bookmark in one file and restore it while you are viewing another file.

Notes

Numbered bookmarks not only save the current file position, but they also save the current file mode (ie, text or hex).

Unlike traditional bookmarks, numbered bookmarks can not saved when you exit V. That is, every time you start V, all numbered bookmarks will be cleared. If you want to save a numbered bookmark, you should use Favorites and assign a shortcut key to the Favorite created..

Sending selected text to your browser

V does not underline hyperlinks in files - such as http://www.fileviewer.com/, or create clickable hotspots like a browser does.

However, if a text file contains a URL, you may open the URL in your browser (not in V) by highlighting the text that forms the URL, right-clicking and selecting Open Selection in Browser.

You may also simply right-click over the URL (without selecting the actual text).

Notes

You do not have to highlight the entire URL - any part of the URL (even just one character) is sufficient.

If you only want to send part of the URL to the browser, simply select exactly what you want sent, and then press the Shift key when selecting Open Selection in Browser.

Open Selection in V

While viewing a file, you may highlight some text and then select "Open Selection in V" from the File menu. The selection will be treated as a file name, and if it exists, will be viewed by V.

Alternatively, you can simply right-click on any part of the file name (without having to highlight anything) and then select "Open Selection in V". Note that this will only work if the file name does not contain any spaces. If it does, you will need to highlight the entire file name.

Maintaining File Position

When viewing a file, the file position when last viewed is restored. This means that if you are quickly swapping between 2 files (using the Previous/Next commands), the file positions will not be reset to the beginning of the file.

You can disable this behaviour by enabling the Do not restore file position option in the File Options tab of Preferences.

Note that the file positions are only remembered while V is active - they are not saved when you exit V.

Paginated Files

A paginated file is one that contains form feeds (ASCII 12).

V will automatically paginate files that contain form feeds, displaying a page marker (dotted line) before the first line in each page.

By enabling Page Up/Down go to start of page in the Keyboard tab of Preferences, V will always scroll to the first line in a page when pressing Page Up/Down.

If you press Ctrl+Shift+Page Up/Down, V will scroll to the next page, but maintain the current position in the page. For example, if you are currently on line 10 of page 1, pressing Ctrl+Shift+Page Down will take you to line 10 of page 2.

Do not enable this option if you want Page Up/Down to behave normally (ie, scroll by the length of the window).

Line Numbers

By default, V will increment the line number for each line in the file. If you want the line number of each page to always start at 1, enable the Reset Line Numbers on New Page option.

Note

If you don't want V to paginate the files, select End Of Line->Ignore Form Feeds from the View menu.

The Search Bar

The Search Bar is displayed at the bottom of the file window by enabling the Display Search Bar at bottom of the file window option located at the bottom of the Search dialog box.

[image: SearchBar]

If the Search Bar is enabled, it will be used for searching instead of the Find dialog. To search, simply enter the search string in the "Find" box and press the Enter key. You can also click on one of the arrow buttons to search in the required direction (forwards or backwards).

If the search bar is not wide enough to display all of the search options, you can right-click on any empty area of the search bar to select the required option. This right-click menu also allows you to modify several other search options.

After doing a search, you can click on the arrow buttons to do a Find Next (down arrow) or Find Previous (up arrow).

String Count

Right-click on the Find Next Match button (the down arrow) and select Count All to count the number of times the search string occurs in the file.

Bookmarking

Right-click on the Find Next Match button and select one of the Bookmark options to bookmark all the lines that contain the search string.

Favorite Searches

By clicking on the "Favorites Searches" button and selecting "Add Search", the current search is added to the list of Favorite Searches. The user can them perform this search by simply clicking on the Favorite Searches button and selecting the search from the list.

Organize/Configure can be selected from the Favorite Searches menu to modify the search or customize the menu (similar to how Favorites are organized).

Highlight All

Enabling Highlight All will highlight every occurrence of the search bar text (this does not work in hex mode). Note that the search is not incremental (as in Firefox). That is, it does not search for the next match as you type each character. You must click on the Refresh button (or Find Next) for the highlight/search to be updated.

Search Bar Options

You can customize some of the Search Bar functionality by right clicking on the Search Bar and selecting "Search Bar Options" or by clicking on the two small arrows at the very right of the search bar.

Only display after first search

By default, if the Search Bar is enabled, it will be displayed as soon as a file is viewed. By enabling this option, the Search Bar will be hidden when the user first views the file, and will only be displayed once the user starts searching (by clicking the Find button in the toolbar or by using a search key).

Do not use when searching from toolbar

If the Search Bar is enabled, clicking on "Find" in the toolbar will move the cursor to the Search Bar for the user to enter the search text (instead of displaying the dialog box). By enabling this option, the default Find dialog will be displayed instead. If a search key is used (like '/' or Ctrl+F), the cursor will still be moved to the Search Bar.

Automatically Search from Favorites

Selecting a search from Favorite Searches only updates the search bar with the search text/options. The user still needs to click on a search button to perform the search. By enabling this option, the search is performed as soon as the favorite is selected.

Automatically apply when file is loaded

If Highlight All is enabled, enabling this option will automatically start highlighting text as soon as the file is loaded (using the most recent search string). If this option is not enabled, highlighting will only commence after the user does a search (or clicks on the Refresh button).

Colors

Five colors can be defined in the Search Bar Options. These colors can also be set by selecting Change Colors from the View menu.

Text/Background

This is the color that will be used to display the "highlight all" text.

Line Text/Background

This color will be used to display any non-matching text on lines that contain highlighted text. This makes it easy to see what lines contain matches.

Line Numbers

This color will be used to display the line number of all lines that contain highlighted text.

Continuing Search onto Next File

By default, V only searches the file being viewed for the search string. In particular, doing a Find Next will fail to find anything if no further matches of the search string can be found.

However, doing a Find Next using Alt+A (or Alt+F3), will cause V to continue searching the "next file" for further matches. If it finds any, it will load the new file and display the next match.

What is the "next file"?

You can always tell what the "next file" will be by placing your mouse over the Next File icon in the toolbar (the icon with the small right-arrow). Alternatively, you can click on the File List icon (small down-arrow) to display an ordered list of the files.

If you viewed the current file by selecting it from the V directory listing, the next file will be the next file in the directory listing.

If you launched V from the command line with more than one file (eg, V *.txt), the file list contains all the files specified on the command line.

Note

You cannot search backwards across files.

Block marking / Text highlighting

Several very useful operations can be performed on marked blocks (or selected text).

See the following sections for further details:

 Status Bar

 Selecting Words

 Marking Columns

 Adding Columns

 Copying to the clipboard

 Copying to a file

Blocks can be marked in several ways:

Using the Keyboard

Click here for further details.

Mark with mouse

A block may be marked in the usual method of holding down the left mouse button and dragging it over the text to be selected, releasing the button when the required text has been highlighted.

Specifying the start and end positions

This method is useful when marking very large blocks, or in hex mode, when you want to mark a specific address range.

To mark the start of a block, simply right-click on the corresponding character (or hex bytes) and select Mark Block->Start Point. To select the end of the block, scroll to the appropriate position in the file, right click on the corresponding character and select Mark Block->End Point. Once the start and end points have been specified, V will highlight the appropriate area.

Note that the end of the block may be marked before the start. Also, once a block is marked, it may be modified by choosing a new start or end point.

V will draw a marker around the start (or end) of a character to indicate the start (or end) marker. This marker will remain visible until it is cleared (by right-clicking and selecting Mark Block->Clear) or moved (by selecting a different position).

Note that the color of the marker may be specified by selecting Change Colors from the View menu.

Marking to End or Start

This method is similar to the above, except you only need to specify one point in the file (by right clicking at the appropriate location). The second point will either be the end or the start of the file. To mark a block from a character position to the end of the file, right click on that character position and select Mark Block->To End. Similarly, to mark a block from the start of the file to a character position, right-click on the end character position and select Mark Block->To Start.

Offset from current position

You may mark an exact number of characters from a file position by right-clicking on the file position, choosing Mark Block->Plus Offset (or Minus Offset) and then specifying the number of characters to mark.

Marking the entire file

The entire file may be marked by selecting Select Block->Entire File from the Edit menu, or by right-clicking and selecting Mark Block->Entire File. The entire file may also be selected by pressing Ctrl-A.

Selecting a word or line

To highlight an entire word, simply double-click anywhere on the word. Usually, only alphanumeric characters and the underscore are used to determine what constitutes a word. To use a more extended character set to select a word, press the shift key while you double-click. For example, double-clicking at the start of "http://www.fileviewer.com/" will only highlight "http". However, by also pressing the shift key, the entire URL is highlighted. Click here for further details on how to customize this behaviour.

To select the entire line, simply press the control key while you double click anywhere on the line.

If you double-click on a word (to select it) and then move the mouse before releasing the left mouse button (to select further text), V will always end the selection at the end of a word.

Extending the selected text

Once text has been selected, it can be extended (or shortened) by shift-clicking on the new end (or start) position. That is, click on the new end position while the shift key is pressed.

Marking Columns

Click here for details on how to select text in a particular column range.

Notes

●Pressing Ctrl+F3 will search for the next occurrence of any highlighted text.
●When HEX data is highlighted, both the Hex and Character views of the file are highlighted.
●Clicking the left mouse button on any part of the file view will clear any marked block (but it will not clear any block marker).

Using The Keyboard

Text selection via the keyboard is achieved as in most text editors - and usually involves using the cursor keys together with the Shift key. In particular:

Shift+DownArrow will select the current line.

Shift+RightArrow will will increase the text selection by one character.

Shift+End will select to the end of the current line

Shift+PageDown will select an entire "page" of text

Selected Text and Scrolling

Unlike most text editors, V does not clear any selected text when the keyboard is used for scrolling. That is, as you scroll the file with the arrow keys, any selected text remains selected. The selected text will remain selected until you either start a new text selection or you left-click on the file with the mouse.

The selected text can also be cleared by pressing the key associated with the Clear Selected Text command. There is no default keyboard shortcut to do this, but you can customize the keyboard to assign a key to Clear Selected Text (which is in the Other submenu of FILE).

Status Bar Details

The bottom left section of the status bar will display details of the selected text as it is being highlighted.

In text mode it will display:

●The line and column number of the start and end positions of the selected text
●The total number of characters in the selected text (in decimal and hex)
●If the Hex offset in status bar option is enabled, the hex offsets corresponding to the start and end of the selected text will also be displayed.
●If highlighting a column, V will also display the sum of the column data if the column consists of numbers.

In hex mode it will display:

●The start and end offsets of the selected text (in hex)
●The number of characters in the selected text (in decimal and hex)

Selecting words

While viewing a file, V will highlight an entire word by double-clicking anywhere on the word. By default, a word is defined to consist of alphanumeric characters (ie, a-z, A-Z, 0-9) and an underscore .

Pressing the shift key while double-clicking on a word uses an extended character set to determine what characters to highlight. By default, the extended character set consists of all alphanumeric characters and any character not contained in the following:

 "'!$=;<>{}[](),

Marking Columns

Usually when marking blocks that span several lines, complete lines in the block are highlighted - except for maybe the first and last line in the block, which may be partially highlighted.

Sometimes you may only want to highlight text that appears in certain columns. You may do this by pressing the Control key as you drag the mouse over the text to be selected. In this case, the highlighted area will form a rectangle consisting of only the required columns. Note that it is not necessary to continue pressing the Control key as you are marking the text - only when you begin to mark the text.

When you copy the column selection to the clipboard (or save it to a file), only the text in the highlighted columns is copied/saved.

Notes

●Column marking is not available in HEX mode.
●Once a column is marked, it may be extended by shift-clicking, as described in the How to mark blocks section.
●If the columns contain numbers, you can have V add them together and display the sum in the status bar.
●Although it is possible to mark columns if V is unregistered, you may only copy the selected text to the clipboard (or save it to a file) once V has been registered.

Adding Columns

When selecting columns which contain numbers, V can add these numbers and display the sum in the status bar.

To do this, right-click on the bottom left of the status bar and select Sum Column Data.

If you want V to automatically display the sum as you are selecting the column, right-click on the status bar and enable Auto-Sum. You may copy the sum to the clipboard by right-clicking on the status bar and selecting Copy Sum to Clipboard.

By default, V looks for valid decimal numbers to add. If the numbers in the column are in hex, also press the SHIFT key.

Notes

●Any lines in the selection that do not contain valid numbers will be ignored.
●This only applies to selected columns. That is, text that has been selected with the Ctrl key pressed.
●When selecting very large columns of data, the auto-sum option may slow down the selection process.

Copying text to the clipboard

The selected text may be copied to the clipboard by either pressing Ctrl-C, by selecting Copy/Cut from the Edit menu (the right-click menu) or by clicking on the Clipboard toolbar button.

If you are displaying the file with line numbers, they will not usually be copied to the clipboard. If you would like the line numbers included, you have to enable the Include line numbers on copy to Clipboard option in the Preferences Dialog box.

Copying in Hex mode

In hex mode, the data to be copied to the clipboard depends on how the data is selected. If the data is selected by drawing the mouse over the right side of the display, then only the data bytes will be copied (nulls will be ignored).

If the data is selected by moving the mouse over the left side of the display, the actual hex representation of the data (including the hex address) will be copied.

Notes

●The selected text will usually remain highlighted once it has been copied to the clipboard (or copied to a file). If you want the selection to be cleared once the selection has been copied, set the Unmark block after copy option in the File Options tab of the Preferences dialog box.
●When selecting the left side of a view In Hex mode, only complete lines are copied to the clipboard, regardless of how much of the line is highlighted. Even if only one byte in a line is highlighted, the entire line (and address) is copied to the clipboard. (This does not apply when selecting the right side of the view)
●The selected text may also be appended to the current clipboard contents by pressing the SHIFT key while doing the copy.

Appending to the cliboard

The selected text may be appended to the clipboard by pressing the SHIFT key while doing the copy. That is, press SHIFT while clicking on the clipboard toolbar button, or by pressing Ctrl-Shift-C instead of Ctrl-C.

Copying to a file

The selected text may be copied to a file by selecting Select Block->Write to File from the Edit menu or by selecting Mark Block->Write to File from the right-click menu.

Copying selected text to a file is similar to copying to the clipboard, however you are asked to specify a file name to copy the text to. If the file already exists, you have the option of appending to the file instead of over-writing it.

This feature makes it easy to extract several small portions from a large file and save them to a much smaller file (perhaps to be printed).

File Encoding

When saving text files, select the type of encoding from the "File Encoding" drop-down list box. The File Encoding will default to Unicode. The encoding should be set to ANSI/ASCII to save the text in the more common single-byte ASCII format.

Copying in Hex mode

Unlike copying to the clipboard, copying to a file in Hex mode does not copy the hex data as it is displayed, but as it is stored. That is, if you highlight 6 hex bytes and copy them to a file, the resulting file will contain exactly 6 bytes.

GridLines

A Grid consists of vertical lines (GridLines) and column headings that can be displayed while viewing a file. It behaves just like a ruler. It can be displayed at the top of the file and it can be floated over any part of the file.

[image: GridLines]

A Grid may be displayed by manually selecting it from the GridLines menu, or it can be automatically loaded whenever a particular file is viewed.

The state of the current Grid can be toggled by pressing Ctrl+Shift+G or by selecting Toggle Grid from the GridLines menu.

Note that GridLines are only useful when the data in the file consists of fixed length records which are properly aligned into columns.

GridLines will not work on delimited files (or CSV files), where each field in a record is separated by a delimiter (like a comma or a TAB). However, it is possible to use a program called TuFix to convert a delimited file into a fixed record length file. The converted file can then be viewed in V with an appropriate Grid.

Tufix can be downloaded from:

http://www.fileviewer.com/TuFix.html

Click on the following sections for further details on GridLines:

Creating Grids

Organizing Grids

Wrap Options

Automatically Loading Grids

Associating Grids with a File Extension

Exporting Grids

Importing Grids

Exporting Data to a CSV File

Note

GridLines can be printed by using %g in the header/footer

Creating Grids

To create a Grid, select Edit/Create Grid from the GridLines menu. This will display a blank Grid. After making the necessary modifications, you need to save the Grid before exiting.

To make modifications, right-click on the Grid and select the desired option. The following options are available:

Add Grid Line Here

Right-click at the position where you want to add a Grid Line and select this option. You can then use "Edit Column Name" to give the column a meaningful name. If you place the Grid Line at the incorrect position, you can simply left-click on the end of the column and drag it to the required position.

Note that you can also add a Grid Line by Shift-Left-Clicking at the required position.

Edit Column Name

Right-click on the appropriate column, then enter the column name (followed by the Enter key). You can leave the column name unchanged by pressing the ESCape key.

Edit Column Length

Right-click on the column and enter the new length. In most cases it would be easier to set the column length by simply left-clicking on the end of the column and dragging to the desired position.

Select Font

This lets you specify the Font to display the Column names. Note that all columns are displayed using the same font.

Insert Column

This always inserts a column of 10 characters just before the column that you right-click on. You can then drag the new column to the required position. In most cases, it would be easier to use "Add Grid Line Here".

Delete Column

Deletes the column that you right-click on.

Hide Grid Lines

This specifies that the vertical Grid Lines will not be drawn over the file. Only the Grid header will be displayed.

Center Column Names

The column names will be centered instead of starting at the left.

Set Wrap Options

This allows fixed length record files to automatically wrap to the correct record length when a Grid is loaded. Click here for further details.

Save

This saves the Grid. If you are saving a newly created Grid (instead of an edited Grid), the Organize Grid dialog will be displayed, allowing you to enter a name for the Grid. This name will appear on the GridLines menu.

Save As

This lets you save the edited Grid with a new name. The Grid originally loaded will not be modified.

Export

This lets you export the Grid to a .vgrid file. Click here for further details.

Note that exported Grids do not appear on the GridLines menu. If you want the Grid to also appear on the GridLines menu, you will have select Organize/Configure from the GridLines menu and then import the Grid.

Set Export Data

This lets you specify additional data that will be exported to the .vgrid file.

Click here for further details.

Close Menu

Select this if you do not want to make a selection from the right-click menu.

Exit Edit Mode

Terminates the Grid edit. If you have not saved a modified Grid, you will be asked if you want to save it before exiting.

Notes

You can also maintain Grids by selecting Organize/Configure from the GridLines menu.

You can only create/edit a grid while you are viewing a file.

Unregistered versions of V cannot save grids that have more than 3 columns.

Organizing Grids

Select Organize/Configure from the GridLines menu if you want to re-organize your Grids.

Note that the easiest way of creating a Grid is to select Create Grid from the GridLines menu. The easiest way of modifying a Grid is to first load it, and then to select Edit Grid from the GridLines menu.

Using the Organize option to modify a Grid does not give you visual feedback as you are making the changes. You will need to exit the Organize dialog before any Grid modifications are displayed.

Organize/Configure is best used to make minor changes to the Grid, or to re-organize the Grids on the GridLines menu.

Organizing Grids is very similar to Organizing Favorites. See the Creating Grids section for an explanation of the various options in the Organize dialog box. When organizing the grids, a shortcut key can be assigned so that the grid is selected whenever the corresponding keyboard shortcut is entered.

You can copy a Grid from another user by first exporting the Grid and then importing it.

Wrap Options

When viewing files with fixed length records (and no line terminator), you need to manually enter the correct record length (or wrap length) for the file to be displayed correctly.

By entering the Wrap Options for a Grid, the file will be automatically wrapped to the specified record length when the Grid is loaded.

To enter the Wrap Options while creating/editing a Grid, right-click on the Grid header and select Set Wrap Options. The wrap options consist of the following:

Wrap Lines at Column

This is length at which all lines will be wrapped (ie, the record length).

Restore wrap settings when Grid is removed

By default, V will maintain the current wrap settings when the Grid is removed - even when you view a different file. If the wrap options do not apply to this file, you will need to disable (or change) them.

By enabling this option, V assumes that the wrap options only apply to the file being viewed and will restore the original wrap settings when the Grid is removed (or the file is closed).

Automatically Loading Grids

A Grid is usually manually loaded by selecting it from the GridLines menu. If you always want a particular grid to be displayed when a file is loaded, you need to export the grid to a file name that is the same as the file with a .vgrid extension.

For example, to always display a grid with Filename.dat, you need to create a grid file with the name Filename.dat.vgrid.

The .vgrid file needs to be in the same directory as the file being viewed - or in the Default Grid Directory (see below).

Creating a .vgrid File

After you have created a Grid, you can export it by selecting Export from the right-click Grid menu. Note that an exported Grid will not appear on the GridLines menu. If you want the Grid displayed in the GridLines menu, you will also need to Save it.

If you export the Grid to a file named .vgrid (just an extension, with no file name), that Grid will be used for all files in that directory.

Default Grid Directory

You can specify a Default Grid Directory by selecting Default Grid Directory from the GridLines menu. If a .vgrid file does not exist in the current directory, V will also look in this directory.

You can use rules based loading to load a grid based on part of the file name. This makes it possible to load the same grid for multiple files without having to create multiple .vgrid files.

Note: In order to load grids automatically, you need to enable the Auto-Load Grids option on the GridLines->Options menu.

Using Rules (Regular Expressions) to Load Grids

If Enable Grid Rules is enabled (on the GridLines->Options menu), V will look for a .rules file which contains a list of file expressions and corresponding .vgrid files to load if the currently viewed file matches that expression.

You will need to create a file called .rules in the Default Grid Directory (select Set Default Grid Directory from the GridLines menu). This file must be created manually with an editor (you cannot use V to create it).

Each line in this file (.rules) consists of a regular expression followed by a replacement string (separated by a "/").

When viewing a file, V will try to match the file name against each expression in .rules. If it finds a match, it tries to load the .vgrid file specified by the replacement.

For example, let's say that a directory consisted of many files named Test1-YYYY-MM-DD.log and Test2-YYYY-MM-DD.log where YYYY-MM-DD represented the date the file was created.

You could apply a single .vgrid file for all such files by adding the following line to ".rules":

Test.*\.log/Test.vgrid

This will cause V to load Test.vgrid for any file of the form Testxxxxx.log.

If you wanted to load a different grid for Test1 and Test2 files, you could add the following line to .rules:

Test([0-9]).*\.log/Test\1.vgrid

This would load Test1.vgrid for all file names that started with Test1, Test2.vgrid for all file names that started with Test2, and so on, up to Test9.vgrid.

Notes

The expressions in .rules must be regular expressions - which are different from simple Windows/DOS wildcard expressions (like Test*.log - which will not work).

Any lines in .rules that begin with either # or ; are ignored (they can be used for comments).

Associating with a File Extension

By associating a Grid with a File Extension, that Grid will be automatically loaded whenever a file with that extension is viewed.

To do this, simply create a Grid, and when saving it, make sure that the name of the Grid begins with the file extension.

For example, to associate a Grid with .xyz files, simply name the Grid something like ".xyz (Grid for XYZ Files)". Any description may follow the file extension (as long as there is a separating space).

You must also enable Auto-Load Grid Extensions on the GridLines menu.

Note

A File Extension Grid must be saved on the GridLines menu. You cannot save it as a .vgrid file in the current directory or the Default Grid Directory.

Exporting Grids

Grids can either be exported to .vexp files or to .vgrid files.

Exporting to a .vexp file

Press the More button and select Export. This will allow you to export either the selected grid(s) or all the grids to a .vexp file. This is usually done so the grids can be copied by another user.

Once another user has imported the exported .vexp file, the imported gridlines will appear on their GridLines menu.

Exporting to a .vgrid file

Press the More button and select Export to .vgrid.

A Grid is exported to a .vgrid file so that it can be automatically loaded by V when a file is viewed.

The Set Export Data option in the Grid right-click menu is used to specify extra data that will be appended to every line in the exported .vgrid file.

You can also append different data for each line (column) by entering the extra data to be exported in the Column Length. Simply include the extra data immediately after the length.

For example, if you enter 16, A for the Column Length, ", A" (without the quotes) will be added to the corresponding exported line.

Note that the comma in this example does not act as a separator. The extra data to be exported begins at the first non-numeric character after the column length. If you add a space after the column length, the space will also be exported.

Note

.vgrid files can only be exported/imported one at a time. Export to a .vexp file if you would like to export/import multiple grids.

Importing Grids

When organizing GridLines, pressing the More button allows you to import GridLines that had previously been exported. Two different types of import are available.

Import from a .vexp file

Selecting the Import option allows you import a previously exported .vexp file. The imported grids will appear on the GridLines menu.

Import from .vgrid

This allows you to add a Grid to the GridLines menu that has previously been exported to a .vgrid file.

Note

.vgrid files can only be exported/imported one at a time. Export to a .vexp file if you would like to export/import multiple grids.

Exporting Data to a CSV File

The file being viewed can be exported to a CSV file by selecting Export to CSV from the GridLines menu. This option is only available if a Grid has been applied to the file being viewed.

Each line in a CSV file consists of multiple fields separated by a delimiter (typically a comma). Each field will contain the text in the corresponding grid column.

The following options can be set when exporting to a CSV file:

Delimiter

If nothing is specified in the Delimiter box, a comma will be used as the delimiter. If you want to specify another delimiter (eg, a vertical bar "|"), simply enter it here. Note that the delimiter can contain more than one character. If you want to use a TAB for the delimiter, enter "\x8" (without the quotes).

Quotes

By default, V will only place quotes around a field if the field contains a delimiter. You can change this behavior by specifying one of the following:

●Use Quote Always
●Use Quotes only if field contains delimiter
●Use Quotes only if field contains delimiter or spaces

Do not strip trailing spaces

By default, V will remove any trailing spaces from a field. Enable this options if you want the trailing spaces exported.

Do not export grid headings

V will export the grid headings to the first line of the CSV file. Enable this option if you do not want the headings exported.

Note

Only the first 500 lines are exported if V is unregistered.

File Chunks

The time taken to load a file (in text mode) increases as the file gets larger. When viewing really large files, it is likely that you just want to look at the start and/or end of the file. In this case, it is pointless to try and load the entire file. Why load all of a 100Mb file, when you just want to view the last few lines?

In order to keep the load time to a minimum, V breaks the file into chunks. The size of the chunk is specified in the More Options tab of the Preferences Dialog box (it defaults to 8Mb). File Chunks are enabled by default - to disable them, just clear the Enable File Chunks option.

When a file is to be viewed, V checks the size of the file, and if it is larger than the chunk size, will only load the first chunk in the file (or the last chunk if you are viewing the tail).

[image: _bm9]

An extra toolbar will appear in the top right of the window, which lets you load further chunks, and an extra status bar pane also appears in the bottom of the window, which displays which chunk is currently being viewed. You may also click on this area of the status bar to display available chunk options.

Once a chunk is loaded, the scrollbars restrict movement to within the chunk. That is, sliding the vertical scrollbar all the way to the bottom, will take you to the end of the chunk, not the end of the file. Also, the displayed line numbers are not always correct when viewing a file in chunks.

Click here for further details on line numbering in chunks.

Searching is not restricted to the current chunk. If a string is found outside the current chunk, then the appropriate chunk is automatically loaded.

In the Goto Dialog Box, offsets and line numbers are relative to the start of the file, not to the start of the chunk. This means that if you were viewing the last chunk of a file, going to line 1 will take you to the very start of the file and not to the start of the chunk.

Click here for further details on Goto and chunks.

The buttons on the chunk toolbar have the following function:

	First Chunk

	Loads the first chunk in the file. This will be disabled if the first chunk is the chunk currently being viewed.

	Next Chunk

	Loads the next chunk in the file.

	Previous Chunk

	Loads the previous chunk in the file.

	Last Chunk

	Loads the last chunk in the file. This will be disabled if the last chunk is the chunk currently being viewed.

	Entire File

	This will load the entire file, and the chunk toolbar will disappear. Note that this may take some time, depending on the size of the file. (See note below).

Pressing the PageDown and LineDown keys while at the very end of a chunk will automatically load the next chunk. Pressing the PageUp and LineUp keys while at the very start of a chunk will load the previous chunk.

Chunks in Hex mode

File chunks do not usually apply in hex mode - the entire file is displayed, even if it is larger than the chunk size. However, if the file size is extremely large (usually > 2Gb), V will also use chunks in hex mode. This behaviour depends on available system memory and cannot be disabled.

Notes

●The end of a chunk will usually fall somewhere in the middle of a line. V tries to break a chunk at the end of a line, however, this may not always be possible. Because of this, the last line of a chunk may sometimes be the same as the first line of the next chunk.
●You may go to an absolute chunk number by using the Goto Dialog box.
●If V takes more than 5 seconds to load the entire file, it will display a progress dialog that will allow you to cancel the operation if you think it will take too long.

EBCDIC Files

When V opens a file, it tries to detect if the file is ASCII or EBCDIC. If it detects an EBCDIC file, it will automatically display it in EBCDIC mode.

If it incorrectly displays it as ASCII (text or hex), you can switch to EBCDIC mode by selecting EBCDIC from the View menu (or pressing Alt+B).

Similarly, if an ASCII file is incorrectly displayed as EBCDIC, you can return to ASCII mode by selecting ASCII from the View menu (or pressing Alt+B).

When a file is displayed in EBCDIC mode, EBC will be displayed on the bottom status bar. Clicking on EBC will allow you to modify several EBCDIC options.

Click here for details on the various EBCDIC file formats supported

EBCDIC File Formats

If V does not display the EBCDIC file correctly, you can click on EBC on the status bar (or select EBCDIC Options from the View menu) to specify the correct file format.

EBCDIC files are usually in one of 4 formats.

Carriage Return Delimited

These files are just like ASCII files. That is, each line is terminated by a carriage return (or carriage return + line feed). The only difference is that the file contains EBCDIC characters instead of ASCII characters.

To display these types of files the No Formatting (Display as EBCDIC file with CR/LF) option should be enabled.

If some EBCDIC characters are not displayed correctly, you can modify the EBCDIC to ASCII mapping in the EBCDIC tab of Preferences.

Fixed Length Records (RECFM=F)

Each line (or record) in the file consists of a fixed number of characters. To view these files, enable the RECFM=F option and enter the fixed record length in the LRECL field.

Click here for further details on viewing RECFM=F files.

Variable Length Records (RECFM=V/VB)

These files consist of variable length lines (or records). Each record is preceded by a 4 byte record descriptor which specifies the record length. V will automatically decode the records and display the lines as if they were delimited by a carriage return.

Undefined Format (RECFM=U)

By strict definition, the format of these files is Undefined (or Unknown). However in V, the meaning is slightly different. Click here for further details.

Carriage Control (CCTYPE)

Click here for details on Carriage Control.

Use ASCII Character Set

By default, EBCDIC RECFM files consist of EBCDIC characters. Enable this option if the file consists of ASCII characters.

Trailing Spaces

It is common for records/lines in EBCDIC files to be padded with trailing spaces - especially when files with variable length records are stored as RECFM=F.

Enable the Ignore Trailing Spaces option if you do not want the trailing spaces displayed.

RECFM=F

V will try to "guess" if an EBCDIC file contains fixed length records (RECFM=F) and will try to guess the fixed record length.

However, it may sometimes get the record length wrong - requiring the user to select the EBCDIC Options and enter the correct record length.

If you do not want V to guess the record length, you can enable Do not guess EBCDIC fixed record length (RECFM=F) in the File Options tab of Preferences.

If this is enabled, all fixed record length files will be displayed as Carriage Return Delimited files. To display as fixed record length files, you will need to:

1.Select EBCDIC Options from the View menu (or click on EBC in the status bar)
2.Disable the No Formatting option
3.Enable RECFM=F
4.Enter the correct record length in LRECL

Use Wrap To Length

Alternatively, you can make use of the Wrap To Length command to display the file without having to specify RECFM=F.

You can enable Wrap To Length in one of 3 ways:

1.By pressing the Wrap To Length icon on the toolbar
2.By selecting Wrap->Wrap To Length from the View menu
3.By pressing Alt+L

You will also need to specify the record length by selecting Wrap->Set Wrap Length from the View menu (or pressing Ctrl+W). V will remember the last wrap length used, so you will only need to set it if it has changed.

The disadvantage of using Wrap To Length to display RECFM=F files is that all files subsequently viewed will be wrapped to this length. That is, if they contain lines that are longer than the wrap length, they will be wrapped. You will need to remember to disable Wrap To Length after you have finished viewing the fixed record length file.

RECFM=U

RECFM=U usually means that the file format is unknown or undefined.

However, I have seen files labeled as RECFM=U which are very similar to RECFM=V files - the only difference being that they have a 2 byte descriptor length instead of a 4 byte descriptor length.

V too will refer to these files as RECFM=U.

If you have a file that is in this format (that is, each record in the file consists of a 2 byte length followed by the record data), just set RECFM to U and the file should be displayed correctly.

V may not automatically recognize RECFM=U files. If this is the case, you will have to manually set the format to RECFM=U - which can be done in one of 2 ways:

1. If V incorrectly displays the file as an EBCDIC Carriage Return Delimited file

In this case, you will be able to see most of the data, but the lines will not line up correctly. To display as RECFM=U:

●Select EBCDIC Options from the View menu (or click on EBC on the status bar)
●Disable the No Formatting option
●Select RECFM=U

2. If the file is displayed as ASCII text or hex

In this case, the data will be unrecognizable.

To display as RECFM=U, you will first need to enable EBCDIC mode by selecting EBCDIC from the View menu (or pressing Alt+B). Then perform the operations above.

Note: V will display an error message if it does not recognize the file as RECFM=U.

Carriage Control

Carriage control is used by some EBCDIC files to indicate line and page breaks.

In files that have carriage control, the first character in each line is used to indicate whether a line or page break should be placed after (or even before) the line.

Carriage control (sometimes referred to as CCTYPE) can be one of 3 types:

●ANSI (CCTYPE=A)
●Machine (CCTYPE=M)
●ASCII (CCTYPE=Z)

V does not automatically recognize files with carriage control. If your EBCDIC file contains carriage control, you need to select EBCDIC Options from the View menu (or click on EBC on the status bar) and select the correct CCTYPE.

If a file contains page breaks, V will paginate it. In particular, V will display a page marker (dotted line) before the start of each page.

Notes

●Carriage Control is only supported for EBCDIC files - not for ASCII files.

Preferences / Configuration Options

The Preferences Dialog Box is where you configure most of the program options. You may select it from the toolbar, the View menu, or from various right-click menus.

The tabbed dialog box consists of:

 File Options

 More Options

 Window Layout

 EBCDIC

 Editor/CMD

 Fonts

 Keyboard

 Line Numbers

 Search

These are described in the following sections.

Note

You must press the OK button in order to save the settings that were modified in any of the tabbed dialog boxes. If you press the Cancel button, all the modifications will be lost.

File Options

Tab Size

Specifies the tab length. If you don't want V to expand tabs, leave this field blank (or set it to 1).

Date Format

Specifies what format the date will be displayed throughout the program (including when printing).

Always Open as Text

When V opens a file, it tries to determine what kind of file it is. If it is a binary file (like a JPG or EXE file) it will display the file in HEX mode, otherwise it will open it in TEXT mode. Check this option if you always want the file to be opened in TEXT mode.

Start at End of File

If this is checked, V will start viewing from the end of the file instead of the beginning.

Wrap Lines to Screen

Usually, when displaying files in Text mode, V will not wrap any long lines - you will have to use the horizontal scroll bar to view lines longer than the width of the window. Check this option if you want V to wrap the lines to the width of the window. In this case there will be no horizontal scroll bar.

Wrap on Word Boundary

Usually when lines are wrapped they are wrapped at the exact position where the line would exceed the width of the window - even if it means splitting the line in the middle of a word. When this option is checked, the line is always wrapped at the end of a word.

Unmark block after copy

By enabling this option, any highlighted text will be cleared once it is copied to the clipboard (or saved to a file).

Do not restore file position

When V views a file that it has viewed before, it will restore the previous file position. Enable this option if you want V to always start viewing files from the beginning.

Hex offset in status bar

This causes the hex offset to be displayed in the status bar whenever the user clicks the mouse on a file position, while viewing a file in text mode. The hex code of the corresponding character is also displayed (in text mode only).

Display ALL hex codes

Replaces any dots (unprintable characters) on the right hand side of the hex dump with the corresponding symbol in the selected font.

Auto-sum columns

Enable this option if you want V to automatically display the sum when selecting columns.

Use Bold Cursor

V will use a bold cross-hair cursor when viewing a file.

Save File Tailing state

V always disables File Tailing on startup. Enable this option if you want the previous File Tailing state restored.

Save Bookmarks on Exit

By default, all bookmarks are cleared when V exits. Enable this option if you want the bookmarks saved so they will be available every time you view the file.

Closing File Window to behave like pressing ESC key

While viewing a file, pressing the upper right [x] button on the window causes V to exit. By enabling this option, V will now treat the [x] button like the ESC key. In particular, if you enable the "Browse in File View" option in the Keyboard tab of Preferences, V will return to the directory listing when pressing [x] instead of exiting.

Do not scroll current line marker when using scroll bars

If the window is scrolled using the scroll bars, the current line marker is moved so that it remains visible. Enable this option if you prefer the current line marker to stay where it is.

Always scroll window when using arrow keys

Pressing the Up/Down arrow keys moves the current line marker. The window is only scrolled when the line marker reaches the bottom (or top) of the window. Enable this option if you want the window to always scroll when you press the arrow keys.

Disable Page Down on Middle Mouse Button

While viewing a file, V treats the middle mouse button as a Page Down key. This can interfere with the behavior of some mice (like the IntelliMouse) that can use the middle button (or scroll wheel) for panning. You can disable the default V behavior by enabling this option.

Prompt before reloading modified file

V will automatically reload the file it is currently viewing if it has been modified by another program. Check this option if you want V to warn you before it does this.

Do not guess EBCDIC fixed record length (RECFM=F)

When V detects an EBCDIC file, it tries to determine if it contains fixed length records. However, it can sometimes incorrectly guess the record length. By enabling this option, V will not try to guess the format. Once the file is displayed, the user will have to select the EBCDIC Options and manually select the correct format.

Do not copy CR/LF to clipboard for wrapped (to screen) lines

When wrapping lines to the screen width, V will include a newline (CR/LF) at the screen wrap position whenever the lines are copied to the clipboard. Enable this option if you do not want to include a CR/LF at the screen wrap position. That is, a CR/LF will only be included at the very end of the line.

More Options

Enable File Chunks

This indicates that V will display large files a chunk at a time, instead of reading the entire file. This greatly reduces the time taken for V to load a file.

Chunk Size

This is the size of the file chunk (in Kb). When File Chunks are enabled, V will only load this much of the file, regardless of how large the file is. The default chunk size is 8192 (ie, 8 Mb). Click here for more details on File Chunks.

Enable Smooth Scrolling

Enables "smooth" scrolling. Note that this is different from the "smooth scrolling" that programs like Internet Explorer support.

Smooth Delay

Typically a number between 50 and 200 (depending on the speed of your system). Click here for further details on Smooth Scrolling.

Enable MRU File List

Enable this option if you want V to keep a history of the Most Recently Used (MRU) viewed files.

These files will be listed on the Recent Files menu. You may also specify the number of files to remember (up to 50).

Word Sets

You may define your own wordsets which determine what is highlighted when you double-click and shift-double-click on a word. Click here for further details.

Window Layout

Use Existing File window to view new file

(unless SHIFT pressed)

By default, every file you view will be displayed in a separate window. Enable this option if you prefer to only have one file window open at a time. If you enable this option, you can still view files in a separate window by pressing the SHIFT key when you view the file.

Automatically Tile multiple file windows

(Auto-Arrange, Vertical, Horizontal)

Enable this option if you want multiple file windows to be automatically tiled.

Auto Arrange Grid Size

This defines the grid size used for auto-arranging.

EBCDIC

This allows the mapping of the 256 EBCDIC characters to their corresponding ASCII equivalent to be modified. This is necessary because not all EBCDIC character mappings are the same - particularly when it comes to special or control characters.

The current character mapping is displayed in the EBCDIC to ASCII table. The first column of the table displays the EBCDIC code, the second displays the ASCII character which it maps to. The code in the second column is also displayed in the Current Mapping list box. For example, the EBCDIC character F0h represents a 0 (zero) which is 30h in ASCII. To modify the ASCII character to which the EBCDIC character will be mapped, simply select the new character from the Current Mapping list box.

If you wish, the mapping table may be sorted on the ASCII code, by selecting the ASCII to EBCDIC option. In this case, the first column of the table will contain the ASCII code and the second column will contain the EBCDIC character which maps to it.

Character codes can be displayed in decimal instead of hex by selecting the Display as Hex checkbox.

The Default Mapping button can be used to restore the EBCDIC to ASCII mapping to the default.

Notes

●If modified, the EBCDIC to ASCII mapping is not saved unless V has been registered.
●The EBCDIC end-of-line character should be mapped to a Line Feed (LF = ASCII 0Ah) and not a Carriage Return (CR = ASCII 0Dh).

Editor/CMD

V is not an editor. If while you are viewing a file, you decide you want to edit it, you must do so with a separate editor. Most people will have an editor of choice on their system. If you don't, you can always use notepad.exe which should be in your WINDOWS system directory.

The Editor options tell V what editor to use to edit the file. To launch the file in your editor of choice, you need to select the File->Edit command. There are 2 options you can specify - just click on the corresponding button to set them.

	Path

	The full path name of your editor (usually an EXE file)

	Options

	The options you want passed to your editor (if any)

The above path and options will be used to construct a command that Windows will execute. The command will look as follows:

 Path + Options + FileName

For example,

 \bin\editor.exe /v file.cpp

Where more than one file has been selected, the file names will be appended onto the end of the command, separated by spaces.

Advanced Options

You can pass further options (like the current line number) by using option specifiers (like %L). An explanation of the available options specifiers is given in the User Commands section.

Hex Editor

If you want a different editor to be called while you are viewing a file in hex mode, simply define a second editor in the "Hex Editor" section.

Passing the MSDOS File Name

Enable the Use MSDOS file name option in each of the above cases in order to pass the MSDOS (8.3) file name to the command. This may be necessary if the specified executable is a 16-bit program which does not support long file names.

Command Processor

You can use a different Command Processor (to TCC.EXE) to launch a Command Prompt by enabling "Use the following Command Processor" and clicking on the Path button to select its path.

Notes

If you want to use more than one editor, you can define it as a User Command.

By default, you can use Ctrl+E to launch the editor and Ctrl+Shift+E to launch the hex editor.

Fonts

To change the fonts, simply click on the corresponding button.

Screen Font

The font used in the File View to display the contents of the file.

Printer Font

Specifies the font to be used when printing.

2UP Font

Specifies the font to be used when printing in 2UP mode.

End of Line Indicator

You can also specify which character is to be used as the End Of Line Indicator. This character will be displayed at the end of every line if the Show EOL option is set, or will be printed at the end of every line if the Print End of Line option is selected in the Print dialog box.

Use DOS/OEM character set when viewing file

This is equivalent to the DOS/OEM Char Set option (on the View menu while viewing a file).

Use DOS/OEM character set when printing

The same as above - but for printing. Enable this option if you are printing files that contain line drawing characters. Note that this will only work if the selected font supports the OEM character set.

Notes

●V only allows use of non-proportional (or fixed-pitch) fonts (like Courier) when displaying files. This makes file display, block highlighting and line wrapping much quicker than would be possible using proportional fonts (like Arial or MS Sans Serif).
●Screen fonts can also be selected from the Fonts menu.
●When printing, it is usually best to use the printer's own built in font (if it has any) - it looks much better than Courier. For HP LaserJet printers, you should be able to select a font called LinePrinter. Printer fonts have a small printer icon next to them in the Font Selection List.
●Proportional fonts may be chosen when printing, however, line wrapping will not work correctly. Click here for further details.
●Not all fonts share the same character set. Because of this, you may need to reselect the End Of Line Indicator whenever you select a new font.
●The Printer fonts may also be selected from the Print Dialog box.

Keyboard

Page Up/Down to go to start of page if file is paginated

If a file is paginated, enabling this option will cause Page Up/Down to scroll to the start of a new page instead of scrolling the length of the window. Click here for further details on paginated files.

Escape Key

The following options determine how the Escape key is treated. Note that some of these options are mutually exclusive.

Close File Window if pressed in the File View

Pressing ESC will simply close the file window. If another file window is open, V will give it focus, otherwise, V will return to the Directory Listing.

View Next File

If multiple files were specified on the Command Line, pressing ESC will view the next file. This is equivalent to pressing Ctrl+Shift+PgDn

Line Numbers

V gives you several options when it comes to displaying/printing line numbers alongside the file data.

Display Line Numbers

Check this option if you want V to prefix each line displayed with its corresponding line number. Line numbers always begin at 1.

Display Line Number 1

When an increment is specified, the first line in the file (line 1) will usually not be numbered. Check this option if you want the line number displayed on the first line.

Line Number Increment

This tells V how often to display line numbers. For example, if the increment was 10, the line number would be displayed every 10 lines (lines 10, 20, 30, ...). If the increment is left blank (or set to 1), every line will be numbered.

Pad with zero (instead of space)

The line numbers are always a fixed length, depending on the size of the file. For example, if the file has 199 lines, the line numbers would contain 3 digits. Usually V will pad unused digits of the line numbers with spaces. Check this option if you want zeroes used instead. In this case V will display "001" instead of " 1".

Reset Line Numbers on New Page (if paginated)

If the file is paginated, enabling this option will reset the line number to 1 at the start of each page.

Include line numbers on Copy to Clipboard

Enable this option if you also want the line number(s) included when you copy selected text to the clipboard.

Printing Line Numbers

The above options also apply when printing a file, however they must be specified separately as they may differ from the display options. For example, you may want to display line numbers but not print them.

The option to enable line numbers when printing is not found in this dialog box, but on the main Print Dialog Box.

Two extra line number options exist when printing files.

Print First Line in Page

Check this to print the line number for the first line in each page.

Print Last Line in Page

Check this to print the line number for the last line in each page.

Note

These options only apply to Text mode. In Hex mode, the hex address is always displayed/printed.

Search

The options presented here are the same as those presented when you press the Options button in the Search Dialog box.

Favorites

Favorites provide an easy way to bookmark frequently viewed files and directories for faster retrieval. Once saved, a favorite may be viewed by selecting it from the Favorites menu.

The currently viewed file or directory may be added to the Favorites by selecting the Add to Favorites option from the Favorites menu.

When adding a favorite, you can give it a meaningful description which will be displayed in the Favorites menu. If you do not, the path name will be displayed.

You can also store the favorite in a "Folder" by highlighting a folder name in the "Create in" list. You can create a new folder by pressing the "New Folder" button. Favorites stored in folders will appear in popup menus off the main Favorites menu.

The favorites may be modified by selecting the Organize Favorites option.

Note

Unregistered versions will only be able to select the first 3 favorites.

Add To Favorites

Adding a File

You will usually add a file to the Favorites while you are viewing it. When adding a file to the Favorites, you may set the following option:

Restore File Position

If this is enabled, the current file position will be restored whenever the favorite is selected. Otherwise, the file will be viewed from the start.

Executing a Favorite

You can also add a file to the Favorites from the Directory View by highlighting it and selecting "Add Selection to Favorites" from the Favorites menu. You will then have the option of enabling the Execute option. If this is enabled, the file will be "executed" when selected from the Favorites menu. Otherwise, it will be displayed.

For example, if you add a "Word Document" to your Favorites, enabling the "execute" option will cause the file to be loaded in Word when you select it from the Favorites menu (instead of being displayed by V).

Organizing Favorites

You may add, delete, move and edit favorites by selecting "Organize Favorites" from the Favorites menu. A favorite may be moved to a new position by simply dragging it and dropping it into its new position. The favorite will be placed before the entry on which it was dropped.

Favorites may be created by pressing the "Insert File" or "Insert Directory" buttons. "Insert Copy" will create a copy of the currently highlighted favorite. "Insert Separator" will insert a separator into the Favorites menu.

Organizing into Submenus

If you have many favorites, you will probably find it useful to organize them into submenus. To create a new submenu, press the "Insert Submenu" button.

To move a favorite into an empty submenu, simply drop it onto the submenu name. If the submenu is not empty, it will expand so you can drop the favorite into the required position. The dropped favorite will be placed *before* the entry it is dropped on. If you want to place the favorite at the *end* of the submenu, drop it onto the submenu name you want it placed under.

If you want to move a favorite so that it is positioned just before a submenu, you need to press the SHIFT key as you drop the favorite onto the submenu you want it to precede. If you do not press the SHIFT key, the favorite will be placed inside the submenu.

For further details on modifying favorites, see the following:

 Favorite Files

 Sorting Favorites

 Using Numeric Drive Letters in path names

Pressing the More button displays a menu that allows you to sort, export and import.

Note

You cannot create a submenu within a submenu.

Favorite Files

The following may be specified for a favorite file:

File Path

The file name. Press the "..." button to browse. You can use numeric drive letters in the file path which will be expanded depending on the environment in which V is being run. Click here for further details.

Tail

If this is enabled, the file position is set to the end of the file.

Hex

The favorite is viewed in Hex mode.

EBCDIC

The favorite is viewed in EBCDIC mode.

Restore File Position

If this is enabled, the file position will be restored. Otherwise, the file will be viewed from the start.

The file position consists of:

Line Number

The line number at which to position the file. If the file is to be opened in Hex mode, this will refer to a Hex offset instead of a line number.

Column

The column position.

Chunk

The chunk to load (if the file is large enough to be loaded in chunks)

Shortcut Key

You can assign a keyboard shortcut to this Favorite so that is it executed every time the keyboard shortcut is entered. Simply click in the Shortcut Key box and enter the desired key combination. Press the ESCape key to clear the shortcut key. A beep will sound if the shortcut key is currently assigned.

Blank File name

The file name may be left blank. In this case, only the file position and/or mode will be modified.

Sorting Favorites

Pressing the More button and selecting the Sort option will display a dialog box, allowing you to sort the Favorites.

By default, the Favorites will be sorted alphabetically on their description, regardless of whether they are a file, a directory or a submenu. The following options can be set to modify the default behavior.

Place Files before Directories

If this is enabled, all files will be placed at the top of the list.

Place Directories before Files

Enable this to place all directories at the top of the list.

Place Submenus at top

Enable this, to place all submenus at the top.

Place Submenus at bottom

Enable this, to place all submenus at the bottom.

Sort Submenu contents

By default, submenu contents will not be sorted. Enable this option to also sort submenus.

Exporting/Importing Favorites

Pressing the More button and selecting the Export option will display a dialog box allowing the Favorites to be exported to a file.

The exported file can then be imported by another user by selecting the Import option and specifying the imported file.

Note

User Commands and GridLines can also be exported/imported in the same way as Favorites.

Numeric Drive Letters in Paths

When specifying a file or directory path (in Favorites and User Commands), certain numeric drive letters can be used to specify various system paths. This is particularly useful when using the U3 version of V - where the actual file paths can be different every time V is run.

The following drive letters are currently defined:

	0:

	The folder from where V is being executed. On a U3 system, this will be a temporary folder on the host machine, not on the U3 drive.

	1:

	The Windows folder (usually C:\Windows)

	2:

	The System folder (usually C:\Windows\System32)

	3:

	The U3 Drive (eg, X:\)

	4:

	The U3 Folder where the V settings are stored.

	5:

	The user's My Documents folder

	6:

	The user's Program Files folder

	7:

	 The user's Profiles folder (usually C:\Documents and Settings)

Note

Numeric Drive Letters can also be used when specifying a text editor and a Command Processor.

User Commands

A User Command is any program (usually an EXE file) that the user may wish to execute from V.

In the Directory View, the currently selected file(s) may be passed to the User Command and in the File View, the currently viewed file may be passed to the command.

This is a great way to extend V.

For example, V cannot encrypt files. However, if you already have a program which does this, you can define a User Command which will let you encrypt files using V.

User Commands are created by selecting Organize from the UserCommands menu. Once created, User Commands are executed by selecting them from the UserCommands menu.

Keyboard Shortcuts

The default User Command is the first in the list and can be executed by pressing Ctrl+U. The most recently executed User Command can also be repeated by pressing Ctrl+Shift+U. Each User Command can also be assigned its own keyboard shortcut.

Running as Administrator

Under Vista or Windows 7, the User Command can be run as an Administrator by right-clicking on the command and selecting Run As Administrator

Debug Mode

If you right-click on the User Command and select Run in Debug Mode, the command to be executed will be displayed before it is run. You will then have the option of running the command or cancelling it. This is a good way of making sure that the correct file names are being passed to the command.

Click here for further details on defining User Commands.

User Command Options

User Command Option Specifiers

Organizing User Commands

Organizing User Commands is very similar to Organizing Favorites.

You may add, delete, move and edit User Commands by selecting "Organize" from the UserCommands menu. A command may be moved to a new position by simply dragging it and dropping it into its new position.

User Commands may be created by pressing the "Insert Command" button. "Insert Copy" will create a copy of the currently highlighted command. "Insert Separator" will insert a separator into the UserCommands menu.

Organizing into Submenus

If you have many User Commands, you will probably find it useful to organize them into submenus. To create a new submenu, press the "Insert Submenu" button.

To move a command into an empty submenu, simply drop it onto the submenu name. If the submenu is not empty, it will expand so you can drop the command into the required position. The dropped command will be placed *before* the entry it is dropped on. If you want to place the command at the *end* of the submenu, drop it onto the submenu name you want it placed under.

If you want to move a command so that it is positioned just before a submenu, you need to press the SHIFT key as you drop the command onto the submenu you want it to precede. If you do not press the SHIFT key, the command will be placed inside the submenu.

For further details on modifying User Commands, see the following:

Specifying User Command Options

Using Option Specifiers

Using Numeric Drive Letters in path names

Pressing the More button displays a menu that allows you to sort, export and import.

Note: You cannot create a submenu within a submenu.

User Command Options

To define a User Command you must specify the following information and options:

Command Path

The full path name of the command to be executed. Press the "..." button to browse.

%A can also be entered as the command path. In this case, it will be replaced by whatever program is associated with the selected file when the User Command is invoked.

Numeric drive letters can be used in the file path, which will be expanded depending on the environment in which V is being run. Click here for further details. Pressing the small question mark button will display a list of valid drive letters.

Shortcut Key

You can assign a keyboard shortcut to this User Command so that is it executed every time the keyboard shortcut is entered. Simply click in the Shortcut Key box and enter the desired key combination. Press the ESCape key to clear the shortcut key. A beep will sound if the shortcut key is currently assigned.

Command Options

The options that will be passed to the command (if any). This will usually look something like /option1 /option2. The options may also contain option specifiers which are expanded when the user command is run.

Options after file name

Will place the command options after the file name. See the explanation of the Command Format below.

Start in Command Path

By default, the working directory of the User Command will be the directly currently being viewed or the directory of the current file. By enabling this option, the working directory will be set to the directory that contains the User Command.

Run As Admin

Enable this (on Vista and Windows 7) to run the command as an Administrator.

Window

This describes the state of the User Command window when it is executed. It may be either Normal, Minimized, or Maximized.

Do not pass File names

By default, any selected files (or directories) will be passed to the command. Enabling this option will cause nothing to be passed to the command (apart from the Command Options).

Prompt for extra options

By enabling this, the user will be prompted for extra options that will be passed to the command. These options will be appended to any options in Command Options.

Use MSDOS names

If any files are selected, the MSDOS (8.3) form of the file name will be passed to the command.

Do not allow multiple files

Enabling this option will ensure that the command is not executed when more than one file is selected.

Execute command for each file

If multiple files are selected, all the file names will be passed to the User Command, and the command will be executed once. By enabling this option, the User Command will be executed for each selected file.

Wait for command to finish

 When executing a User Command, V simply launches it and then gets back to business - it does not wait for the command to terminate. In the above case, executing a User Command for each selected file can result in multiple instances of the same program being active at the same time. By enabling this option, V will only execute the User Command on a file once the command on the previous file has finished.

Debug Mode

If this option is enabled, the User Command will be displayed, and the user asked to confirm if it is to be executed. This allows the user to experiment with option specifiers without actually having to execute any commands.

Default User Command

The default user command may be executed by pressing Ctrl-U. The default user command is considered to be the first command in the User Command list.

Command Format

By default, the actual command that V will execute will look as follows:

 [Command Path] [Options] [Extra Options] file(s)

If "Options after file name" is enabled the command will look as follows:

 [Command Path] file(s) [Options] [Extra Options]

In the case where more than one file name is selected, all the file names are included on the command line, separated by spaces.

Notes

●Unregistered versions will only be able to execute the first defined User Command.
●If a option specifier is used in the Command Options, any selected file names are not automatically added to the command line. If the user wants the file name(s) passed to the command, the appropriate file name specifier (%f or %F) needs to be used.

Option Specifiers

User commands are constructed by appending the selected file name(s) to the command options. Although there is an option to place the options last, no further flexibility is available. For example, you cannot place some options before the file name(s) and some after.

Unless you use Option Specifiers.

Option specifiers are entered in the Command Options and are expanded when the command is executed. An option specifier consists of a percent sign (%) followed by a single character. The valid specifiers are as follows (note that case is important):

	F

	The selected file name(s) - includes fully qualified path

	f

	File name only (no path)

	G

	The fully qualified selected file names(s) with any extension omitted

	g

	File name only with extension omitted

	D

	The name of the current directory - includes fully qualified path

	d

	Directory name only

	Z

	The name of the ZIP file - fully qualified path (Zip View only)

	z

	ZIP file name only

	T or t

	The currently selected text (File View or Search Results View

	U or u

	The currently selected (or right-clicked) URL

	W

	The currently selected (or right-clicked) word (using word set 1)

	w

	using word set 2

	X

	The column number of the start of the selected text

	x

	The column number of the end of the selected text

	Y

	The line number of the start of the selected text

	y

	The line number of the end of the selected text

	L or l

	The line number at the top of the display

	n

	The number of characters highlighted (in decimal)

	N

	(in hex)

	s

	The start offset of the selected text (in decimal)

	S

	(in hex)

	e

	The end offset of the selected text (in decimal)

	E

	(in hex)

	P or p

	Prompts the user for "extra options" which will be appended to the Command Options

Note

A User Command will not be executed if a option specifier cannot be expanded. For example, if %W is specified and no text has been selected.

Sorting User Commands

Pressing the More button and selecting Sort will display a dialog box, allowing you to sort the User Commands.

By default, the User Commands will be sorted alphabetically on their description. The following options can be set to modify the default behavior.

Place Submenus at top

Enable this, to place all submenus at the top.

Place Submenus at bottom

Enable this, to place all submenus at the bottom.

Sort Submenu contents

By default, submenu contents will not be sorted. Enable this option to also sort submenus.

Exporting/Importing User Command

Pressing the More button and selecting the Export option will display a dialog box allowing the User Commands to be exported to a file.

The exported file can then be imported by another user by selecting the Import option and specifying the imported file.

Using Numeric Drive Letters in Paths

When specifying a file or directory path (in Favorites and User Commands), certain numeric drive letters can be used to specify various system paths. This is particularly useful when using the U3 version of V - where the actual file paths can be different every time V is run.

The following drive letters are currently defined:

	0:

	The folder from where V is being executed. On a U3 system, this will be a temporary folder on the host machine, not on the U3 drive.

	1:

	The Windows folder (usually C:\Windows)

	2:

	The System folder (usually C:\Windows\System32)

	3:

	The U3 Drive (eg, X:\)

	4:

	The U3 Folder where the V settings are stored.

	5:

	The user's My Documents folder

	6:

	The user's Program Files folder

	7:

	 The user's Profiles folder (usually C:\Documents and Settings)

Note

Numeric Drive Letters can also be used when specifying a text editor and a Command Processor.

Printing Files

When the Print command is selected, the Print Dialog Box will appear (which is different from the standard Windows Print Dialog Box). The following options may be specified:

Printer

The name of the printer to send the file to. All available printers will be listed in the drop-down list box.

Header & Footer

Check the appropriate box to print a header and/or footer. The text for the header/footer is entered in the corresponding edit box. A history of the previous 10 headers is maintained making it easy to select commonly used headers. Click here for a description of the Headers and Footers formats. If a header/footer is enabled, but no text entered in the edit box, the default header/footer is printed.

Override Page Length

This option is used if you want your page size to have a certain length (in lines). Click here for further explanation.

Copies

The number of copies that you want printed.

Printer Font

This button will display the font that V will use for printing. Click here for more details.

Profile

This allows you to save all current settings in a Printer Profile or to restore the settings in a profile. Click here for further details.

2Up

Specifies that you want the document printed in 2UP Mode.

Hex Mode

This option can only be set if the print was initiated from the Directory View and specifies if the file is to be printed in Hex mode. If the print was initiated from the File View, this option would be disabled and would indicate the mode in which the file was being viewed.

Vertical Hex Mode

Prints the file in Vertical Hex Mode

Greenbar

Apply Greenbar to the printed text.

Print Line Numbers

Specifies whether line numbers will be printed with the file. Various options regarding the printed line numbers are set in the Line Numbers tab of the Preferences Dialog box. Note that the format of the printed line numbers can differ from that of the displayed line numbers.

Print End of Line

Enable this option if you want an End Of Line (EOL) indicator printed at the end of every line. The character that is used for the indicator depends on the font used and can be specified in the Fonts tab of the Preferences dialog box.

Duplex (long edge) / Duplex (short edge)

If your printer supports duplexing (double sided printing), you may also specify if you want to enable short/long edge binding. Note that the duplex options are always enabled - even if

your printer does not support duplexing.

Wrap Long Lines

Click here for an explanation of line wrapping.

Form Feeds

This determines how Form Feeds will be handled. Click here for an explanation.

Margins

Set the size (in inches) of the top, bottom, left and right margins. Click here for further details.

Portrait/Landscape

Specifies if the file is printed in Portrait or Landscape mode. Note that this option is ignored if the file is to be printed in 2UP mode (which is always printed in Landscape).

Page #

Select the pages you want printed. Click here for further details.

Line #

Select the lines you want printed. Click here for further details.

Sides

This lets you select if you want all pages printed or just the odd/even numbered pages (which makes double sided printing possible).

Setup

The Setup button is used to configure the selected printer. The Print Setup command from the File Menu can be used to configure the default printer.

More

Click here for further details.

Notes

It is always a good idea to do a Preview before printing - especially if the printout is going to be large.

Greenbar may not always preview correctly - but it should print correctly.

Unregistered versions of V have the following restrictions:

●Header/Footer history is not saved
●A ruler may not be printed as a header/footer
●A fixed footer is always printed

Wrapping Lines

If a line is too long to fit on the printed page, you can have it wrap to the beginning of the next line by checking the Wrap Long Lines option.

You must then select the type of wrapping from the adjacent list box. This can be one of:

Right Margin

In this case, the text is wrapped whenever a line reaches the right margin.

Column

Select this option to have the text wrapped at a specified column position (which you enter in the adjacent box).

New Page

When this is selected, long lines are wrapped onto a new page. For example, if a page is 100 characters wide, a line of 300 characters will span 3 pages. That is, the first 100 characters will be printed on the first page, the second 100 on the next and the third 100 on the next.

Notes

●If this option is not enabled, any long lines will be truncated.
●If you select column wrapping and the column length is too long to fit on the page, the lines will be truncated.

Print Range

This lets you specify what part of the file you want printed. You may select one of the following:

All

Prints the entire file

Page #

Prints the range of pages you specify in the From and To boxes.

Line #

Prints the range of lines you specify in the From and To boxes.

Selection

Prints the currently selected text. If no text is selected, this option will be disabled.

From Current Page

Starts printing from the start of the current page - which is the line that is currently displayed at the top of the screen. The number of pages to print is specified in Pages. If this is left blank, V will print to the end of the file.

Headers and Footers

User defined headers and footers can be printed on every page. Headers (and footers) each consist of 3 sections - left, center and right, which are left justified, centered and right justified, respectively. To specify a header, you enter each of these 3 sections, separated by a semi-colon. That is - "left;center;right" (do not include the quotes).

Each of these sections can contain plain text, special format specifiers or can be empty. The format specifiers consist of a percent (%) followed by one character, and are expanded upon printing. The valid specifiers are as follows (note that case is important):

	%f

	Name of the current file (name only)

	%F

	Full Path Name of current file

	%d

	Current Date

	%D

	Directory Name (ie, %F without the file name)

	%e

	File Date

	%t

	Current Time (24 hour format)

	%T

	Current Time (12 hour format)

	%u

	File Time (24 hour format)

	%U

	File Time (12 hour format)

	%p

	Current Page Number

	%P

	Total pages to be printed

	%r

	Print the Ruler

	%g

	Print the Gridlines

If you want to use a "%" or ";" in the header text - prefix them with a "%". That is, use "%%" and "%;" respectively.

 Examples: (once again, do not enter the quotes)

	"%f;;Page %d"

	Print the file name on the left and page number on the right

	";%d;"

	Just print the page number (with no text) in the center

	";;"

	Prints an empty header/footer

If the header/footer field is left blank, it defaults to "%f;%d %t;Page %p". That is, it prints the file name on the left, the date and time in the center, and the Page number on the right.

Notes

●The ruler and gridlines cannot be combined with any other specifier (only each other). For example, you cannot combine the ruler with a page number. If "%r" is specified, then anything else that may be entered in the header/footer is ignored (with the exception of %g).
●If both a ruler and a grid are specified ("%r %g" or "%g %r"), the grid will always be displayed after the ruler if printed as a header, and before the ruler if printed as a footer.
●The ruler specifier will be ignored unless V has been registered.

Form Feeds

Form feed characters (ASCII 12 or Ctrl-L) are generally used in text files to signify a page break.

You may select one of the following 3 Form Feeds options in the Print Dialog Box:

	New Page

	V will start a new page every time a form feed is encountered.

	Draw Line

	A page separator (dotted line) will be printed whenever a Form Feed is encountered - a new page will not be started.

	Ignore

	The form feed will be treated as a normal character - and will be printed. The appearance of the printed form feed will depend on the print font.

Margins

The margins specify the distance from the text to the edge of the page in each direction and are always specified in inches. For those who are only familiar with centimetres, 1 inch is equal to 2.54cm.

Modifying the size of the margins affects the size of the page that is available to print the file - the larger the margins, the smaller the area available to print the file.

Page Length

Usually, the number of lines that can fit on a page is determined by the physical length of the page, the size of the margins and the height of the printer font.

At times, files are pre-formatted to a particular page length (usually around 60 lines). That is, the file usually contains it's own header and/or footer every 60 lines. Printing a file which has been pre-formatted to 60 lines on a page that is physically 66 lines long will look awkward - headers and footers will start appearing all over the pages, instead of where they should be!

To overcome this problem, you can override the physical page length by specifying the length of the printer page. This causes V to start a new page as soon as the specified number of lines has been printed instead of waiting until the end of the page.

Notes

●The page length specified must be less than or equal to the maximum page length allowed by the printer.
●Pre-formatted files usually contain their own header/footer, so you will probably have to disable V printing any of its own.
●If your listing is already formatted to a certain page length which is larger than your printer page length, you will have to increase the size of the printer page (by reducing the top and bottom margins and/or disabling the header/footer) or reduce the size of the printer font.
●Some files contain form feed characters (Ctrl-L or ASCII 12 decimal) to indicate a page break. V will start a new page whenever it encounters a form feed.

2UP Printing

2UP printing would probably have to be one of the most useful (and most used) features of V. At least it is for me!

2UP printing not only saves paper, but I find the listings actually look better and are easier to read, since you have more information on the one page.

When files are printed in 2UP mode (also known as book mode), the file is printed in Landscape mode with two pages being printed (side by side) on each sheet of paper.

2UP printing is ideal for program listings, hex dumps and README files.

Notes

●When printing in 2UP mode, you should use a smaller font than you would use for normal printing. On a HP LaserJet, the built-in LinePrinter font is ideal.
●See the Fonts section of the Preferences Dialog box for further information on selecting Printer fonts.
●The Orientation option (Portrait/Landscape) is ignored when 2UP printing is selected - the printer is always placed in Landscape mode.

Printer Fonts

The font that V will use for printing will be displayed in a button just above the "Options" group in the dialog box. You may change the font by clicking on the button and selecting a previously used font from the list displayed. You may add a font to the list by selecting Add Font.

Select Organize Fonts if you want to modify the font list.

When you change printing modes (Hex/Text and 2Up/Normal) V will automatically select the font last used in that mode.

Proportional fonts

Proportional fonts may not be selected for displaying files but they may be selected for printing. Proportional fonts will not work well for program listings and hex dumps since the spacing between characters is not fixed (it is proportional). However, proportional fonts may be preferable for printing text files.

Line Wrapping

Line wrapping will not work correctly if a non-proportional printer font is selected. In particular, the lines will usually wrap well before the end of the page.

If proportional fonts are used, it is suggested that the Wrap Long Lines option not be set.

Note

Selecting Fonts from the menu on the More button allows the user to select a new printer font. This is equivalent to selecting fonts from the Preferences dialog box. However, the font selected will not be added to the font list which is displayed when clicking on the button displaying the current print font.

More Printing Commands

Pressing the More button allows you to select one of the following:

Fonts

This allows the user to select a new printer font. The font selected will not be added to the font list that is displayed when pressing the button displaying the current font.

Text Only Options

Sets the options for Text Only Printing

Start Text Only Printing

Starts Text Only Printing

Start Raw/Binary Printing

Starts Raw/Binary Printing

Apply Settings & Exit

This saves the print options and closes the Print dialog box. Note that pressing the Cancel button will not save any options that have been modified.

Note

You can start Text Only and Binary printing from the command line by specifying the /PX and /PB command line options respectively.

Text Only Printing

Text Only printing causes V to send text directly to the printer, bypassing the Windows printer driver. This will normally be used to print to a very old printer that is not supported by Windows.

There are 2 ways of starting Text Only printing.

The first is to simply select Start Text Only Printing from the menu that is displayed when you click on the More button.

The second is to print to a printer that uses the Generic/Text Only printer driver. This is usually found under the manufacturer of Generic in the Add Printer Wizard. If a generic printer driver is used, V will bypass the Windows driver and print directly to the printer (unless Text Only printing has been disabled).

Text Only printing may be configured by selecting Text Only Options from the menu that is displayed when the More button is pressed. You will probably need to know certain technical information about the printer in order to configure it correctly (do you still have the manual?). The following options may be specified:

Disable Text Only Printing

Enable this if you really want to use the Windows printer driver (which will normally be bypassed).

Page Size

The page size of the printer in columns and rows. The column size will usually be 80 or 132 and the number of lines between 60 and 66.

Margins

The number of columns (or lines) to skip before printing each page. Note that the Page Size should include the margins. For example, if the page width was 80 columns and the left and right margins were 5 characters, the printable page width would be 70 characters.

Send after each LINE

This tells V what to send to the printer at the end of a new line. It will usually be one of:

		CR Carriage Return (Hex 0D)

		LF Line Feed (Hex 0A)

		CRLF A CR followed by a LF

		Other You may specify and of end of line character sequence if it is not one of the above. The format of the character sequence is described below.

Send after each PAGE

What to send to the printer at the end of each page to advance to the next page. It will usually be one of:

		FF Form Feed (Hex 0C)

		Blank Lines Advances to the next page by a series of blank lines (dependant on the page height).

		Nothing Send nothing

		Other Specify your own end of page character sequence.

Send at Start of file

Character sequence to send at the start of the file (perhaps to put the printer in condensed mode).

Send at END of file

Character sequence to send at the end of the file.

Delay after each LINE and/or PAGE

You may also tell V to wait after printing each line and/or page. The delay is specified in milliseconds. For example, 500 milliseconds equals half a second.

A delay may be necessary if you find that the printer is losing characters due to its buffer not being large enough.

Character Sequence Format

To specify a character sequence to be sent to the printer, simply type in the characters (if they are alphanumeric). For control characters, type a % followed by the 2 digit hex code.

For example, to send a LF/CR instead of a CR/LF you would specify %0a%0d. To send the ESCAPE (hex 1b) character followed by the letter A you would specify %1bA.

Notes

See also Raw/Binary Printing

Print Preview will probably not work correctly for Text Only printing.

Raw/Binary Printing

Text Only printing lets you send the file directly to the printer, bypassing the Windows printer driver.

This is only really useful for printing *text* files, as V will try to paginate the files. That is, start a new page depending on how many lines in a page.

Raw/Binary printing, however, does not paginate the file. It sends the file unmodified to the printer.

Raw/Binary printing can be used to print a file that already contains printer control codes, and needs to bypass the printer driver in order to print correctly.

Printer Profiles

A Printer Profile is a collection of printer settings (header, footer, font, margins, orientation, etc).

To save the current printer settings in a profile, click on the Profile button and select Save in New Profile. You will then be asked to enter a profile name. This name will appear in the Profile drop-down list box in the Print dialog box.

When a profile is selected from this list box, all the printer settings stored in the profile will be restored.

Once a profile has been selected, any settings changes will not automatically be saved back to the profile. You will need to do this manually by clicking on the Profile button and selecting Save in Current Profile.

When a profile has been modified (without being saved), the Profile list box will display "Profile Name (Modified)" to indicate that the current settings are different from the saved profile. Note that this will not happen as soon as the options are modified - but the next time the Print dialog box is displayed.

Default Profile

A default profile can be defined by clicking on the Profile button and selecting Set as Default Profile.

Defining a default profile allows the user to revert to the default profile settings whenever V is started or after a specified number of minutes from the last print. To configure this, click on the Profile button and select Default Profile Options.

Notes

Profiles cannot be used to save Text Only options

Profiles are stored as .vprofile files in the user's Application Data folder - usually in:

 C:\Documents and Settings\UserName\Application Data\V\Profiles\

Keyboard Shortcuts

Most of the Menu and Toolbar commands in V have a keyboard equivalent (and in many cases, more than one).

To many, it may seem that a lot of the keys have been selected at random. I'd like to think that there is a bit more to it than that. Many V users have been using PCs for a long time and they all have their own preferences when it comes to utilities, and in particular, to editors.

No one wants to learn a new set of keyboard commands. Windows and CUA was supposed to fix all this, but try telling someone who uses vi all day (a lot of people still do!) that they have to press "Ctrl-F" to search, when they are used to typing "/".

Most of the keyboard shortcuts can be customized. This allows the user to define a new keyboard shortcut or to re-assign an existing one. Click here for details.

Customizing the Keys

The keyboard can be customized by selecting Customize Keyboard from the Tools menu.

[image: CustKeys]

A tree will be displayed that will contain the top level menus in each of V's four views (Directory, File, GREP and ZIP). Commands that do not appear on any menus (like Goto Directory Box in the Directory View and Page Down in the File View) are listed underneath the Other branch of the corresponding view..

When you expand the tree and click on of the commands, the shortcut keys currently corresponding to that command (if any) will be displayed underneath Shortcuts for Selected Command.

Note that a command can have multiple shortcuts keys assigned to it. A key listed in bold (eg, Alt+0) indicates that the key cannot be deleted (or re-assigned). However, extra shortcut keys can be defined for that command.

The above screenshot shows the keys currently assigned to Find Next (A, Ctrl+L, Ctrl+N and F3).

The selected shortcut is used in indicates that the selected key (A) is currently only defined in the File view.

The selected command is available in indicates that the Find Next command is only available in the File view.

Click on the following for further details:

Adding/Deleting Keys

List of Keys

Adding/Deleting Keys

To delete a shortcut key, simply select the key and press the Delete button. To assign a new shortcut to the command, click in the Add Shortcut Key box, enter the new key (or key combination) and press the Add button. Press the ESCape key to clear the Add Shortcut Key box.

When adding a new key, Shortcut Currently Used By will display any existing command that the key is already assigned to. You will have to delete this key from the existing command before you can assign it to the new command. Pressing the Goto button will take you to the menu command that is currently used by the key.

When adding or deleting a key, it will be added to (or deleted from) all available views unless Only Add to/Delete from current view is enabled.

For example, Ctrl+Enter displays the File Properties in the File, Directory and GREP views. By enabling Only Add to/Delete from current view, it is possible to only redefine Ctrl+Enter in the File View and maintain its existing functionality in the Directory and GREP views.

Export/Import Keys

Press the Export button to export the shortcut keys to a .vkey file. Note that only the keys that have been customized by the user are exported to the file.

Press the Import button to import the customized keys from a .vkey file. Any keys that you have customized will remain customized, unless they have been redefined in the .vkey file.

Note

The .vkey file should not be edited

List of Keys

The List of Keys tab displays a list of all the keys currently used by V.

[image: ListOfKeys]

 An X is displayed in a column if that key is available in the corresponding view. The four views are:

Dir The Directory View (ie, the Directory Listing)

File The File View (viewing the file contents)

Grep The GREP View (where V displays the GREP results)

Zip The ZIP View (viewing the contents of a ZIP file)

The Other column can contain one of the following:

FAV The key is assigned to a Favorite

UCMD The key is assigned to a User Command

FONT The key is assigned to a font

GRID The key is assigned to a grid

You can delete a key by right-clicking on the key in the list and selecting Delete Key(s). Note that keys displayed in bold cannot be deleted (and therefore, cannot be re-assigned).

Scroll Keys

If you press a key while viewing the list of keys, the list entry corresponding to that key will be selected (if it exists). For example, if you press Ctrl+A, the first list entry for Ctrl+A will be selected. Pressing Ctrl+A again will select the next entry for Ctrl+A (if it exists).

This causes a problem if you use one of the scroll keys to scroll the list (like PageUp/PageDown). Pressing PageUp will select the PageUp key in the list instead of scrolling the list. If you prefer the scroll keys to scroll the list, enable the Scroll keys for the above list option.

Sorting the List of Keys

The list of keys can be "sorted" by clicking on one of the column headers. Sorting on one of the view types (Dir, File, Grep, Zip) will display all of the keys defined in the corresponding view at the top of the list. For example, sorting on Dir will display all of the keys defined in the Directory View at the top of the list.

Copyright

VIEW is a customized version of The V File Viewer licensed to JP Software Inc. for use with Take Command.

V implements regular expressions using the PCRE library written by Philip Hazel.

The V File Viewer is Copyright © 1996-2013, Charles Prineas, All Rights Reserved.

Take Command is Copyright © 1993-2013, Rex Conn and JP Software Inc. All Rights Reserved.

PCRE is Copyright © 1997-2013 University of Cambridge. All Rights Reserved.

VOL

	Purpose:	Display disk volume label(s)

	Format:	VOL [d:] ...

d: The drive or drives to search.

Usage:

Each disk may have a volume label, created when the disk is formatted or with the external LABEL command. Also, every disk formatted with Windows has a volume serial number.

The VOL command will display the volume label and, if available, the volume serial number of a disk volume. If the disk doesn't have a volume label, VOL will report that it is "unlabeled." If you don't specify a drive, VOL displays information about the current drive:

[c:\] vol

Volume in drive C: is MYHARDDISK

If available, the volume serial number will appear after the drive label or name.

To display the disk labels for drives A and B

[c:\] vol a: b:

Volume in drive A: is unlabeled

Volume in drive B: is BACKUP_2

VOL will also return volume information for UNC names.

See also: @LABEL.

VSCRPUT

	Purpose:	Display text vertically in the specified color

	Format:	VSCRPUT row col [BRIght] fg ON [BRIght] bg text

	row	Starting row

	col	Starting column

	fg	Foreground text color

	bg	Background text color

	text	The text to display

See also: SCRPUT.

Usage:

VSCRPUT writes text vertically on the screen rather than horizontally. It can be used for simple graphs and charts generated by batch files.

Like the SCRPUT command, it uses the colors you specify to write the text. See Colors and Color Names for details about colors and color names, and notes on the use of bright background colors.

The row and column values are zero-based, so on a 25 line by 80 column window valid rows are 0 - 24 and valid columns are 0 - 79. VSCRPUT checks for a valid row and column, and displays a "Usage" error message if either value is out of range.

The maximum row value is determined by the current height of the TCC window. The maximum column value is determined by the current virtual screen width (see Resizing the Take Command Window for more information).

You can also specify the row and column as offsets from the current cursor position. Begin the value with a plus sign [+] to move down the specified number of rows or to the right the specified number of columns before displaying text, or with a minus sign [-] to move up or to the left.

If you specify 999 for the row, VSCRPUT will center the text vertically. If you specify 999 for the column, VSCRPUT will center the text horizontally.

VSCRPUT does not move the cursor when it displays the text.

The following batch file fragment displays an X and Y axis and labels them:

cls bright white on blue

drawhline 20 10 40 1 bright white on blue

drawvline 2 10 19 1 bright white on blue

scrput 21 20 bright red on blue X axis

vscrput 8 9 bright red on blue Y axis

	WEBFORM	Not in LE

	Purpose:	POST data to interactive web pages or scripts

	Format:	WEBFORM [/An /En /Fn /U"username" /O:headers" /P"password" /R"referer" /Tn /V] /W"url" "varname" "varvalue" ...

	varname	Form variable

	varvalue	Form value

	/An (authorization)	/R(eferrer)

	/En (encoding)	/Tn (firewall)

	/F (HTTP agent)	/U(ser)

	/L(ocal file)	/V(erbose)

	/O(ther headers)	/W(eb URL)

	/P(assword)	

Usage:

WEBFORM will POST data to interactive web pages or scripts (CGI, ASP, etc.), similar to what HTML forms do.

WEBFORM will use the proxy & firewall settings from TCMD.INI.

Example:

		webform /v /w"http://download.finance.yahoo.com/d/quotes.csv" "f", "sl1d1t1c1ohgv" "e", ".csv" "s", "IBM"

Options:

	/An	Authorization scheme:

0 - basic

1 - digest

2 - proprietary

3 - none

4 - NTLM

5 - Negotiate

/En Encoding:

0 (URLEncoding) This is the most common encoding for HTML form contents.

1 (MultipartFormData) This is MIME encoding allowing transmission of binary data.

2 (QueryString) This is an older form of encoding where the actual parameters are appended to the URL query string. (Generally not recommended because most servers limit the size of the URL to less than 1K or 2K).

	/F	Email address of the HTTP agent.

	/U"username"	User name if authentication is to be used.

	/P"password"	Password if authentication is to be used.

/L"localfile" Local file for downloading. If the file exists, it will be overwritten.

	/O"headers"	Other headers. The headers must be of the format "header: value" as described in the HTTP specifications. Header lines should be separated by CR/LF (^r^n).

/R"referer" The document referring the requested URL

	/Tn	Firewall type:

0 - no firewall (default)

1 - Connect through a tunneling proxy. Port is set to 80.

2 - Connect through a SOCKS4 proxy. Port is set to 1080.

3 - Connect through a SOCKS5 proxy. Port is set to 1080.

	/V	Display retrieved document text

	/W"url"	URL of web page

	WEBUPLOAD	Not in LE

	Purpose:	Upload files to RFC1867-compliant web servers

	Format:	WEBUPLOAD [/An /En /F"from" /L"file" /O"headers" /U"username" /P"password" /R"referer" /V] /W"url" [/V "varname" "varvalue"] "filevar" "filename" ...

	varname	Form variable

	varvalue	Form value

	filevar	The file(s) to extract

	filename	The file(s) to upload

	/An (authorization)	/R(eferrer)

	/En (encoding)	/Tn (firewall)

	/F (HTTP agent)	/U(ser)

	/L(ocal file)	/V(erbose)

	/O(ther headers)	/W(eb URL)

/P(assword)

Usage:

WEBUPLOAD will use the proxy & firewall settings from TCMD.INI.

Options:

	/An	Authorization scheme:

0 - basic

1 - digest

2 - proprietary

3 - none

4 - NTLM

5 - Negotiate

/En Encoding:

0 (URLEncoding) This is the most common encoding for HTML form contents.

1 (MultipartFormData) This is MIME encoding allowing transmission of binary data.

2 (QueryString) This is an older form of encoding where the actual parameters are appended to the URL query string. (Generally not recommended because most servers limit the size of the URL to less than 1K or 2K).

	/F"from"	Email address of the HTTP agent.

	/U"username"	User name if authentication is to be used.

	/P"password"	Password if authentication is to be used.

/L"localfile" Local file for downloading. If the file exists, it will be overwritten.

	/O"headers"	Other headers. The headers must be of the format "header: value" as described in the HTTP specifications. Header lines should be separated by CR/LF (^r^n).

/R"referer" The document referring the requested URL

	/Tn	Firewall type:

0 - no firewall (default)

1 - Connect through a tunneling proxy. Port is set to 80.

2 - Connect through a SOCKS4 proxy. Port is set to 1080.

3 - Connect through a SOCKS5 proxy. Port is set to 1080.

	/V	The following two arguments are a varname / varvalue pair.

	/W"url"	URL of web page

WHICH

	Purpose:	Display the command type and what it would execute

	Format:	WHICH [/A] command [command ...]

command One or more commands or files.

/A(ll)

Usage:

WHICH displays information about internal and external commands, Aliases (including keystroke aliases), and files. When a file matches an applicable Executable Extension or Windows File Association, that data will be displayed. The exact information reported depends on the type of command or file you specify. For example:

[c:\] which cdd buildtree notepad test.btm test.exe test.xyz test.doc donothing

CDD is an internal command

buildtree is an alias : cdd /s

notepad is an external: C:\windows\notepad.exe

test.btm is a batch file : C:\test.btm

test.exe is an external : C:\test.exe

test.xyz is an executable extension : C:\path\mybatch.btm C:\test.xyz

test.doc is associated with : C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

donothing is an unknown command

If the command is an abbreviated alias, WHICH will display the full name; i.e.:

[c:\] alias opt*ions=*option

[c:\] which opt

opt*ions is an alias : *option

WHICH can also recognize Plugin commands, REXX files, EXTPROC files, and associated files.

Note: WHICH does not support wildcard specifications unless you use the /A option. Parameters must be actual commands or actual file names (including variable and function references as in "which %comspec"). If a filename includes white space or special characters, it must be enclosed in double quotes. A file specified without an explicit path must be on the current PATH.

See Executable Files and File Searches for details on the order in which various locations are searched.

See also: @SEARCH, ASSOC, FTYPE.

Option:

	/A	Display all matching commands. (Normally WHICH only displays the first match.) Executable files will be displayed in the order they are found in the PATH.

WINDOW

	Purpose:	Minimize or maximize the current window, restore the default window size, or change the window title

	Format:	WINDOW [MAX | MIN | RESTORE | HIDE | TRAY | TOPMOST | NOTOPMOST | TOP | BOTTOM | DETACH | /POS=left,top,width,height | /SIZE=rows,columns | /TRANS=n | /FLASH=type,count | "newtitle"]

	newtitle

	A new title for the window

	height

	New height of window

	width

	New width of window

	left

	New position of the left border of window

	top

	New position of the top border window

	rows

	New height of window

	columns

type

count

	New width of window

Type of window flash

Number of times to flash the window

	/FLASH	/SIZE (of screen buffer)

/POS(ition)

See also: ACTIVATE and TITLE.

Usage:

WINDOW is used to control the appearance and title of the current (TCC) window.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

If you are running in a Take Command tab window, the MAX, MIN, RESTORE, HIDE, TRAY, TOPMOST, NOTOPMOST, TOP, BOTTOM, and /TRANS options will be sent to the main Take Command window, not the TCC window.

Note: You can specify only one WINDOW option at a time. The different options cannot be combined in a single WINDOW command. To perform multiple operations you must use multiple WINDOW commands.

Options:

	Option

	Description

	/POS=left,top,width,height

	Set the window position and size on the desktop. The values are specified in pixels. Left and top refer to the position of the top left corner of the window relative to the top left corner (0,0) of the screen. The width and height values determine the window size. The window may be sized and positioned so that parts of it are beyond the physical area of the display. The / before the keyword is optional. /POS is not supported in Take Command tab windows (use ACTIVATE instead).

	/TRANS=n

	Set the transparency level of the Take Command window. n is an value from 0 (invisible) to 255 (opaque).

	/FLASH=type,count

	Flash the TCC or Take Command window. (Not available in TCC/LE.) The arguments are:

type - type of flash; one or more of the following values:

 0 - stop flashing

 1 - flash the window caption

 2 - flash the taskbar button

 4 - flash continuously until WINDOW is called again with the /FLASH type set to 0

 2 - flash continuously until the window comes to the foreground (cannot be used with 4)

count - the number of times to flash the wndow

	newtitle

	Changes the window title. The title text must be enclosed in double quotes. (The quotes will not appear as part of the actual title as displayed.) Setting the title inside a batch file will only change the window title while the batch file is executing.

	MAX

	Expands the window to its maximum size.

	MIN

	Reduces the window to an icon.

	RESTORE

	Returns the window to its default size and location.

	HIDE

	Makes the window invisible. Use RESTORE to make the window visible.

	TRAY

	Moves the window to the taskbar tray.

	/SIZE=rows,columns

	Specify the TCC screen buffer size. Due to the design of Windows console sessions, you cannot use /SIZE to reduce the size of the screen buffer; it can only be increased. Does not affect window size.

	TOPMOST

	Keeps the Take Command window on top of all other windows until it closes, or NOTOPMOST is used. (Only valid in a tab window.)

	NOTOPMOST

	Allows other windows to overlay the Take Command window (this is the normal state for most windows). (Only valid in a tab window.)

	TOP

	Moves the Take Command window to the top of the window order, above all other non-TOPMOST windows. (Only valid in a tab window.)

	BOTTOM

	Moves the Take Command window to the bottom of the window order. (Only valid in a tab window.)

	DETACH

	Detach TCC from a Take Command tab window.

	WMIQUERY	Not in LE

	Purpose:	Query the Windows Management Interface

	Format:	WMIQUERY [/A /B /C /H] namespace "query string" [index]

	namespace	The namespace to query

	"query string"	WQL query string

	index	Class instance

	/A(ll instances)	/C(lasses)

	/B(lank)	/H(eader)

Usage:

You can use a single period . for namespace to default to root\cimv2.

For example, to query the name property from the Win32_Processor class:

wmiquery root\cimv2 "SELECT name FROM Win32_Processor"

To query available classes:

wmiquery /A root "select name from __namespace"

For more details on what is available, see the WMI and WQL documentation on MSDN (msdn.microsoft.com), and download the "WMI Code Creator" from Microsoft at:

http://www.microsoft.com/en-us/download/details.aspx?id=8572

and browse the available namespaces, classes, and properties. WMI Code Creator is also a useful tool for generating WMI queries for use with WMIQUUERY.

Options:

	/A 	Display all class instances starting at "index".

	/B	Separate class instances with a blank line.

	/C	Display all the matching class names for the specified namespace. "query string" is the filter to apply to the returned values; it can contain wildcards. For example:

wmiquery /c . "win32_q*"

	/H	Display a header for class instances.

Y

	Purpose:	Copy standard input to standard output, and then copy the specified file(s) to standard output

	Format:	Y file ...

file The file or list of files to send to standard output.

See also: TEE, piping and redirection.

Usage:

The Y command copies input from standard input (usually the keyboard) to standard output (usually the screen). Once the input ends, the named files are appended to standard output.

For example, to get text from standard input, append the files MEMO1 and MEMO2 to it, and send the output to MEMOS:

y memo1 memo2 > memos

The Y command is most useful if you want to add redirected data to the beginning of a file instead of appending it to the end. For example, this command copies the output of DIR, followed by the contents of the file DIREND, to the file DIRALL:

dir | y dirend > dirall

If you are typing at the keyboard to produce input text for Y, you must enter a Ctrl-Z to terminate the input.

When using Y with a pipe you must take into account that the programs on the two ends of the pipe run simultaneously, not sequentially.

See Piping for more information on pipes.

	ZIP	Not in LE

	Purpose:	Add, update, or delete files in a .ZIP archive

	Format:	ZIP [/A:[[-][+]rhsdaecjot] /A /C /CRC /D /En /F /I /Ln /M /O:[-]adegnrstu /P /Q /R /S"password" /T /TEST /U /V /YC /Z"text"] ziparchive [@file] file...

	ziparchive	The zip file to work with

	file	The files(s) to be added to the zip file

	/A:... (attribute switch)	/P(rogress)

	/A(dd)	/Q(uiet)

	/C(ontents)	/R(ecurse)

	/CRC	/S"password"

	/D(elete)	/T (save attributes

	/En (encryption type)	/TEST

	/F(reshen)	/U(pdate)

	/I (save descriptions)	/V(iew)

	/Ln (compression level)	/YC (AES 256)

	/M(ove)	/Z (comment)

/O:... (sort order)

File Selection

Supports command dialog, attribute switches, extended wildcards, ranges, multiple file names, and include lists.

Usage:

You can specify a pathname for ziparchive. If you don't provide an extension, and the filename as entered doesn't exist, ZIP adds ".zip". If you don't specify an operation, ZIP will default to Add. If you don't specify any arguments, ZIP will display its command dialog.

ZIP will automatically use the Zip64 extensions if the archive is in Zip64 format.

ZIP sets two internal variables:

	%_zip_files	The number of files archived

	%_zip_errors	The number of errors

Option:

	/=	Display the ZIP command dialog to help you set the filename and command line options. You cannot specify any other arguments on the command line.

	/A:...	Select only those files that have the specified attribute(s) set. See Attribute Switches for information on the attributes which can follow /A:. Do not use /A: with @file lists. See @file lists for details.

You can specify /A:= to display a dialog to help you set individual attributes. (Not available in TCC/LE.)

	/A	Add the specified file(s) to the zip file. (This is the default.)

	/C	Display (on standard output) the contents of a file in the zip archive.

	/CRC	Display the file CRCs (must be used with /V).

	/D	Delete the specified file(s) from the zip file.

	/En	Set the encryption type (0=default, 1=AES 128-bit, 2=AES 192-bit, 3=AES 256-bit).

	/F	Update only those files that currently exist in the zip file, and which are older than the files on disk.

	/I	Save file descriptions (from DESCRIPT.ION or the NTFS description) as the compressed file's "File Comment".

	/Ln	Set the compression level (0 - 6, where 0=no compression, and 6=maximum compression). The default is 4.

	/M	Delete the files from the disk after adding them to the zip file.

	/O:...	Sort the files before processing. (Not available in TCC/LE.)

You may use any combination of the sorting options below. If multiple options are used, the files will be sorted with the first sort option as the primary key, the next as the secondary key, and so on:

	n	Sort by filename and extension, unless e is explicitly included. This is the default.

	-	Reverse the sort order for the next sort key

	a	Sort names and extensions in standard ASCII order, instead of numerically when numeric substrings are included in the name or extension.

	d	Sort by date and time (oldest first); also see /T:acw

	e	Sort by extension

	g	Group subdirectories first, then files

	r	Reverse the sort order for all options

	s	Sort by size

	t	Same as d

	u	Unsorted

	/P	Display the progress (0 - 100%) for each file as it is zipped.

	/Q	Don't display the files being zipped.

	/R	If the argument is a subdirectory, copy all of the files in that subdirectory and all of its subdirectories to the zip file.

	/S	Use the specified password to encrypt the file(s). If you don't provide a password on the command line, ZIP will prompt you to enter one.

	/T	Save the file attributes (they will be set when the file is extracted).

	/TEST	Test the integrity of the ZIP file (header and contents). Any errors will be displayed on STDERR.

	/U	Update files which either don't exist in the zip, or which are older than the files on disk.

	/V	View the list of files in the zip file (date, time, size, compression ratio, and filename). If the zip file is password protected, ZIP will append a * after the filename.

	/YC	Use AES 256-bit encryption instead of the default Zip 2.0 encryption.

	/Z"..."	Set the comment for the zip file.

	ZIPSFX	Not in LE

	Purpose:	Create a ZIP-compatible self-extracting archive

	Format:	ZIPSFX [/B /C /D"path" /F"file" /Ln /M"message" /R /S"password" /X64] exearchive directory...

	exearchive	The self-extracting executable

	directory	The directory to be compressed into the self-extracting executable

	/B(anner)	/M(essage)

	/C(aption)	/R(ecurse)

	/D (target directory)	/S"password"

	/F (execute after open)	/X64 (64-bit executable)

/Ln (compression level)

File Selection

Supports extended wildcards and ranges,

Usage:

You can specify a pathname for exearchive. If you don't provide an extension, and the filename as entered doesn't exist, ZIPSFX adds ".exe".

ZIPSFX sets two internal variables:

	%_zipsfx_files	The number of files archived

	%_zipsfx_errors	The number of errors

Option:

	/B	Banner text to display before beginning the self-extraction.

	/C	Caption for the self-extractor dialogs.

	/D	Target directory for the self-extractor.

	/F	Optional name of the file to execute (open) after the archive is extracted. This must be a relative path to a file in directory. If this is set to ".", the folder in which the archive has been decompressed will open in Windows Explorer. If it is set to "" (an empty string), the extractor will close and take no action.

	/Ln	Set the compression level (0 - 6, where 0=no compression, and 6=maximum compression). The default is 4.

	/M	Message to notify the user that the extraction has completed normally.

	/R	If the argument is a subdirectory, copy all of the files in that subdirectory and all of its subdirectories to the zip file.

	/S	Use the specified password to extract the file(s). If you don't provide a password on the command line, ZIPSFX will prompt you to enter one.

	/X64	Create a 64-bit executable.

Variables and Functions

The environment is a collection of information about your system that every program receives. Each entry in the environment consists of a variable name and a string value.

Usage

You can automatically substitute the text for the variable name in any command. To create the substitution, include a percent sign % and the variable name on the command line or in an alias or batch file, e.g., %comspec. If the name of the variable whose value you want to use is an expression, you can enclose the expression in brackets, e.g., %[%n].

You can create, alter, view, and delete environment variables with the SET, ESET, and UNSET commands.

A few environment variables have special meanings for TCC (they are listed in System Variables).

TCC also supports two special types of variables:

	[image: Onestep]	Internal variables are similar to environment variables, but are interpreted internally by TCC, and are not visible in the environment. They provide information about your system for use in batch files and aliases. Some of them provide access to information that may change even during the execution of a single command or batch file.

	[image: Onestep]	Variable functions are referenced like environment variables, but perform additional actions like file handling, string manipulation and arithmetic calculations. In addition to the variable functions that are internal to TCC, you can use the FUNCTION command to create your own. These latter ones are referred to as user defined functions or UDFs.

Note: TCC inherits its initial environment from the process which started it. That process might be Explorer or another existing Windows process which launched the current TCC session. Note that if the starting process's environment is changed (through registry modifications, for example) while TCC is already running, those changes will not be automatically reflected in TCC's current environment. See the SET command for details.

You use the SET command to create a new environment variable. SET can also modify or delete a single environment variable, or display the value of one or more environment variables. ESET allows you to edit an environment variable. UNSET deletes environment variables. For example, you can create a variable named BACKUP like this:

set BACKUP=*.bak;*.bk

If you then type:

del %BACKUP

it is equivalent to having type the command:

del *.bak;*.bk

The environment variable names you use this way may contain any alphabetic or numeric characters, the underscore character _, and the dollar sign $. You can force acceptance of other characters by including the full variable name in square brackets, like this: %[AB##2]. You can also indirectly reference environment variables using square brackets. For example %[%var1] means "the contents of the variable whose name is stored in VAR1".

In addition, TCC uses the environment to keep track of the default directory on each drive. Windows only tracks the default directory of the current drive; TCC overcomes this limitation by saving the default directory for each drive in the environment, using hidden variable names. Each variable begins with an equal sign followed by the drive letter and a colon (for example, =C:). You cannot view or change these variables with the SET command.

The trailing percent sign that was traditionally required for environment variable names is not usually required by TCC, which accept any character that cannot be part of a variable name as the terminator. However, the trailing percent can be used to maintain compatibility with CMD.

The trailing percent sign is needed if you want to append variable values. The following examples show the possible interactions between variables and literal strings. First, create two environment variables called ONE and TWO this way:

set ONE=abcd

set TWO=efgh

Now the following combinations produce the output text shown:

	original

	expanded

	method

	%ONE%TWO

	abcdTWO

	("%ONE%" + "TWO")

	%ONE%TWO%

	abcdTWO

	("%ONE%" + "TWO%")

	%ONE%%TWO

	abcdefgh

	("%ONE%" + "%TWO")

	%ONE%%TWO%

	abcdefgh

	("%ONE%" + "%TWO%")

	%ONE%[TWO]

	abcd[TWO]

	("%ONE%" + "[TWO]")

	%ONE%[TWO]%

	abcd[TWO]

	("%ONE%" + "[TWO]%")

	%[ONE]%TWO

	abcdefgh

	("%[ONE]" + "%TWO")

	%[ONE]%TWO%

	abcdefgh

	("%[ONE]" + "%TWO%")

If you want to pass a percent sign to a command, or a string which includes a percent sign, you must use two percent signs in a row. Otherwise, the single percent sign will be seen as the beginning of a variable name and will not be passed on to the command. For example, to display the string "We're with you 100%" you would use the command:

echo We're with you 100%%

You can also use back quotes around the text, rather than a double percent sign. See Parameter Quoting for details.

Environment variables may contain alias names. TCC will substitute the variable value for the name, then check for any alias name which may have been included within the value. For example, the following commands would generate a 2-column directory of the .TXT files:

alias d2 dir /2

set cmd=d2

%cmd *.txt

For compatibility with some peculiar syntax introduced in recent CMD versions, TCC supports:

	%var:string1=string2%

	Substitutes the second string for all instances of the first string in the variable.

	%var:~x[,y]%

	Returns the substring starting at the xth character position (base 0) and continuing for y characters. If y is not specified, returns the remainder of the string. If x is negative, starts from the end of the string.

For string manipulations, we suggest you rely instead on the much more flexible Variable Functions.

	Array Variables	Not in LE

In addition to environment variables, TCC also supports up to 4-dimensional array variables. Array variables are defined by the SETARRAY command, and you assign values to them with the SET command.

See also UNSETARRAY, @ARRAYINFO, @EXECARRAY and @FILEARRAY.

System Variables

The variables below have special meaning for TCC:

	CDPATH

	Directory navigation search list

	CMDLINE

	Command line after full expansion

	COLORDIR

	Directory colorization specification

	COMSPEC

	Command processor specification

	FILECOMPLETION

	File completion control variable

	HISTORYEXCLUDE

	List of commands excluded from the command history

	PATH

	Executable program location search list

	PATHEXT

	Ordered search list of extensions of executable programs

	PROMPT

	Command prompt format specification

	PROMPT2

	Prompt for line continuation

	RECYCLEEXCLUDE

	List of files excluded from the recycle bin

	TCMD

	Take Command's pathname

	TCMDVER

	Take Command's version number

	TEMP

	Directory for temporary files

	TITLEPROMPT

	Command processor window title bar specification

	TMP

	Directory for temporary files

	TREEEXCLUDE

	List of directories excluded from JPSTREE.IDX

	VARIABLEEXCLUDE

	Variables to exclude from SET list

CDPATH Variable

CDPATH specifies where to search for directories specified in CD, CDD, and PUSHD commands and in automatic directory changes. See the CDPATH feature for details.

This feature is maintained for backwards compatibility, but has largely been replaced by Extended Directory Searches.

CMDLINE

CMDLINE is set by TCC to the fully expanded text of the currently executing command line just before invoking any external command (.EXE, .BTM, .BAT or .CMD), unless the command line is prefaced with @ to prevent echoing, in which case CMDLINE will be removed.

COLORDIR

COLORDIR controls directory display colors used by DIR. See Color-Coded Directories for a complete description of the format of this variable.

COMSPEC

Many programs expect the value of COMSPEC to contain the full path and name of the current character-mode command processor, e.g.

c:\program files\jpsoft\tcmd13\tcc.exe

TCC automatically sets COMSPEC to point to TCC.EXE on startup. If you need to run a program from TCC which utilizes COMSPEC to locate a command processor to process commands or batch files that are not compatible with TCC, you may set COMSPEC to the command processor your program expects before you start it.

FILECOMPLETION

FILECOMPLETION specifies the files made available during filename completion for selected commands. See Customizing Filename Completion for a complete description of the format.

HISTORYEXCLUDE

HistoryExclude specifies which commands should be excluded from the History List. The syntax is:

 HistoryExclude=cmd1[;cmd2[;cmd3[;...]]]

For example, to exclude the DEL and FREE commands, the Notepad program and the user-defined alias MYDIR:

 HistoryExclude=del;free;notepad;mydir

See also: HISTORY.

PATH Variable

The PATH variable specifies the list of directories that TCC will search for executable files that aren't in the current directory. PATH is used by some application programs to find their own files. See the PATH command for a full description of this variable, which can also be changed or modified with SET and ESET.

Note: We strongly recommend that you always leave at least your WINDOWS and SYSTEM32 directories in the PATH. The directory where TCC resides need not be included in PATH.

PATHEXT

PATHEXT is expected to contain a list of extensions (including a leading period .), separated by semicolons. For example, to replicate the default extension list used by TCC:

set pathext=.exe;.btm;.bat;.cmd;.vbs;.js;.ws;.rex;.rexx;.pl;.rb;.py;.tcl

If you use a command in a batch file or at the command prompt and all of the following are true:

●the PathExt configuration option is set
●the command is not an alias
●the command is not an internal command
●the command is not a filename with an explicit extension (thus neither an executable extension nor a Windows file association is available)

then TCC will search the current directory and then each directory listed in PATH in turn for a file with its name matching the command and its extension matching one of the extensions in PATHEXT. The current directory is searched first, then the first directory in PATH is searched first, then the second, looking in each for each of the extensions in PATHEXT in the order listed.

Caution: If you set the PathExt configuration option, and fail to set the PATHEXT variable, path searches without an explicit extension will fail as there will be no extensions for which to search! (Windows XP does define a default value for the PATHEXT variable.) If you set the PathExt configuration option but do not create or modify the PATHEXT variable, TCC will use the one defined by Windows (if any), which will probably not include the .BTM, .REX, .REXX, .PL, .RB, .PY, or .TCL extensions.

PROMPT Variable

PROMPT defines the command line prompt. It can be set or changed with the PROMPT, SET and ESET commands. See the PROMPT command for details.

See also: TITLEPROMPT.

PROMPT2

PROMPT2 defines the prompt used for line continuations (i.e., when the last character on a line is an escape character, or when there is an open command group). The default is "More? ".

RECYCLEEXCLUDE

RECYCLEEXCLUDE specifies files to be excluded from the Recycle Bin.

The syntax is:

RecycleExclude=file1[;file2...]

file1, file2, ... : file specifications, may include wildcards

For example, to exclude *.lib, *.obj, and *.bak files:

 RecycleExclude=*.lib;*.obj;*.bak

See also: DEL / ERASE command and the Delete to Recycle Bin configuration option.

TEMP

TEMP specifies the directory where TCC should store temporary files, unless the TMP variable exists. Many other programs also use TEMP to locate where they should place their temporary files.

TCMD

TCMD is the full pathname of the Take Command executable. It is only available to the applications running in Take Command tab windows.

TCMDVER

TCMDVER is the current major version, minor version, and build number of Take Command. (For example, "14.00.20".) It is only available to the applications running in Take Command tab windows.

TITLEPROMPT

TITLEPROMPT can be used to specify the contents of TCC's window title. Modifying its value changes the displayed title immediately. Unsetting it does NOT affect the title. It may contain the special escape-sequences acceptable in PROMPT, and all internal variables and functions can be used to generate it.

If you have specified a title for a startup tab in Take Command, it will override the TITLEPROMPT value.

See also: ACTIVATE, PROMPT, TITLE and WINDOW.

TMP

If TMP is defined, it specifies the directory where TCC should store temporary files (overriding TEMP). Some other programs also use TMP to define where they should place their temporary files.

TREEEXCLUDE

TreeExclude specifies which drives and directories to ignore when updating the JPSTREE.IDX file. The syntax is:

 TreeExclude=dir1[;dir2[;dir3[;...]]]

Any specified drive/directory and all of its subdirectories will be excluded from JPSTREE.IDX update. For example, to exclude everything in c:\windows, d:\temp\temp2, and everything on drive g:

 TreeExclude=c:\windows;d:\temp\temp2;g:\

Setting TreeExclude to the base directory of the target of a directory tree copy can speed up the copying considerably.

See also: Extended Directory Searches and CDD.

VARIABLEEXCLUDE

VariableExclude specifies which environment variables should be excluded from the SET list. The syntax is:

 VariableExclude=var1[;var2[;var3[;...]]]

For example, to exclude the SESSIONNAME, TMP, USERDOMAIN, and USERNAME variables:

 SET VariableExclude=sessionname;tmp;userdomain;username

See also: SET.

CMD Variables

CMD has some built-in variables (i.e., which are treated as environment variables but which do not exist in the environment):

CD - the current directory (see also _CWD).

CMDCMDLINE - the command line that started the command processor.

CMDEXTVERSION - the command extensions internal version number.

DATE - the current system date (see also _DATE).

RANDOM - a random number between 0 and 32767 (see also @RANDOM).

TIME - the current system time (see also _TIME).

TCC supports all of these built-in variables. (In TCC, CMDEXTVERSION will always return 2.)

The variables below are used by some Microsoft command processors, but are ignored by TCC. To see their usage by Microsoft and the alternate methods to achieve the same purpose in TCC, review:

	COPYCMD

	CMD default options for COPY command

	DIRCMD

	CMD default options for DIR command

COPYCMD

The COPYCMD variable is used by some versions of CMD to hold default options for the COPY command. TCC does not directly support this variable, i.e, its value has no affect on internal commands. In general, it is more efficient to define several aliases, each including a different combination of options. For example, if you want the COPY command to default to prompting you before overwriting an existing file, you could use this alias:

alias COPY=`*copy /r`

If you wish to use or create a COPYCMD variable for compatibility with CMD, you can define an alias to append the contents of that variable to the COPY command:

alias COPY=`*copy %copycmd`

Now each time the COPY alias is executed, the current value of COPYCMD will modify the execution of the COPY command.

DIRCMD

The DIRCMD variable is used by some versions of CMD to hold default options for the DIR command. TCC does not directly support this variable, i.e, its value has no affect on internal commands. In general, it is more efficient to define several aliases, each including a different combination of options. For example, if you want the DIR command to default to a 2-column display with a vertical sort and a pause at the end of each page, you could use this alias:

alias DIR=`*dir /2 /p /v`I

If you wish to use or create a DIRCMD variable for compatibility with CMD, you can define the alias to append the contents of that variable to the DIR command:

alias DIR=`*dir %dircmd`

Now each time the DIR alias is executed, the current value of DIRCMD will modify the execution of the DIR command.

String substitution

For compatibility with some peculiar syntax introduced in recent CMD versions, TCC supports:

	%var:string1=string2%

	Substitutes the second string for all instances of the first string in the variable.

	%var:~x[,y]%

	Returns the substring starting at the xth character position (base 0) and continuing for y characters. If y is not specified, returns the remainder of the string. If x is negative, starts from the end of the string.

For string manipulations, we suggest you rely instead on the much more flexible Variable Functions.

Variables

Internal variables are special variables built into TCC to provide information about your system. They are not stored in the environment, but can be accessed as if they were environment variables in interactive commands, aliases, and batch files.

The values of these variables are stored internally in TCC, and cannot be changed with the SET, UNSET, ESET or any other command. The DEFINED status test will always fail, too. You can override any of these variables by defining a new environment variable with the same name. The internal variable can be made available again by unsetting the identically name environment variable. The names of ALL internal variables (except the pseudovariables errorlevel, ?, ??, +, and =) begin with an underscore character to make it easier to distinguish them and to avoid accidentally overriding them.

These internal variables are often used in batch files and aliases to examine system resources and adjust to the current computer settings. You can examine the contents of any internal variable (except %= and %+) from the command line with a command like this:

echo %variablename

Variables which return a file or directory name from a volume that supports long filenames return it in the same case as it is stored. Returned names are not quoted automatically, you must add the quotes yourself if they are required by the syntax in which you use them.

Some variables return values based on information provided by your operating system. These variables will only return correct information if the operating system provides it. For example, _BATTERY will not return accurate results if your operating system and Advanced Power Management drivers do not provide correct information on battery status to TCC.

For a list of internal variables organized by general categories of use, see Internal Variables by Category.

Examples

You can use internal variables in a wide variety of ways depending on your needs. Here are just a couple of examples:

Store the current date and time in a file, then save the output of a DIR command in the same file:

echo Directory as of %_date %_time > dirsave

dir >> dirsave

Use the IFF command to check whether there are enough resources free before running an application:

iff %_GDIFREE lt 40 then

 echo Not enough GDI resources!

 quit

else

 d:\mydir\myapp

endiff

Call another batch file if today is Monday:

if "%_DOW" == "Mon" call c:\cleanup\weekly.bat

Internal Variables Listed by Name

+ A B C D E F H I K L M N O P R S T U V W X Y

	+

	Substitutes the TCC command separator

	=

	Substitutes the TCC escape character

	!

	Last argument of the previous command

	?

	Exit code, last external program

	_4ver

	TCC version

	_?

	Exit code, last internal command

	_acstatus

	AC line status

	_admin

	1 if an administrator, else 0

	_afswcell

	OpenAFS workstation cell

	_alt

	Alt key depressed: 1, else 0

	_ansi

	ANSI X3.64 status

	_batch

	Batch nesting level

	_batchline

	Line number in current batch file.

	_batchname

	Full path and filename of current batch file.

	_batchtype

	Type of the current batch file

	_battery

	Battery status

	_batterylife

	Remaining battery life, seconds

	_batterypercent

	Remaining battery life, %

	_bdebugger

	Batch debugger active: 1, else 0

	_bg

	Background color at cursor position

	_boot

	Boot drive letter, without a colon

	_build

	Build number

	_capslock

	CapsLock on: 1, else 0

	_cdroms

	List of the CD-ROM drives

	_childpid

	Process ID of most recent child process

	_ci

	Current text cursor shape in insert mode

	_cmdline

	Current command line

	_cmdproc

	Command processor name

	_cmdspec

	Full pathname of command processor

	_co

	Current text cursor shape in overstrike mode

	_codepage

	Current code page number

	_column

	Current cursor column

	_columns

	Virtual screen width

	_consoleb

	Handle to console screen buffer

	_consolepids

	Process IDs attached to this console

	_country

	Current country code

	_cpu

	CPU type

	_cpuusage

	CPU time usage (percent)

	_ctrl

	Ctrl key depressed: 1, else 0

	_cwd

	Current drive and directory

	_cwds

	Current drive and directory with trailing \

	_cwp

	Current directory

	_cwps

	Current directory with trailing \

	_date

	Current date

	_datetime

	Current date and time, yyyyMMddhhmmss

	_day

	Current day of the month

	_detachpid

	Process ID of most recent detached process

	_disk

	Current drive

	_dname

	Name of the description file.

	_dos

	Operating system type

	_dosver

	Operating system version

	_dow

	Current day of the week, English, short

	_dowf

	Current day of the week, English, full

	_dowi

	Current day of the week as an integer

	_doy

	Current day of the year

	_drives

	List of the existing drives

	_dst

	Daylight savings time: 1, else 0

	_dvds

	List of the DVD drives

	_echo

	Echo turned on: 1, else 0

	_editmode

	0 if in overstrike mode, 1 if in insert mode

	_elevated

	1 if the TCC process is elevated (Vista or later only)

	errorlevel

	Exit code, last external program

	_execarray

	Array elements assigned by the last @EXECSTR

	_execstr

	@EXECSTR return code

	_exit

	TCC exit return code

	_expansion

	SETDOS /X value

	_fg

	Foreground color at cursor position

	_ftperror

	Last FTP error code

	_hdrives

	List of the fixed drives

	_hlogfile

	Current history log file name

	_host

	Host name of local computer

	_hour

	Current hour

	_hwprofile

	Windows hardware profile if defined

	_ide

	In the IDE / debugger: 1, else 0

	_idleticks

	Milliseconds since the last user input

	_idow

	Current day of the week, local language, short

	_idowf

	Current day of the week, local language, full

	_iftp

	IFTP session active: 1, else 0

	_iftps

	IFTPS session active: 1, else 0

	_imonth

	Current month name, local language, short

	_imonthf

	Current month name, local language, full

	_ininame

	Full pathname of the current INI file

	_insert

	Current input editor state (0=overstrike, 1=insert)

	_ip

	IP address(es) of local computer.

	_isodate

	Current date in ISO 8601 format

	_isodowi

	ISO 8601 numeric day of week

	_isowdate

	ISO 8601 current week date (yyyy-Www-d)

	_isoweek

	ISO 8601 week of year

	_isowyear

	ISO 8601 week date year

	_kbhit

	Keyboard input character is waiting: 1, else 0

	_lalt

	left Alt key depressed: 1, else 0

	_lastdir

	Previous directory (from directory history)

	_lastdisk

	Last valid drive

	_lctrl

	Left Ctrl key depressed: 1, else 0

	_logfile

	Current log file name

	_lshift

	Left Shift key depressed: 1, else 0

	_minute

	Current minute

	_monitors

	Number of monitors

	_month

	Current month of the year as integer

	_monthf

	Current month of the year, English, full

	_numlock

	NumLock on: 1, else 0

	_openafs

	OpenAFS installed: 1, otherwise 0

	_osbuild

	Windows build number

	_parent

	Name of the parent process

	_pid

	TCC process ID (numeric)

	_pipe

	Current process is running in a pipe: 1, else 0

	_ppid

	Process ID of parent process

	_ralt

	Right Alt key depressed: 1, else 0

	_rctrl

	Right Ctrl key depressed: 1, else 0

	_ready

	List of accessible drives

	_registered

	Registered user name

	_row

	Current cursor row

	_rows

	Screen height

	_rshift

	Right Shift key depressed: 1, else 0

	_scrolllock

	ScrollLock on: 1, else 0

	_second

	Current second

	_selected

	Selected text in the TCC tab window

	_serialports

	Display available serial pors (COM1 - COMn)

	_service

	TCC is a service: 1, else 0

	_shell

	Shell level

	_shift

	Shift key depressed: 1, else 0

	_shortcut

	Pathname of shortcut that started this process

	_shralias

	SHRALIAS is loaded: 1, else 0

	_startpath

	Startup directory of current shell.

	_startpid

	Process ID of most recent STARTed process

	_stdin

	STDIN redirected: 0, else 1

	_stdout

	STDOUT redirected: 0, else 1

	_stderr

	STDERR redirected: 0, else 1

	_stzn

	Name of time zone for standard time

	_stzo

	Offset in minutes from UTC for standard time

	_syserr

	Latest Windows error code

	_tctabactive

	TCC is active Take Command tab window: 1; else 0

	_tcexit

	Pathname to TCEXIT.*

	_tcfilter

	Current filter in the List view window

	_tcfolder

	Selected folder in the Folders window

	_tclistview

	Selected entries in the List View window

	_tcstart

	Pathname of the active TCSTART.*

	_tctab

	Running inside Take Command: 1; else 0

	_tctabs

	Current number of Take Command tab windows

	_time

	Current time

	_transient

	Current process is a transient shell: 1, else 0

	_tzn

	Name of current time zone

	_tzo

	Offset in minutes from UTC for current time zone

	_unicode

	Shell uses unicode for redirected output: 1, else 0

	_utctime

	Current UTC time

	_utcdate

	Current UTC date

	_utcdatetime

	Current UTC date and time

	_utchour

	Current UTC hour

	_utcisodate

	Current UTC date in ISO format

	_utcminute

	Current UTC minute

	_utcsecond

	Current UTC second

	_vermajor

	TCC major version

	_verminor

	TCC minor version

	_version

	TCC version in major.minor format (i.e., 14.0)

	_virtualbox

	Running inside VirtualBox: 1; else 0

	_virtualpc

	Running inside VirtualPC: 1; else 0

	_vmware

	Running inside VMWare: 1; else 0

	_vxpixels

	Virtual screen horizontal size

	_vypixels

	Virtual screen vertical size

	_windir

	Windows directory pathname

	_winfgwindow

	Title of foreground window.

	_winname

	Name of local computer

	_winsysdir

	Windows system directory pathname

	_winticks

	Milliseconds since Windows was started

	_wintitle

	Current window title

	_winuser

	Name of current user.

	_winver

	Windows version number

	_wow64

	Running inside WOW64: 1; else 0

	_wow64dir

	System WOW64 directory

	_x64

	1 if TCC is the x64 (64-bit) version

	_xmouse

	Column of last mouse click

	_xpixels

	Physical screen horizontal size in pixels

	_xwindow

	Width of Take Command or TCC window in pixels

	_year

	Current year

	_ymouse

	Row of last mouse click

	_ypixels

	Physical screen vertical size in pixels

	_ywindow

	Height of Take Command or TCC window in pixels

Internal Variables Listed by Category

[image: Onestep] TCC status

[image: Onestep] Compatibility

[image: Onestep] Dates and times

[image: Onestep] Drives and directories

[image: Onestep] Error codes

[image: Onestep] Hardware status

[image: Onestep] Operating system and software status

[image: Onestep] Screen, color, and cursor

The list below gives a one-line description of all Internal Variables and a cross reference which selects a separate help topic on that variable. Many variables are simple enough that the one-line description is probably sufficient, but in most cases you should check for any additional information in the cross referenced explanation if you are not already familiar with a variable. You can also obtain help on any function with a HELP variablename command at the prompt. See the HELP command for details

Hardware status

	_acstatus

	AC line status

	_alt

	Alt key depressed

	_battery

	Battery status

	_batterylife

	Remaining battery life, seconds

	_batterypercent

	Remaining battery life, %

	_capslock

	CapsLock on: 1, otherwise 0

	_cpu

	CPU type

	_cpuusage

	CPU time usage (percent)

	_ctrl

	Ctrl key depressed: 1, otherwise 0

	_kbhit

	A keyboard input character is waiting: 1, otherwise 0

	_lalt

	left Alt key depressed: 1, otherwise 0

	_lctrl

	left Ctrl key depressed: 1, otherwise 0

	_lshift

	left Shift key depressed: 1, otherwise 0

	_numlock

	NumLock on:r 1, otherwise 0

	_ralt

	right Alt key depressed: 1, otherwise 0

	_rctrl

	right Ctrl key depressed: 1, otherwise 0

	_rshift

	right Shift key depressed: 1, otherwise 0

	_scrolllock

	ScrollLock on: 1, otherwise 0

	_shift

	Shift key depressed: 1, otherwise 0

Operating system and software status

	!

	Last argument of previous command

	_admin

	1 if administrator; else 0

	_ansi

	ANSI X3.64 status

	_boot

	Boot drive letter, without a colon

	_codepage

	Current code page number

	_country

	Current country code

	_dos

	Operating system type

	_dosver

	Operating system version

	_elevated

	1 if the TCC process is elevated (Vista or later only)

	_host

	Host name of local computer.

	_hwprofile

	Windows hardware profile if defined

	_idleticks

	Milliseconds since last user input

	_ip

	IP address(es) of local computer.

	_osbuild

	Windows build number

	_serialports

	Display available serial ports (COM1 - COMn)

	_tctab

	Running inside Take Command: 1; else 0

	_virtualbox

	Running inside VirtualBox: 1; else 0

	_virtualpc

	Running inside VirtualPC: 1; else 0

	_vmware

	Running inside VMWare: 1; else 0

	_windir

	Windows directory pathname

	_winfgwindow

	Title of foreground window.

	_winname

	Name of local computer

	_winsysdir

	Windows system directory pathname

	_winticks

	Milliseconds since Windows was started

	_wintitle

	Current window title

	_winuser

	Name of current user.

	_winver

	Windows version number

	_wow64

	Running in Windows x64: 1; else 0

	_wow64dir

	System WOW64 directory

	_x64

	1 if TCC is the x64 (64-bit) version

TCC status

	_4ver

	TCC version

	_batch

	Batch nesting level

	_batchline

	Line number in current batch file.

	_batchname

	Full path and filename of current batch file

	_batchtype

	Type of the current batch file

	_bdebugger

	Batch debugger active: 1, otherwise 0

	_build

	Build number

	_childpid

	Process ID of most recent child process

	_cmdline

	Current command line

	_cmdproc

	Command processor name

	_cmdspec

	Full pathname of command processor

	_consoleb

	Handle to the active console screen buffer

	_detachpid

	Process ID of most recent detached process

	_dname

	Name of the description file.

	_echo

	Echo status

	_editmode

	Default insert mode: 1; else 0

	_execarray

	Array elements assigned by the last @EXECARRAY

	_exit

	TCC exit code

	_expansion

	Current expansion mode (SETDOS /X)

	_hlogfile

	Current history log file name

	_ide

	In the IDE / debugger: 1, else 0

	_iftp

	IFTP session active: 1, otherwise 0

	_iftps

	IFTPS session active: 1, otherwise 0

	_ininame

	Full pathname of the current INI file

	_insert

	Current input editor state (0=overstrike, 1=insert)

	_logfile

	Current log file name

	_parent

	Name of the parent process

	_pid

	The TCC process ID (numeric)

	_pipe

	Current process is running in a pipe: 1, otherwise 0

	_ppid

	Process ID of parent process

	_registered

	Registered user name

	_selected

	Selected text in current tab window

	_service

	TCC is a service: 1, else 0

	_shell

	Shell level

	_shortcut

	Pathname of shortcut that started this process

	_shralias

	SHRALIAS is loaded: 1, otherwise 0

	_startpath

	Startup directory of current shell.

	_startpid

	Process ID of most recent STARTed process

	_stdin

	STDIN redirected: 0, otherwise 1

	_stdout

	STDOUT redirected: 0, otherwise 1

	_stderr

	STDERR redirected: 0, otherwise 1

	_tctabactive

	TCC is the active Take Command tab: 1, else 0

	_tcexit

	Current value of TCEXIT.*

	_tcfilter

	Current filter in List view window

	_tcfolder

	Selected folder in Folders window

	_tclistview

	Selected entries in the List View window

	_tcstart

	Current value of TCSTART.*

	_tctabs

	Current number of Take Command tab windows

	_transient

	Current process is a transient shell: 1, otherwise 0

	_unicode

	TCC uses unicode for redirected output: 1, otherwise 0

	_vermajor

	TCC major version

	_verminor

	TCC minor version

	_version

	TCC version in major.minor format (i.e., 14.0)

Screen, color, and cursor

	_bg

	Background color at cursor position

	_ci

	Current text cursor shape in insert mode

	_co

	Current text cursor shape in overstrike mode

	_column

	Current cursor column

	_columns

	Virtual screen width

	_fg

	Foreground color at cursor position

	_monitors

	Number of monitors

	_row

	Current cursor row

	_rows

	Screen height

	_selected

	Selected text in current tab window

	_vxpixels

	Virtual screen horizontal size

	_vypixels

	Virtual screen vertical size

	_xmouse

	Column of last mouse click

	_xpixels

	Physical screen horizontal size in pixels

	_xwindow

	Width of Take Command or TCC window in pixels

	_ymouse

	Row of last mouse click

	_ypixels

	Physical screen vertical size in pixels

	_ywindow

	Height of Take Command or TCC window in pixels

Drives and directories

	_afswcell

	OpenAFS workstation cell

	_cdroms

	List of CD-ROM drives

	_cwd

	Current drive and directory

	_cwds

	Current drive and directory with trailing \

	_cwp

	Current directory

	_cwps

	Current directory with trailing \

	_disk

	Current drive

	_drives

	List of all available drives

	_dvds

	List of DVD drives

	_hdrives

	List of hard (fixed) drives

	_lastdir

	Previous directory (from directory history)

	_lastdisk

	Last valid drive

	_openafs

	OpenAFS service installed: 1, otherwise 0

	_ready

	List of ready (accessible) drives

Dates and times

	_date

	Current date

	_datetime

	Current date and time, yyyyMMddhhmmss

	_day

	Current day of the month

	_dow

	Current day of the week, English, short

	_dowf

	Current day of the week, English, full

	_dowi

	Current day of the week as an integer

	_doy

	Current day of the year

	_dst

	Daylight savings time: 1, else 0

	_hour

	Current hour

	_idow

	Current day of the week, local language, short

	_idowf

	Current day of the week, local language, full

	_imonth

	Current month name, local language, short

	_imonthf

	Current month name, local language, full

	_isodate

	Current date in ISO 8601 format

	_isodowi

	ISO 8601 numeric day of week

	_isowdate

	ISO 8601 current week date (yyyy-Www-d)

	_isoweek

	ISO 8601 week of year

	_isowyear

	ISO 8601 week date year

	_minute

	Current minute

	_month

	Current month of the year as integer

	_monthf

	Current month of the year, English, full

	_second

	Current second

	_stzn

	Name of time zone for standard time

	_stzo

	Offset in minutes from UTC for standard time

	_time

	Current time

	_tzn

	Name of current time zone

	_tzo

	Offset in minutes from UTC for current time zone

	_utctime

	Current UTC time

	_utcdate

	Current UTC date

	_utcdatetime

	Current UTC date and time

	_utchour

	Current UTC hour

	_utcisodate

	Current UTC date in ISO format

	_utcminute

	Current UTC minute

	_utcsecond

	Current UTC second

	_year

	Current year

Error codes

	?

	Exit code, last external program

	_?

	Exit code, last internal command

	errorlevel

	Exit code, last external program

	_execstr

	Last @EXECSTR return code

	_ftperror

	Last FTP error code

	_syserr

	Latest Windows error code

Compatibility

	=

	Substitutes the TCC escape character

	+

	Substitutes command separator

	Command Variables	Not in LE

Most of the TCC file handling commands set internal variables with their results (for example, the number of files processed and the number of errors). See the help for the specific command for more details on the variables.

_attrib_dirs

_attrib_errors

_attrib_files

_copy_dirs

_copy_errors

_copy_files

_del_dirs

_del_errors

_del_files

_dir_dirs

_dir_errors

_dir_files

_do_dirs

_do_errors

_do_files

_do_loop

_ffind_errors

_ffind_files

_ffind_matches

_for_errors

_for_files

_head_errors

_head_files

_md_dirs

_md_errors

_mklink_errors

_mklink_links

_mklnk_errors

_mklnk_links

_move_dirs

_move_errors

_move_files

_pdir_dirs

_pdir_errors

_pdir_files

_rd_dirs

_rd_errors

_ren_dirs

_ren_errors

_ren_files

_sync_dirs

_sync_errors

_sync_files

_tail_errors

_tail_files

_tar_errors

_tar_files

_touch_dirs

_touch_errors

_touch_files

_type_errors

_type_files

_untar_errors

_untar_files

_unzip_errors

_unzip_files

_zip_errors

_zip_files

_zipsfx_errors

_zipsfx_files

! (Variable)

! returns the last argument of the previous command. The command is retrieved from the history list, so this will not work in a batch file -- it's intended for aliases and command line work.

? (variable)

If an external command (i.e., a program) has an exit code, its value is stored in the ? variable when the program terminates. Additionally. some internal commands, e.g., DIR - to emulate Microsoft's CMD - also set this variable to the same value they set the variable _?, an action which destroys the code from the last external command.

To insure that you use the exit code from the external command you want to check, not that of a subsequent internal or external command, it is best to save the value of ? in another variable immediately on completion of the external command of interest, and use that variable instead. We also strongly recommend that for internal commands you query the _? variable instead.

Not all programs return an exit code. If a program does not explicitly return an exit code, the value of %? is undefined.

Alternate name: ERRORLEVEL.

See also: _?

_? variable

_? contains the exit code of the last internal command. You must use or save this value immediately, because it is set by every internal command, including the one used to save it.

Result codes:

	0	command was successful

	1	a usage error occurred

	2	another TCC error or an operating system error occurred

	3	the command was interrupted by Ctrl-C or Ctrl-Break

This variable can also be set in a subroutine by the RETURN command.

Note that in imitation of CMD some internal commands, e.g., DIR, also set the variables ? and ERRORLEVEL to the same value they set this variable. However, you are strongly urged to use this variable.

See also: ?

= (pseudovariable)

= is the current Escape character. Use this pseudovariable, instead of the actual escape character, if you want your batch files and aliases to work in other users' environment regardless of how the escape character is defined.

+ (pseudovariable)

+ is the current command separator. Use this pseudovariable, instead of the actual command separator, if you want your batch files and aliases to work in other users' environment regardless of how the command separator is defined.

WARNING: %+ should always be surrounded by spaces.

For example, if the command separator is an ampersand [&] (the default in TCC) both of the commands below will display "Hello" on one line and "world" on the next. However, if the command separator has been changed the first command will display "Hello & echo world", while the second command will continue to work as intended.

echo Hello & echo world

echo Hello %+ echo world

_4VER

_4VER returns the current TCC version (for example, 15.0). The current Decimal character is used to separate the major and minor version numbers.

See also: _BUILD.

	_ACSTATUS	Not in LE

_ACSTATUS returns the AC line status.

	value

	meaning

	0

	Offline

	1

	Online

	unknown

	Unknown

	_ADMIN	Not in LE

_ADMIN returns 1 if the current user is an administrator in the local group.

See also _ELEVATED.

	_AFSWCELL	Not in LE

_AFSWCELL returns the OpenAFS workstation cell.

See http://www.openafs.org for more information on OpenAFS.

_ALT

_ALT returns the status of the Alt key:

	value

	status of selected key

	1

	at least one Alt key is depressed

	0

	neither is depressed

_ANSI

_ANSI returns 1 if the internal TCC support for ANSI Std. X3.64 is enabled, or 0 if it is not.

_BATCH

_BATCH returns the current batch file nesting level. It is 0 if no batch file is currently being processed.

Batch files are nested with the internal CALL command.

_BATCHLINE

_BATCHLINE returns the current line number in the current batch file. It is -1 if no batch file is active.

The first line in the batch file is numbered 1.

_BATCHNAME

_BATCHNAME returns the full path and file name of the current batch file. It is an empty string if no batch file is active.

	_BATCHTYPE	Not in LE

_BATCHTYPE returns the file type of the current batch file:

	value

	meaning

	-1

	not in a batch file

	0

	normal

	1

	compressed

	2

	encrypted

	_BATTERY	Not in LE

_BATTERY returns the battery charge status:

	value

	meaning

	1

	High

	2

	Low

	4

	Critical

	8

	Charging

	128

	No battery

	unknown

	Unknown

	_BATTERYLIFE	Not in LE

_BATTERYLIFE returns either the number of seconds of battery life remaining, or unknown.

	_BATTERYPERCENT	Not in LE

_BATTERYPERCENT returns the percentage of battery charge remaining (0...100), or unknown.

	_BDEBUGGER	Not in LE

_BDEBUGGER returns 1 if the batch debugger is actively debugging a file, or 0 if it is not.

_BG

_BG returns a string containing the first three characters of the current background screen output color (for example, Bla). See Colors, Color Names and Codes for details.

_BOOT

_BOOT returns the boot drive letter, without a colon.

_BUILD

_BUILD returns the internal TCC build number.

See also: _4VER.

_CAPSLOCK

_CAPSLOCK returns the current state of the Caps Lock key on the keyboard:

	value

	toggled status

	1

	ON

	0

	OFF

	_CDROMS	Not in LE

_CDROMS returns a space-delimited list of the CD-ROM drives on the system.

	_CHILDPID	Not in LE

_CHILDPID returns the process ID of the most recent child process.

_CI

_CI returns the insert mode cursor shape, as a percentage (0 to 100).

See also SETDOS /S and the Insert Cursor configuration option.

_CMDLINE

_CMDLINE returns the current command line. (This is most useful in key aliases.) If you specify it on the command line, it is expanded to the contents of the command line (not including the %_cmdline variable itself).

Example:

echo one two three %_cmdline

will return:

one two three echo one two three

_CMDPROC

_CMDPROC returns the name of the current command processor (TCC or TCCLE).

_CMDSPEC

_CMDSPEC returns the full pathname of the command processor.

_CO

_CO returns the overstrike mode cursor shape, as a percentage (0 to 100).

See also SETDOS /S and the Overstrike Cursor configuration option.

_CODEPAGE

_CODEPAGE returns the input code page used by the TCC console.

See also CHCP.

_COLUMN

_COLUMN is the current cursor column. The leftmost column is numbered 0.

See also _COLUMNS, _ROW, and _ROWS.

_COLUMNS

_COLUMNS returns the current number of virtual screen columns (for example, 80).

See Resizing the Take Command Window for additional details on the virtual screen width.

See also _COLUMN, _ROW, and _ROWS.

	_CONSOLEB	Not in LE

_CONSOLEB returns the handle to the active console screen buffer.

See also @CONSOLEB.

	_CONSOLEPIDS	Not in LE

_CONSOLEPIDS returns a space-delimited list of the process IDs of all processes attached to this console.

_COUNTRY

_COUNTRY returns the current country code as reported by the operating system. This code is usually the same as the international dialing code for the country.

	_CPU	Not in LE

_CPU returns the CPU type:

		

	486	i486

	586	Pentium family

etc.

This variable merely queries Windows for the processor type. Compatible AMD or other processors will generally return the value corresponding to the Intel processor they most closely resemble.

_CPU is obsolete. To determine the CPU type, revision, stepping level, and other details, use the @WININFO or @WMI functions.

	_CPUUSAGE	Not in LE

_CPUUSAGE returns the current CPU usage, as a percent (0 to 100).

_CTRL

_CTRL returns the status of the Ctrl keys:

	value

	status of selected key

	1

	at least one Ctrl key is depressed

	0

	neither is depressed

_CWD

_CWD returns the current working directory, in the format d:\pathname. If the current working directory is a root directory, the format is d:\.

See also _CWDS, _CWP, _CWPS, @CWD, and @CWDS.

_CWDS

_CWDS returns the current working directory in the format d:\pathname\.

See also _CWD, _CWP, _CWPS, @CWD, and @CWDS.

_CWP

_CWP returns the current working directory in the format \pathname (without the drive letter).

See also _CWD, _CWDS, _CWPS, @CWD, and @CWDS.

_CWPS

_CWPS returns the current working directory in the format \pathname\ (without the drive letter).

See also _CWD, _CWDS, _CWP, @CWD, and @CWDS.

_DATE

_DATE returns the current system date, in the format determined by your country settings. The year will be in two-digit format for compatibility unless your country setting is yyyy-mm-dd.

See also _ISODATE.

_DATETIME

_DATETIME returns the current date and time in the format yyyyMMddhhmmss. The date part is the same as _isodate without separators.

For the current UTC time, see _UTCDATETIME.

_DAY

_DAY returns the current day of the month (1 to 31).

	_DETACHPID	Not in LE

_DETACHPID returns the process ID of the most recent process launched by the DETACH command.

_DISK

_DISK returns the current disk drive letter, without a colon (for example, C).

If the current directory is a UNC, %_disk will return the share name.

_DNAME

_DNAME returns the name of the file used to store file descriptions. It can be changed with the Description Filename configuration option, or the SETDOS /D command.

_DOS

_DOS returns the operating system type. Take Command returns a different value depending on the operating system, as follows:

	Platform

	Take Command

	 Windows XP

	WINXP

	 Windows 2003

	WIN2003

	Windows Vista

	WINVISTA

	Windows 2008 Server

	WIN2008

	Windows 7

	WINDOWS7

	Windows 8

	WINDOWS8

	Windows 2012 Server

	WIN2012

This variable is useful if you have batch files running in more than one environment, and need to take different actions depending on the underlying operating environment or command processor. See also the _WINVER variable.

_DOSVER

_DOSVER returns the current operating system version. The current Decimal character is used to separate the major and minor version numbers.

_DOW

_DOW returns the first three characters of the name of the current day of the week (Mon, Tue, Wed, etc.).

_DOW returns the English name for the day of the week. For a localized version, see _IDOW.

_DOWF

_DOWF returns the full name of the day of the week for the current date (Monday, Tuesday, etc.).

_DOWF returns the English name for the day of the week. For a localized version, see _IDOWF.

_DOWI

_DOWI returns the current day of the week as an integer (1 = Sunday, 2 = Monday, etc.).

_DOY

_DOY returns the current day of the year (1 to 366).

_DRIVES

_DRIVES returns a space-delimited list of the existing drives in the format:

A: C: D: E:

_DRIVES only checks to see if the drive exists, not whether it is ready.

	_DST	Not in LE

_DST returns 1 if daylight savings time is in effect, or 0 if it is not.

	_DVDS	Not in LE

_DVDS returns a space-delimited list of the DVD drives on the system.

_ECHO

_ECHO returns the current echo state (0=off, 1=on). There are two ECHO states, one for the command line and one for batch files (see the ECHO command and the Batch Echo configuration option). The value returned by the _ECHO variable reflects the state applicable at the time the variable is queried.

	_EDITMODE	Not in LE

_EDITMODE returns 0 if the line editor is in overstrike mode, or 1 if it is in insert mode.

	_ELEVATED	Not in LE

_ELEVATED returns 1 if the TCC process is elevated. (Windows Vista and later only.)

	_EXECARRAY	Not in LE

_EXECARRAY returns the number of array elements assigned by the last @EXECARRAY function.

_EXECSTR

_EXECSTR returns the integer return code of the last @EXECSTR function.

_EXIT

_EXIT returns the reason for exiting TCC. The possible values are:

0 EXIT command

2 CLOSE_EVENT

5 LOGOFF_EVENT

6 SHUTDOWN_EVENT

_EXPANSION

_EXPANSION returns the current expansion mode (i.e., SETDOS /X). It returns the string 0 if everything is enabled, or a string of up to 9 characters of the disabled modes.

For example, if you disable nested variable expansion and redirection:

setdos /x-46

then %_expansion will return 46.

_FG

_FG returns a string containing the first three letters of the current foreground screen output color (for example, "Whi"). See Colors, Color Names and Codes for details.

	_FTPERROR	Not in LE

_FTPERROR returns the error code of the last error reported by FTP. Some of the possible codes are:

	101	You cannot change the remote host at this time

	102	The remote host address is invalid

	118	Firewall error

	141	FTP protocol error

	142	Communication error

	143	Busy performing current action

	144	Local file error

	145	Can't open local file for reading

	146	No remote file specified while uploading

	147	Data interface error

	301	Operation interrupted

	302	Can't open local file

	311	Accept failed for data connection

	312	Asynchronous select failed for data connection

	11001	Host not found

	11002	Non-authoritative 'Host not found'

	11003	Non-recoverable errors: FORMERR, REFUSED, NOTIMP

	11104	Valid name, no data record (check DNS setup)

	_HDRIVES	Not in LE

_HDRIVES returns a space-delimited list of the hard (fixed) drives on the system.

_HLOGFILE

_HLOGFILE returns the name of the current history log file (or an empty string if LOG /H is OFF). See LOG for information on history logging.

	_HOST	Not in LE

_HOST returns the host name for the local computer.

_HOUR

_HOUR returns the current hour (0 - 23) in local time.

For the current UTC time, see _UTCHOUR.

	_HWPROFILE	Not in LE

_HWPROFILE returns the name of the current Windows hardware profile.

	_IDE	Not in LE

_IDE returns 1 when in the IDE / batch debugger, or 0 if not.

See also BDEBUGGER.

	_IDLETICKS	Not in LE

_IDLETICKS returns the number of milliseconds since the last user input.

_IDOW

_IDOW returns the 3-character abbreviation for the day of the week for the current date, in the current locale language.

See _DOW for the English language only version.

_IDOWF

_IDOWF returns the full name for the day of the week for the current date, in the current locale language.

For the English language only version, see _DOWF.

	_IFTP	Not in LE

_IFTP returns 1 if an IFTP session is active, 0 if it is not.

	_IFTPS	Not in LE

_IFTPS returns 1 if an SSL IFTP session is active, 0 if it is not.

_IMONTH

_IMONTH returns the abbreviated name for the current month, in the current locale language.

_IMONTHF

_IMONTHF returns the full name for the current month, in the current locale language.

_ININAME

_ININAME returns the fully qualified pathname of the INI file used by the current shell.

_INSERT

_INSERT returns 0 if the line editor is currently in overstrike mode, or 1 if it is in insert mode.

See also _EDITMODE.

	_IP	Not in LE

_IP returns the IP address of the local computer. If the computer has more than one NIC, _IP returns a space-delimited list of all IP addresses.

_ISODATE

_ISODATE returns the current local system date, in ISO 8601 format (yyyy-mm-dd).

See also _DATE and _DATETIME.

	_ISODOWI	Not in LE

_ISODOWI returns the ISO 8601 numeric day of the week (Monday=1, Sunday=7).

	_ISOWDATE	Not in LE

_ISOWDATE returns the ISO 8601 current week date (yyyy-Www-d).

	_ISOWEEK	Not in LE

_ISOWEEK returns the ISO 8601 week of year.

	_ISOWYEAR	Not in LE

_ISOWYEAR returns the ISO 8601 week date year.

_KBHIT

_KBHIT returns 1 if one or more keystrokes are waiting in the keyboard buffer, or 0 if the keyboard buffer is empty.

_LALT

_LALT returns the status of the left Alt key on the keyboard:

	value

	key status

	1

	depressed

	0

	not depressed

See also _ALT and _RALT.

	_LASTDIR	Not in LE

_LASTDIR returns the previous directory (from the directory history).

_LASTDISK

_LASTDISK returns the last valid drive letter (without a colon).

_LCTRL

_LCTRL returns the status of the Left Ctrl key on the keyboard:

	value

	key status

	1

	depressed

	0

	not depressed

See also _CTRL and _RCTRL.

_LOGFILE

_LOGFILE returns the name of the current log file (or an empty string if LOG is OFF). See LOG for information on logging.

_LSHIFT

_LSHIFT returns the status of the left shift key on the keyboard:

	value

	key status

	1

	depressed

	0

	not depressed

See also _SHIFT and _RSHIFT.

_MINUTE

_MINUTE returns the current minute (0 - 59).

For the current UTC time, see _UTCMINUTE.

	_MONITORS	Not in LE

_MONITORS returns the number of video displays.

_MONTH

_MONTH returns the current numeric month of the year (1 to 12).

_MONTHF

_MONTHF returns the full name of the current month (January, February, etc.).

_NUMLOCK

_NUMLOCK reports the current state of the Num Lock key:

	value

	toggled status

	1

	ON

	0

	OFF

	_OPENAFS	Not in LE

_OPENAFS returns 1 if the OpenAFS service is active, 0 if it is not.

See http://www.openafs.org for more information on OpenAFS.

_OSBUILD

_OSBUILD returns the Windows build number. The build number does not include the major or minor version.

_PARENT

_PARENT returns the name of the parent process (the process that started TCC).

	_PID	Not in LE

_PID returns the process ID number for the current TCC process.

_PIPE

_PIPE returns 1 if the current process is running inside a pipe, and 0 otherwise.

	_PPID	Not in LE

_PPID returns the process ID number of the parent process.

_RALT

_RALT returns the status of the right Alt key on the keyboard:

	value

	key status

	1

	depressed

	0

	not depressed

See also _ALT and _LALT.

_RCTRL

_RCTRL returns the status of the right Ctrl key on the keyboard:

	value

	key status

	1

	depressed

	0

	not depressed

See also _CTRL and _LCTRL.

	_READY	Not in LE

_READY returns a space-delimited list of the currently ready (accessible) drives in the format :

C: D: E:

	_REGISTERED	Not in LE

_REGISTERED returns the registered name of the user or an empty string if Take Command isn't registered.

_ROW

_ROW returns the current cursor row (for example, 0 for the top of the window).

_ROWS

_ROWS returns the current number of screen rows in the TCC window (for example, 25).

_RSHIFT

_RSHIFT returns the status of the right Shift key on the keyboard:

	value

	key status

	1

	depressed

	0

	not depressed

See also _SHIFT and _LSHIFT.

	_RUBYTYPE	Not in LE

_RUBYTYPE returns the type of the Ruby VALUE returned by the last @RUBY call.

	_RUBYVALUE	Not in LE

_RUBYVALUE returns the Ruby VALUE returned by the last @RUBY call.

_SCROLLLOCK

_SCROLLLOCK reports the current scroll lock state, which can be toggled using the scroll lock key:

	value

	toggled status

	1

	ON

	0

	OFF

_SECOND

_SECOND is the current second (0 - 59).

For the current UTC time, see _UTCSECOND.

	_SELECTED	Not in LE

_SELECTED returns the first line of text highlighted in the Take Command tab window. If no text has been highlighted, _SELECTED returns an empty string.

	_SERIALPORTS	Not in LE

_SERIALPORTS returns a space-delimited list of all of the available serial ports (COM1 - COMn). If there are no serial ports on the system, _SERIALPORTS returns an empty string.

	_SERVICE	Not in LE

_SERVICE returns 1 if TCC was started as a service (TCC /N).

_SHELL

_SHELL is the current shell number. _SHELL will return 0 for a primary shell, or 1 (or higher) for a TCC shell instance started by a parent TCC process (either directly or via a pipe).

Note that the concept of shell numbers is now mostly obsolete in Windows.

_SHIFT

_SHIFT is the status the two Shift keys:

	value

	status of selected key

	1

	at least one is depressed

	0

	neither is depressed

	_SHORTCUT	Not in LE

_SHORTCUT returns the full pathname of the shortcut file that started this process. If the process was not started from a shortcut, _SHORTCUT returns an empty string.

_SHRALIAS

_SHRALIAS returns 1 if SHRALIAS is loaded, 0 if it is not.

_STARTPATH

_STARTPATH returns the startup directory for the current TCC shell. (This is not necessarily the same as the location of the TCC executable!)

	_STARTPID	Not in LE

_STARTPID returns the process ID of the most recent process launched by the START command.

	_STDIN	Not in LE

_STDIN returns 1 if STDIN points to the console, or 0 if it has been redirected.

	_STDOUT	Not in LE

_STDOUT returns 1 if STDOUT points to the console, or 0 if it has been redirected.

	_STDERR	Not in LE

_STDERR returns 1 if STDERR points to the console, or 0 if it has been redirected.

	_STZN	Not in LE

_STZN returns the name of standard time in the current time zone.

See also _STZO, _TZN, and _TZO.

	_STZO	Not in LE

_STZO returns the offset in minutes from UTC for standard time in the current time zone.

See also _STZN, _TZN, and _TZO.

_SYSERR

_SYSERR returns the error code of the last Windows system error.

See the Windows System Errors table in the Reference section for examples.

_TCCVER

_TCCVER returns the current TCC version (for example, 15.0). The current Decimal character is used to separate the major and minor version numbers.

See also: _BUILD.

_TCEXIT

_TCEXIT returns the full pathname of the TCEXIT.* file, or an empty string if TCC can't find TCEXIT.

Note that the string returned by _TCEXIT can change before TCEXIT is actually executed. (For example, if you modify the TCMD.INI settings.)

_TCFILTER

_TCFILTER returns the current filter in the Take Command List view window if TCC is running in a tab window, or an empty string if it is not.

_TCFOLDER

_TCFOLDER returns the selected folder in the Take Command Folders window if TCC is running in a tab window, or an empty string if it is not.

_TCLISTVIEW

_TCLISTVIEW returns the selected entries in the Take Command List View window if TCC is running in a tab window, or an empty string if it is not.

_TCSTART

_TCSTART returns the full pathname of the TCSTART.* file, or an empty string if TCC didn't find TCSTART.

_TCTAB

_TCTAB returns 1 if this TCC process is running in a Take Command tab window, or 0 if it is not.

	_TCTABACTIVE	Not in LE

_TCTABACTIVE returns 1 if this TCC instance is the active tab in Take Command.

	_TCTABS	Not in LE

_TCTABS returns the current number of Take Command tab windows (or 0 if TCC is not running in Take Command).

_TIME

_TIME returns the current system time in the format hh:mm:ss. The separator character may vary depending upon your country information.

_TRANSIENT

_TRANSIENT returns 1 if the current shell is transient (started with a /C, see Command Line Options for details), or 0 otherwise.

	_TZN	Not in LE

_TZN returns the name of the current time zone.

See also _STZN, _STZO, and _TZO.

	_TZO	Not in LE

_TZO returns the offset in minutes from UTC for the current time zone.

See also _STZN, _STZO, and _TZN.

	_UNICODE	Not in LE

_UNICODE returns 1 if the shell is currently using Unicode for redirected output, 0 otherwise.

	_UTCDATE	Not in LE

_UTCDATE returns the current UTC date in the user's default format.

	_UTCDATETIME	Not in LE

_UTCDATETIME returns the current UTC date and time.

For the local time, see _DATETIME.

	_UTCHOUR	Not in LE

_UTCHOUR returns the current UTC hour.

For the local time, see _HOUR.

	_UTCISODATE	Not in LE

_UTCISODATE returns the current UTC date in ISO format (yyyy-mm-dd).

For the current local date, see _ISODATE.

	_UTCMINUTE	Not in LE

_UTCMINUTE returns the current UTC minute.

For the current local time, see _UTCMINUTE.

	_UTCSECOND	Not in LE

_UTCSECOND returns the current UTC second.

For the current local time, see _SECOND.

	_UTCTIME	Not in LE

_UTCTIME returns the current UTC time.

See _TIME to retrieve the current local time.

	_VERMAJOR	Not in LE

_VERMAJOR returns the TCC major version number (i.e., 10).

	_VERMINOR	Not in LE

_VERMINOR returns the TCC minor version number (the tenths or hundredths digit).

For example, for Take Command 14.01, _VERMINOR will return 1.

	_VERSION	Not in LE

_VERSION returns the TCC version in major.minor format (i.e., 14.0).

	_VIRTUALBOX	Not in LE

_VIRTUALBOX returns 1 if TCC is running inside a VirtualBox virtual machine.

	_VIRTUALPC	Not in LE

_VIRTUALPC returns 1 if TCC is running inside a VirtualPC virtual machine. (Not supported in x64 TCC.)

	_VMWARE	Not in LE

_VMWARE returns 1 if TCC is running inside a VMWare virtual machine. (Not supported in x64 TCC.)

	_VOLUME	Not in LE

_VOLUME returns the current volume level of the default audio device.

	_VXPIXELS	Not in LE

_VXPIXELS returns the horizontal size of the virtual screen (including multiple monitors) in pixels.

	_VYPIXELS	Not in LE

_VYPIXELS returns the vertical size of the virtual screen (including multiple monitors) in pixels.

_WINDIR

_WINDIR returns the pathname of the Windows directory.

_WINFGWINDOW

_WINFGWINDOW returns the title of the foreground window.

_WINNAME

_WINNAME returns the computer name of the current system.

_WINSYSDIR

_WINSYSDIR returns the pathname of the Windows system directory.

	_WINTICKS	Not in LE

_WINTICKS returns the number of milliseconds since Windows was started.

	_WINTITLE	

_WINTITLE returns the title of the current window.

_WINUSER

_WINUSER returns the name of the user currently logged on.

_WINVER

_WINVER returns the current Windows version number. The current Decimal character is used to separate the major and minor version numbers.

	_WOW64	Not in LE

_WOW64 returns 1 if TCC is running in the WOW64 environment (64-bit Windows). Note that this only applies to the 32-bit version of TCC. If you want to know if you're running TCC x64, see %_X64.

	_WOW64DIR	Not in LE

_WOW64DIR returns the system Wow64 directory (x64 Windows only).

_X64

_X64 returns 1 if TCC is the x64 (64-bit) version running on a 64-bit version of Windows.

	_XMOUSE	Not in LE

_XMOUSE returns the column position of the most recent left mouse click. (Note that this will only work in a Take Command tab window, or if you have enabled the console mouse in a stand-alone TCC session.)

_XPIXELS

_XPIXELS returns the number of horizontal pixels on the current physical display.

See also _YPIXELS.

	_XWINDOW	Not in LE

_XWINDOW returns the width of the Take Command or TCC window in pixels.

_YEAR

_YEAR returns the current year (1980 to 2099).

	_YMOUSE	Not in LE

_YMOUSE returns the row position of the most recent left mouse click. (Note that this will only work in a Take Command tab window, or if you have enabled the console mouse in a stand-alone TCC session.)

_YPIXELS

_YPIXELS returns the number of vertical pixels on the current physical display.

See also _XPIXELS.

	_YWINDOW	Not in LE

_YWINDOW returns the height of the Take Command or TCC window in pixels.

ERRORLEVEL

ERRORLEVEL is an alternate name (included for compatibility with CMD) for the ? variable, and is the exit code of the last external command. Many programs return 0 to indicate success and a non-zero value to signal an error. However, not all programs return an exit code. If no explicit exit code is returned, the value of ERRORLEVEL is undefined.

WARNING: For compatibility with CMD, some internal commands, e.g., DIR, also set this variable to the same value as the variable _?, which destroys the code from the last external command. If you need to preserve the return value of the external command, save the value in a variable immediately upon command completion, and use the saved variable instead. We also strongly recommend that for internal commands you query the _? variable instead.

See also _?

Functions

Variable functions are very similar to internal variables, but they take one or more parameters (which can be environment variables or even other variable functions).

Variable functions are useful at the command prompt as well as in aliases and batch files to check on available system resources, manipulate strings and numbers, and work with files and filenames.

The variable functions built into TCC are listed in alphabetical order in subsequent topics. You can also obtain help from the command prompt on any function with a HELP @functionname command, or by pressing Ctrl-F1 when the cursor is on the function name. See the HELP command for details

Note: The FUNCTION command can be used to create, edit, or display user-defined variable functions, and the UNFUNCTION to delete them.

For a list of Variable Functions organized by general categories of use, see Variable Functions by Category.

Syntax

To have either a user-defined or a built-in variable function evaluated, its name must be preceded by a percent sign % (%@EVAL, %@LEN, etc.). All variable functions must have square brackets [] enclosing their parameter(s), if any. No space is allowed between the function name and the [. The combined parameters of a variable function may not exceed 32,767 characters.

Memory Size / Disk Space / File Size Units and Report Format

Some variable functions, such as @DISKFREE, accept an optional parameter scale code. These functions return a size of a disk or of an entity on the disk as a multiple of the specified scale factor from the table below. Lower case letters denote a power of 1,000, upper case letters a power of 1,024.

	Code

	Scale Factor

	Code

	Scale Factor

	Unit Name

	b

	1

	

	B

	1

	

	byte

	k

	1,000

	10**3

	K

	1,024

	2**10

	kilobyte

	m

	1,000,000

	10**6

	M

	1,048,576

	2**20

	megabyte

	g

	1,000,000,000

	10**9

	G

	1,073,741,824

	2**30

	gigabyte

	t

	1,000,000,000,000

	10**12

	T

	1,099,511,627,776

	2**40

	terabyte

	p

	1,000,000,000,000,000

	10**15

	P

	1,125,899,906,842,624

	2**50

	petabyte

	e

	1,000,000,000,000,000,000

	10**18

	E

	1,152,921,504,606,846,976

	2**60

	exabyte

You can include commas (or the thousands separator) in the value returned from a function by appending the letter c to the scale code. For example, to add commas to a b (number of bytes) result, enter bc as the parameter, i.e.:

echo %@DISKFREE[C,bc]

Notes

	1)	Disk manufacturers use the prefixes adopted from the metric system (kilo, mega, giga, tera) in their original meaning (powers of 1,000), while memory manufacturers and Microsoft use the slightly larger powers of 1,024 (2**10).

	2)	The scale code is one of the few instances in which TCC is case sensitive.

Date Parameter Format

See the Date Formats topic.

File Name Parameters

Filenames passed as variable function parameters must be enclosed in double quotes if they contain white space or special characters. Several functions also return filenames or parts of filenames. On LFN drives, the strings returned by these functions may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. For example (either of these methods would work):

set fname="%@findfirst[pro*]"

echo First PRO file contains:

type %fname

.....

set fname=%@findfirst[pro*]

echo First PRO file contains:

type "%fname"

.....

If you don't use the quotes in the SET or TYPE command in this example, TYPE will not interpret white space or special characters in the name properly.

Drive Letter Parameters

In variable functions which take a drive letter as a parameter, like @DISKFREE or @READY, the drive letter must be followed by a colon. The function will not work properly if you use the drive letter without the colon.

Functions Accessing File Handles

The @FILEREAD, @FILEWRITE, @FILEWRITEB, @FILESEEK, @FILESEEKL, and @FILECLOSE functions allow you to access files based on their file handle. These functions must be used only with file handles returned by @FILEOPEN, unless otherwise noted under the individual functions. If you use them with any other file handle you may damage files.

File Attributes

Several functions accept a file attribute string to help determine which files to process. The rules for constructing the attribute string are the same as the ones for Attribute Switches in commands.

Examples

You can use variable functions in a wide variety of ways depending on your needs. Here are a couple of examples to give you an idea of what's possible:

The command below sets the prompt to show the amount of free memory (see PROMPT for details on including variable functions in your prompt):

prompt (%%@dosmem[K]K) pg

Set up a simple command line calculator. The calculator is used with a command such as CALC 3 * (4 + 5):

alias calc `echo The answer is: %@eval[%$]`

	Variable Functions Listed by Name

		A B C D E F G H I L M N O P Q R S T U V W Y

See also Functions by Category.

	@ABS

	Absolute value of number

	@AFSCELL

	OpenAFS cell name

	@AFSMOUNT

	OpenAFS mount point

	@AFSPATH

	Path in OpenAFS: 1, otherwise 0

	@AFSSYMLINK

	OpenAFS symbolic link

	@AFSVOLID

	OpenAFS volume ID

	@AFSVOLNAME

	OpenAFS volume name

	@AGEDATE

	Converts an age into date and time

	@ALIAS

	Value of an alias

	@ALTNAME

	Short name for the file

	@ASCII

	Set of ASCII-s for characters in string

	@ARRAYINFO

	Array variable information

	@ASSOC

	File association

	@ATTRIB

	Test or return file attributes

	@AVERAGE

	Average of a list of numbers

	@B64DECODE

	Decode Base64 file or string

	@B64ENCODE

	Encode file or string as Base64

	@BALLOC

	Allocate a binary buffer

	@BFREE

	Free a binary buffer

	@BPEEK

	Read a value from a binary buffer

	@BPEEKSTR

	Read a string from a binary buffer

	@BPOKE

	Write a value to a binary buffer

	@BPOKESTR

	Write a string to a binary buffer

	@BREAD

	Read from a file to a binary buffer

	@BWRITE

	Write from a binary buffer to a file

	@CAPI

	Call a _cdecl function in a DLL

	@CAPS

	Capitalize first character of each word

	@CDROM

	CD-ROM drive: 1, otherwise 0

	@CEILING

	Smallest integer not less than a number

	@CHAR

	Character string, given a set of ASCII-s

	@CLIP

	Specified line from clipboard

	@CLIPW

	Write string to the clipboard

	@COLOR

	RGB value of a color

	@COMMA

	Insert commas into a number (thousands separators)

	@COMPARE

	Two files are identical: 1, otherwise 0

	@CONSOLE

	Identify console sessions

	@CONSOLEB

	Create or restore a console screen buffer

	@CONVERT

	Convert value from input base to output base

	@COUNT

	Number of times a character appears in a string

	@CRC32

	File CRC

	@CWD

	Current Working Directory of specified drive

	@CWDS

	Current Working Directory of specified drive, with trailing backslash

	@DATE

	Convert date to number of days

	@DATECONV

	Convert date to another format

	@DAY

	Day of month for date

	@DEBUG

	Write a string to the debugger

	@DEC

	Decrement a numeric value by 1

	@DECIMAL

	Decimal portion of a number

	@DESCRIPT

	File description

	@DEVICE

	Character device: 1, otherwise 0

	@DIGITS

	String is all digits: 1, otherwise 0

	@DIRSTACK

	Directory stack entry

	@DISKFREE

	Free disk space

	@DISKTOTAL

	Total disk space

	@DISKUSED

	Used disk space

	@DOMAIN

	Domain name of a computer

	@DOW

	Short name of day of week for date

	@DOWF

	Full name of day of week for date

	@DOWI

	Day of week number for date

	@DOY

	Day of year for date

	@DRIVETYPE

	Type of a drive

	@DRIVETYPEEX

	Type of a drive

	@ENUMSERVERS

	Identify server names on a network

	@ENUMSHARES

	Identify sharenames on a server

	@ERRTEXT

	Windows error description

	@EVAL

	Arithmetic calculations

	@EXEC

	Execute a command and return its exit code

	@EXECARRAY

	Execute a command and store the results in an array variable

	@EXECSTR

	Execute a command and return the first output line

	@EXETYPE

	Application type

	@EXPAND

	All names that match filename

	@EXT

	File extension

	@FIELD

	Extract a field from a string

	@FIELDS

	Count fields in a string

	@FILEAGE

	File age (date and time)

	@FILEARRAY

	Read a file into an array

	@FILECLOSE

	Close a file handle

	@FILEDATE

	File date

	@FILEHANDLE

	Returns the filename for a handle

	@FILENAME

	File name and extension

	@FILEOPEN

	Open a file handle

	@FILEREAD

	Read next line from a file

	@FILEREADB

	Read bytes from a file

	@FILES

	Number of files matching a wildcard

	@FILESEEK

	Move a file handle pointer to specified file position

	@FILESEEKL

	Move a file handle pointer to a specified line

	@FILESIZE

	Total size of files matching a wildcard

	@FILETIME

	File time

	@FILEWRITE

	Write next line to a file

	@FILEWRITEB

	Write data to a file

	@FILTER

	Removes non-matching characters from a string

	@FINDCLOSE

	Closes the search handle.

	@FINDFIRST

	Find first matching file

	@FINDNEXT

	Find next matching file

	@FLOOR

	Largest integer not larger than a number

	@FOLDERS

	Number of folders

	@FORMAT

	Formats data string according to format string

	@FORMATN

	Format a numeric value

	@FORMATNC

	Format a numeric value and insert the thousands separator(s)

	@FSTYPE

	File system type (FAT, NTFS, CDFS, etc.)

	@FTYPE

	Open command string for file type

	@FULL

	Full file name with path

	@FUNCTION

	Definition of a function

	@GETDATE

	Select a date from a calendar

	@GETDATETIME

	Select a date and/or time from a date picker

	@GETDIR

	Prompt for a directory name.

	@GETFILE

	Prompt for a path and file name.

	@GETFOLDER

	Folder name from tree view.

	@GROUP

	User is member of group: 1, otherwise 0

	@HEXDECODE

	Decode hexadecimal file or string

	@HEXENCODE

	Encode file or string as hexadecimal

	@HISTORY

	A line or word from the command history

	@HTMLDECODE

	Decode an HTML escaped string

	@HTMLENCODE

	Encode a string for HTML

	@IDOW

	Short local name of day of week for date

	@IDOWF

	Full local name of day of week for date

	@IF

	Evaluates a conditional expression

	@INC

	Increment a numeric value by 1

	@INDEX

	Offset of string2 within string1

	@INIREAD

	Return an entry from an .INI file

	@INIWRITE

	Write an entry in an .INI file

	@INSERT

	Inserts string1 into string2

	@INODE

	File Inode (in hex)

	@INSTR

	Extract a substring

	@INT

	Integer part of a number

	@IPADDRESS

	Returns the numeric IP for a host name

	@IPNAME

	Returns the host name for a numeric IP address

	@ISALNUM

	Test for alphanumeric characters

	@ISALPHA

	Test for alphabetic characters

	@ISASCII

	Test for ASCII characters

	@ISCNTRL

	Test for control characters

	@ISDIGIT

	Test for decimal digits

	@ISFLOAT

	Returns 1 if the string is a floating point number

	@ISLOWER

	Returns 1 if the string is only lower-case letters

	@ISODOWI

	ISO 8601 numeric day of week

	@ISOWEEK

	ISO 8601 numeric week of year

	@ISOWYEAR

	ISO 8601 numeric week date year

	@ISPRIME

	Test for prime number

	@ISPRINT

	Test for printable characters

	@ISPROC

	Returns 1 if the process is active; otherwise 0

	@ISPUNCT

	Test for punctuation characters

	@ISUPPER

	Returns 1 if the string is only upper-case letters

	@ISSPACE

	Test for white space characters

	@ISXDIGIT

	Test for hexadecimal digits

	@JUNCTION

	Directory referenced by the junction

	@LABEL

	Volume label

	@LCS

	Longest common sequence in two strings

	@LEFT

	Left end of string

	@LEN

	Length of a string

	@LFN

	Long name for a short filename

	@LINE

	Specified line from a file

	@LINES

	Count of lines in a file

	@LINKS

	Number of NTFS hard links for the file

	@LOWER

	Convert string to lower case

	@LTRIM

	Left trim specified characters.

	@MACADDRESS

	MAC address of network interface

	@MAKEAGE

	Convert date and time to age

	@MAKEDATE

	Convert number of days to date

	@MAKETIME

	Convert number of seconds to time

	@MAX

	Largest integer in the list

	@MD5

	MD5 hash of a string or file

	@MIN

	Smallest integer in the list

	@MONTH

	Month for date

	@MX

	Email server for the specified user address

	@NAME

	File name without path or extension

	@NUMERIC

	Test if a string is numeric

	@OPTION

	Current configuration option value

	@OWNER

	Return file owner

	@PATH

	File path without name

	@PERL

	Evaluate a Perl expression

	@PID

	PID for the specified process name

	@PIDCOMMAND

	Return startup command line for the specified process

	@PING

	Response time from a host

	@PLUGINVER

	Plugin version number (major.minor.build)

	@PPID

	PID for the parent of the specified process name

	@PRIME

	Generate a prime number

	@PRIORITY

	Priority class for the specified process

	@PROCESSTIME

	Process times (start, end, kernel mode, user mode)

	@PYTHON

	Evaluate a Python expression

	@QUOTE

	Double quote the argument if necessary

	@RANDOM

	Generate a random integer

	@READSCR

	Read characters from the screen

	@READY

	Drive ready: 1, otherwise 0

	@REGBREAD

	Read a registry value to a binary buffer

	@REGBWRITE

	Write a registry value from a binary buffer

	@REGCOPYKEY

	Recursively copy a registry key to a new location

	@REGCREATE

	Create registry subkey

	@REGDELKEY

	Delete a registry key and its subkeys

	@REGEX

	Match a regular expression

	@REGEXINDEX

	Return the offset of a regular expression match

	@REGEXIST

	Test if a registry key exists

	@REGEXSUB

	Return nth matching regular expression group

	@REGQUERY

	Read value from registry

	@REGSET

	Write value to registry

	@REGSETENV

	Write value to registry and broadcast change.

	@REGTYPE

	Return type of registry variable

	@REMOTE

	Remote (network) drive: 1, otherwise 0

	@REMOVABLE

	Removable drive: 1, otherwise 0

	@REPEAT

	Repeat a character

	@REPLACE

	Replace string1 with string2 in text

	@REREPLACE

	Regular expression back reference substitution

	@REVERSE

	Reverse a string

	@REXX

	Value of executing an expression by REXX

	@RIGHT

	Right end of string.

	@RTRIM

	Removes specified trailing characters.

	@RUBY

	Evaluate a Ruby expression

	@SCRIPT

	Evaluate expression in an active scripting engine.

	@SEARCH

	Path search

	@SELECT

	Menu selection

	@SERIAL

	Serial number of a disk

	@SERIALPORTCLOSE

	Close the serial port

	@SERIALPORTFLUSH

	Flush the serial port buffer

	@SERIALPORTOPEN

	Open a serial port

	@SERIALPORTREAD

	Read the serial port buffer

	@SERIALPORTWRITE

	Write a string to the serial port buffer

	@SERVER

	Query server information

	@SERVICE

	Query service information

	@SFN

	Short name for a long filename

	@SHA1

	SHA1 checksum for the file

	@SHA256

	SHA2-256 checksum for the file

	@SHA384

	SHA2-384 checksum for the file

	@SHA512

	SHA2-512 checksum for the file

	@SHFOLDER

	Get Windows folder locations

	@SIMILAR

	Compare two strings for similarity

	@SMCLOSE

	Close a shared memory handle

	@SMOPEN

	Return a handle to shared memory

	@SMPEEK

	Write a value to shared memory

	@SMPOKE

	Read a value from shared memory

	@SMREAD

	Read a string from shared memory

	@SMWRITE

	Write a string to shared memory

	@SNAPSHOT

	Save a window or desktop as a BMP

	@STRIP

	Strips all characters in char from string

	@SUBST

	Substitute a string within another string

	@SUBSTR

	Extract a substring

	@SUMMARY

	Query or set the NTFS SummaryInformation stream

	@SYMLINK

	Target of a symbolic link

	@SYSTEMTIME

	System idle, kernel, or user time

	@TALNUM

	Number of alphanumeric characters in a string

	@TALPHA

	Number of alphabetic characters in a string

	@TARCFILE

	Compressed name of a file in a tar archive

	@TARCOUNT

	Number of files in a tar archive

	@TARDFILE

	Uncompressed name of a file in a tar archive

	@TARFILEDATE

	Date and time of a file in a tar archive

	@TARFILESIZE

	Size of a file in a tar archive

	@TASCII

	Number of 7-bit ASCII characters in a string

	@TCL

	Evaluate a Tcl expression

	@TCNTRL

	Number of ASCII control characters in a string

	@TDIGIT

	Number of digits (0-9) in a string

	@TIME

	Convert a time of day to number of seconds

	@TIMER

	Get split time from timer.

	@TK

	Evaluate a Tk (Tcl) script or expression

	@TLOWER

	Number of lower case characters in a string

	@TPRINT

	Number of printable characters in a string

	@TPUNC

	Number of punctuation characters in a string

	@TRIM

	Remove leading & trailing blanks from a string

	@TRIMALL

	Remove leading, trailing, and extra internal blanks from a string

	@TRUENAME

	Find true name of a file

	@TRUNCATE

	Truncate file at current position

	@TSPACE

	Number of white space characters in a string

	@TUPPER

	Number of upper case characters in a string

	@TXDIGIT

	Number of hexadecimal digits in a string

	@UNC

	UNC name of a file

	@UNICODE

	Numeric UNICODE value for a character

	@UNIQUE

	Create file with unique name

	@UNQUOTE

	Remove double quotes from a filename

	@UNQUOTES

	Remove leading and trailing double quotes

	@UPPER

	Convert string to upper case

	@URLDECODE

	Decode an URL string

	@URLENCODE

	Encode an URL string

	@UTF8DECODE

	Decode a UTF8 file or string

	@UTF8ENCODE

	Encode a file or string as UTF8

	@UUDECODE

	Decode a UU Encoded file

	@UUENCODE

	Encode a file as UU Encoded

	@VERINFO

	Executable file version information

	@WATTRIB

	Test or return file attributes

	@WILD

	Compares strings using wildcards

	@WINAPI

	Call a Windows API function

	@WINCLASS

	Title of first window with class name

	@WINCLIENTSIZE

	Client window size

	@WINEXENAME

	Executable name for window

	@WININFO

	Current system information

	@WINMEMORY

	Windows memory information

	@WINMETRICS

	Windows system metrics

	@WINPID

	Process ID for a window

	@WINPOS

	Window position

	@WINSIZE

	Window size

	@WINSTATE

	Current state of window

	@WINSYSTEM

	Set/get windows system parameters

	@WMI

	Query WMI

	@WORD

	Extract a word from a string

	@WORDS

	Count words in a string

	@WORKGROUP

	Workgroup name of a computer

	@XMLCLOSE

	Close an XML file previously opened by @XMLOPEN

	@XMLNODES

	Return the number of nodes (children) for the specified path in an XML file

	@XMLOPEN

	Open an XML file for use by @XMLXPATH and/or @XMLNODES

	@XMLXPATH

	Return text of XML element

	@YDECODE

	Decode a Y Encoded file or string

	@YEAR

	Year for date

	@YENCODE

	Encode a file or string as Y Encoded

	@ZIPCFILE

	The compressed name of a file in a zip archive

	@ZIPCOMMENT

	The comment for a zip archive

	@ZIPCOUNT

	The number of files in a zip archive

	@ZIPDFILE

	The decompressed name of a file in a zip archive

	@ZIPFILECOMMENT

	The comment (description) of a file in a zip archive

	@ZIPFILECRC

	The CRC of a file in a zip archive

	@ZIPFILEDATE

	The date and time of a file in a zip archive

	@ZIPCFILESIZE

	The compressed size of a file in a zip archive

	@ZIPDFILESIZE

	The decompressed size of a file in a zip archive

Variable Functions Listed by Category

See also Functions by Name.

This list gives a one-line description of all built-in Variable Functions, and a cross reference which selects a separate help topic on that function where you will find the detailed syntax and description. You can also obtain help on any function with a HELP @functionname command at the prompt or by pressing Ctrl-F1 when the cursor is on the function name. See the HELP command for details

	[image: Onestep]

	Binary buffers

	

	[image: Onestep]

	Input dialog boxes

	[image: Onestep]

	Compression

	

	[image: Onestep]

	Network properties

	[image: Onestep]

	Dates and times

	

	[image: Onestep]

	Numbers and arithmetic

	[image: Onestep]

	Drives and devices

	

	[image: Onestep]

	Strings and characters

	[image: Onestep]

	File content

	

	[image: Onestep]

	System status

	[image: Onestep]

	File names

	

	[image: Onestep]

	Utility

	[image: Onestep]

	File properties

	

	

	

Note: many functions have functionality that covers several categories.

System status

	@ASSOC

	File association for the extension

	@CLIP

	Specified line from clipboard

	@CLIPW

	Write string to the clipboard

	@CONSOLE

	Identify console sessions

	@CONSOLEB

	Create or restore console screen buffers

	@ERRTEXT

	Windows error description

	@FTYPE

	Open command string for the file type

	@ISPROC

	Returns 1 if a process is active; otherwise 0

	@PID

	Process ID for the process name

	@PIDCOMMAND

	Startup command line for a process

	@PPID

	Process ID of the parent the process name

	@PRIORITY

	Priority class for a process

	@PROCESSTIME

	Process times (start, end, kernel mode, user mode)

	@READSCR

	Read characters from the screen

	@REGBREAD

	Read registry value into a binary buffer

	@REGBWRITE

	Write registry value from a binary buffer

	@REGCOPYKEY

	Recursively copy a registry key to a new location

	@REGCREATE

	Create registry subkey

	@REGDELKEY

	Delete a registry key and its subkeys

	@REGEXIST

	Test if a registry key exists

	@REGQUERY

	Read value from registry

	@REGSET

	Write value to registry

	@REGSETENV

	Write value to registry and broadcast change.

	@REGTYPE

	Type of registry variable

	@SERIALPORTCLOSE

	Close the serial port

	@SERIALPORTFLUSH

	Flush the serial port buffer

	@SERIALPORTOPEN

	Open a serial port

	@SERIALPORTREAD

	Read the serial port buffer

	@SERIALPORTWRITE

	Write a string to the serial port buffer

	@SYSTEMTIME

	System times (idle, kernel, and user)

	@WINCLASS

	Title of first window with classname

	@WINCLIENTSIZE

	Client window size

	@WINEXENAME

	Executable name for window

	@WININFO

	Current system information

	@WINMEMORY

	Windows memory information

	@WINMETRICS

	Windows system metrics

	@WINPID

	Process ID for window

	@WINPOS

	Window position

	@WINSIZE

	Window size

	@WINSTATE

	Current state of window

	@WINSYSTEM

	Set/get windows system parameters

Directories, drives and devices

	@CDROM

	CD-ROM drive: 1, otherwise 0

	@CWD

	Current Working Directory of specified drive

	@CWDS

	Current Working Directory of specified drive, with trailing backslash

	@DEVICE

	Character device: 1, otherwise 0

	@DISKFREE

	Free disk space

	@DISKTOTAL

	Total disk space

	@DISKUSED

	Used disk space

	@DRIVETYPE

	Type of drive (hard drive, CD-ROM, etc.)

	@DRIVETYPEEX

	Type of drive (hard drive, CD-ROM, etc.)

	@FSTYPE

	File system type (FAT, NTFS, CDFS, etc.)

	@JUNCTION

	Directory referenced by the junction

	@LABEL

	Volume label

	@READY

	Drive ready: 1, otherwise 0

	@REMOTE

	Remote (network) drive: 1, otherwise 0

	@REMOVABLE

	Removable drive: 1, otherwise 0

	@SERIAL

	Serial number of a disk

	@SHFOLDER

	Windows folder locations

	@SYMLINK

	Target of a symbolic link

File content

	@B64DECODE

	Decode a Base64 file or string

	@B64ENCODE

	Encode a file or string as Base64

	@COMPARE

	Compare two files

	@CRC32

	File CRC

	@FILEARRAY

	Read a file into an array

	@FILECLOSE

	Close a file handle

	@FILEOPEN

	Open a file handle

	@FILEREAD

	Read next line from a file

	@FILEREADB

	Read bytes from a file

	@FILESEEK

	Move a file handle pointer

	@FILESEEKL

	Move a file handle pointer to a specified line

	@FILEWRITE

	Write next line to a file

	@FILEWRITEB

	Write data to a file handle

	@HEXDECODE

	Decode a hexadecimal file or string

	@HEXENCODE

	Encode a file or string as hexadecimal

	@INIREAD

	Return an entry from an .INI file

	@INIWRITE

	Write an entry in an .INI file

	@INODE

	Inode value for a file

	@LINE

	Specified line from a file

	@LINES

	Count lines in a file

	@LINKS

	Number of NTFS hard links for a file

	@MD5

	MD5 hash of a string or file

	@SHA1

	SHA1 checksum for a file

	@SHA256

	SHA2-256 checksum for a file

	@SHA384

	SHA2-384 checksum for a file

	@SHA512

	SHA2-512 checksum for a file

	@SUMMARY

	NTFS SummaryInformation stream for a file

	@TRUNCATE

	Truncate file at current position

	@UTF8DECODE

	Decode a UTF8 file or string

	@UTF8ENCODE

	Encode a file or string as UTF8

	@UUDECODE

	Decode a UU Encoded file

	@UUENCODE

	Encode a file as UU Encoded

	@VERINFO

	Executable file version information

	@YDECODE

	Decode a Y Encoded file or string

	@YENCODE

	Encode a file or string as Y Encoded

File names

	@ALTNAME

	Short name for the file.

	@EXPAND

	All names that match filename

	@EXT

	File extension

	@FILEHANDLE

	Filename for a handle

	@FILENAME

	File name and extension

	@FULL

	Full file name with path

	@LFN

	Long name for a short filename

	@NAME

	File name without path or extension

	@PATH

	File path without name

	@QUOTE

	Double quote a filename

	@SFN

	Short name for a long filename

	@SEARCH

	Path search

	@TRUENAME

	True name of a file

	@UNC

	UNC name of a file

	@UNIQUE

	Create file with unique name

	@UNQUOTE

	Remove double quotes from a filename

	@UNQUOTES

	Remove leading and trailing double quotes

File properties

	@ATTRIB

	Test or return file attributes

	@DESCRIPT

	File description

	@EXETYPE

	Application type

	@FILEAGE

	File age (date and time)

	@FILEDATE

	File date

	@FILES

	Number of files matching a wildcard

	@FILESIZE

	Total size of files matching a wildcard

	@FILETIME

	File time

	@FINDCLOSE

	Closes the search handle.

	@FINDFIRST

	Find first matching file

	@FINDNEXT

	Find next matching file

	@INODE

	Inode value for a file

	@LINKS

	Number of NTFS hard links for a file

	@OWNER

	File owner

	@SEARCH

	Path search

	@SUMMARY

	NTFS SummaryInformation stream for a file

	@TRUENAME

	True name for a file

	@UNIQUE

	Create file with unique name

	@VERINFO

	Executable file version information

	@WATTRIB

	Test or return file attributes

Strings and characters

	@ASCII

	List of ASCII-s for characters in string

	@CAPS

	Capitalize first character of each word

	@CHAR

	Character string, given a set of ASCII-s

	@COUNT

	Counts occurrences of a character in a string

	@EXECARRAY

	Execute a command and store the results in an array variable

	@EXECSTR

	Execute a command and return the output line

	@FIELD

	Extract a field from a string

	@FIELDS

	Count fields in a string

	@FILTER

	Removes non-matching characters from a string

	@FORMAT

	Formats data string according to format string

	@HTMLDECODE

	Decode an HTML string

	@HTMLENCODE

	Encode a string for HTML

	@INDEX

	Offset of string2 within string1

	@INSERT

	Insert string1 into string2

	@INSTR

	Extract a substring

	@ISALNUM

	Test for alphanumeric characters

	@ISALPHA

	Test for alphabetic characters

	@ISASCII

	Test for ASCII characters

	@ISCNTRL

	Test for control characters

	@ISDIGIT

	Test for decimal digits

	@ISFLOAT

	Returns 1 if the string is a floating point number

	@ISLOWER

	Returns 1 if the string is all lower case

	@ISPRINT

	Test for printable characters

	@ISPUNCT

	Test for punctuation characters

	@ISSPACE

	Test for white space characters

	@ISUPPER

	Returns 1 if the string is all upper case

	@ISXDIGIT

	Test for hexadecimal digits

	@LCS

	Longest common sequence in two strings

	@LEFT

	Left end of string

	@LEN

	Length of a string

	@LOWER

	Convert string to lower case

	@LTRIM

	Trims specified leading characters.

	@MD5

	MD5 hash of a string or file

	@MX

	Email server for a user address

	@QUOTE

	Double quote a string

	@REGEX

	Return a Regular Expression test

	@REGEXINDEX

	Return the offset of a regular expression match

	@REGEXSUB

	Return the nth matching group of a regular expression test

	@REPEAT

	Repeat a character

	@REPLACE

	Replace string1 with string2 in text

	@REREPLACE

	Regular expression back reference substitution

	@REVERSE

	Reverse a string

	@RIGHT

	Right end of string

	@RTRIM

	Trims specified trailing characters.

	@SIMILAR

	Test similarity between two strings

	@STRIP

	Strips all characters in char from string

	@SUBST

	Substitute a string within another string

	@SUBSTR

	Older version of @INSTR to extract a substring

	@TALNUM

	Number of alphanumeric characters in a string

	@TALPHA

	Number of alphabetic characters in a string

	@TASCII

	Number of 7-bit ASCII characters in a string

	@TCNTRL

	Number of ASCII control characters in a string

	@TDIGIT

	Number of digits (0-9) in a string

	@TLOWER

	Number of lower case characters in a string

	@TPRINT

	Number of printable characters in a string

	@TPUNCT

	Number of punctuation characters in a string

	@TRIM

	Remove leading and trailing blanks from a string

	@TRIMALL

	Removing leading, trailing, and extra internal blanks from a string

	@TSPACE

	Number of white space characters in a string

	@TUPPER

	Number of upper case characters in a string

	@TXDIGIT

	Number of hexadecimal digits in a string

	@UNICODE

	List of UNICODEs for characters in string

	@UNQUOTE

	Remove double quotes from a string

	@UNQUOTES

	Remove leading and trailing double quotes

	@UPPER

	Convert string to upper case

	@URLDECODE

	Decode an URL string

	@URLENCODE

	Encode an URL string

	@WILD

	Compares strings using wildcards

	@WORD

	Extract a word from a string

	@WORDS

	Count words in a string

Binary buffers and shared memory

	@BALLOC

	Allocate a binary buffer

	@BFREE

	Free a binary buffer

	@BPEEK

	Read a value from a binary buffer

	@BPEEKSTR

	Read a string from a binary buffer

	@BPOKE

	Write a value to a binary buffer

	@BPOKESTR

	Write a string to a binary buffer

	@BREAD

	Read from a file to a binary buffer

	@BWRITE

	Write from a binary buffer to a file

	@SMCLOSE

	Close a handle to shared memory

	@SMOPEN

	Open a handle to shared memory

	@SMPEEK

	Read a value from shared memory

	@SMPOKE

	Write a value to shared memory

	@SMREAD

	Read a string from shared memory

	@SMWRITE

	Write a string to shared memory

Numbers and arithmetic

	@ABS

	Absolute value of n

	@AVERAGE

	Average of a list

	@CEILING

	Smallest integer not less than n

	@COMMA

	Insert commas (thousands separators) into a numeric string

	@CONVERT

	Convert value from input base to output base

	@DEC

	Decrement a numeric value by 1

	@DECIMAL

	Decimal fraction portion of a number

	@DIGITS

	Tests if string is all digits

	@EVAL

	Arithmetic calculations

	@FORMATN

	Format a numeric value

	@FORMATNC

	Format a numeric value and insert thousands separators

	@FLOOR

	Largest integer not larger than n

	@INC

	Increment a numeric value by 1

	@INT

	Integer part of a number

	@ISPRIME

	Test if a number is a prime

	@MAX

	Largest integer in the list

	@MIN

	Smallest integer in the list

	@NUMERIC

	Test if a string is numeric

	@PRIME

	Generate a prime number

	@RANDOM

	Generate a random integer

Dates and times

	@AGEDATE

	Converts an age into date and time

	@DAY

	Day of month for date

	@DATE

	Convert date to number of days

	@DATECONV

	Convert date formats

	@DOW

	Short name of day of week for date

	@DOWF

	Full name of day of week

	@DOWI

	Day of week as integer

	@DOY

	Day of year for date

	@GETDATE

	Select a date from a calendar

	@GETDATETIME

	Select a date and/or time from a date picker

	@IDOW

	Short localized name of day of week for date

	@IDOWF

	Full localized name of day of week for date

	@ISODOWI

	ISO 8601 numeric day of week

	@ISOWEEK

	ISO 8601 numeric week of year

	@ISOWYEAR

	ISO 8601 numeric week date year

	@MAKEAGE

	Convert date and time to age

	@MAKEDATE

	Convert number of days to date

	@MAKETIME

	Convert number of seconds to time

	@MONTH

	Month in specified date

	@TIME

	Convert time to number of seconds

	@YEAR

	Year for date

Input dialog boxes

	@GETDIR

	Prompt for a directory name.

	@GETFILE

	Prompt for a path and file name.

	@GETFOLDER

	Folder name from tree view.

	@SELECT

	Menu selection

Network properties

	@AFSCELL

	OpenAFS cell name for a path

	@AFSMOUNT

	OpenAFS mount point for a path

	@AFSPATH

	Path is in OpenAFS: 1, otherwise 0

	@AFSSYMLINK

	OpenAFS symbolic link for a path

	@AFSVOLID

	OpenAFS volume ID for a path

	@AFSVOLNAME

	OpenAFS volume name for a path

	@DOMAIN

	Domain name of a computer

	@ENUMSERVERS

	Identify server names on a network

	@ENUMSHARES

	Identify sharenames on a server

	@GROUP

	User is member of group: 1, otherwise 0

	@IPADDRESS

	The numeric IP for a host name

	@IPNAME

	The host name for a numeric IP

	@MACADDRESS

	MAC address of network interface

	@PING

	Response time from a host

	@SERVER

	Query server information

	@WORKGROUP

	Workgroup name of a computer

Utility

	@ALIAS

	Value of an alias

	@ARRAYINFO

	Array variable information

	@CAPI

	Call a _cdecl function in a DLL

	@CLIP

	Specified line from clipboard

	@CLIPW

	Write string to the clipboard

	@COLOR

	RGB value of a color

	@DEBUG

	Write a string to the debugger

	@DIRSTACK

	Display directory stack entry

	@ERRTEXT

	Windows error description

	@EXEC

	Execute a command, returns its exit code

	@EXECSTR

	Execute a command, returns its first output line

	@FUNCTION

	Definition of a function

	@HISTORY

	A line or word from the command history

	@IF

	Value dependent on a conditional expression

	@OPTION

	Current configuration option value

	@PERL

	Evaluate a Perl expression

	@PLUGINVER

	Plugin version number

	@READSCR

	Read characters from the screen

	@REXX

	Evaluate a REXX expression

	@RUBY

	Evaluate a Ruby expression

	@SCRIPT

	Evaluate expression in active scripting engine

	@SELECT

	Menu selection

	@SERVICE

	Query service information

	@SNAPSHOT

	Save a window or the desktop to a BMP

	@TCL

	Execute a Tcl/tk command

	@TIMER

	Get split time from timer.

	@TK

	Execute a Tk script or expression

	@WINAPI

	Call a Windows API function

	@WMI

	Query WMI

	@XMLCLOSE

	Close an XML file previously opened by @XMLOPEN

	@XMLNODES

	Return the number of nodes (children) for the specified path in an XML file

	@XMLOPEN

	Open an XML file for use by @XMLXPATH and/or @XMLNODES

	@XMLXPATH

	Return text of XML element

Compression and Decompression

	@TARCOUNT

	The number of files in a .tar archive

	@TARCFILE

	The compressed name of a file in a .tar archive

	@TARDFILE

	The decompressed name of a file in a .tar archive

	@TARFILEDATE

	The date and time of a file in a .tar archive

	@TARFILESIZE

	The (uncompressed) size of a file in a .tar archive

	@ZIPCOUNT

	The number of files in a .zip archive

	@ZIPCOMMENT

	The comment text for a .zip archive

	@ZIPCFILE

	The compressed name of a file in a .zip archive

	@ZIPDFILE

	The decompressed name of a file in a .zip archive

	@ZIPFILECOMMENT

	The comment (description) of a file in a .zip archive

	@ZIPFILECRC

	The CRC of a file in a .zip archive

	@ZIPFILEDATE

	The date and time of a file in a .zip archive

	@ZIPCFILESIZE

	The compressed size of a file in a .zip archive

	@ZIPDFILESIZE

	The decompressed size of a file in a .zip archive

Date Display Formats

All functions which return a date accept an optional code to specify the desired format of the date value:

	Code

	Date Format

	Description

	0 or none

	see below

	system default

	1

	mm/dd/yy

	USA

	2

	dd/mm/yy

	European

	3

	yy/mm/dd

	Japanese

	4

	yyyy-mm-dd

	ISO 8601

	5

	yyyy-Www-d

	ISO 8601

	6

	yyyy-ddd

	ISO 8601

Field Order

For codes 1...6 the field order is as shown above. For code 0 the field order will also be one of those shown above. TCC determines which field is reported first by Windows in a short date, and selects the order from the table above with the same first field. All other aspects of the Windows short date format are ignored,

Field Width

Month and day are always 2 digits. Year is 2 digits for codes 1, 2 and 3, and 4 digits for codes 4, 5, and 6. For code 0 the year is 4 digits if it is the first field returned, and 2 digits if it is the last one.

Field Separator

Codes 4, 5, and 6 (ISO 8601) uses a hyphen as the separator character. For the other formats, the default Windows date separator is returned.

Setting the Windows Date Formats

The details below apply to Windows XP, but other versions of Windows are similar.

Start è Settings è Control Panel è Regional and Language Options è Customize è Date display the desired menu. The two relevant fields are Short Date Format and Date Separator.

@ABS

@ABS[n] : Returns the absolute value of the number n.

Examples:

echo %@abs[-1]

1

echo %@abs[123]

123

	@AFSCELL	Not in LE

@AFSCELL[path] : Returns the OpenAFS cell name for the path.

See http://www.openafs.org for more information on OpenAFS.

	@AFSMOUNT	Not in LE

@AFSMOUNT[path] : Returns the OpenAFS mount point for the pathname.

See http://www.openafs.org for more information on OpenAFS.

	@AFSPATH	Not in LE

@AFSPATH[path] : Returns 1 if the path is in the OpenAFS file system.

See http://www.openafs.org for more information on OpenAFS.

	@AFSSYMLINK	Not in LE

@AFSSYMLINK[path] : Returns the OpenAFS symbolic link for the path.

See http://www.openafs.org for more information on OpenAFS.

	@AFSVOLID	Not in LE

@AFSVOLID[path] : Returns the OpenAFS volume ID for the path.

See http://www.openafs.org for more information on OpenAFS.

	@AFSVOLNAME	Not in LE

@AFSVOLNAME[path] : Returns the OpenAFS volume name for the path.

See http://www.openafs.org for more information on OpenAFS.

	@AGEDATE	Not in LE

@AGEDATE[n[,d]] : Converts an age n into a date and time pair, formatted according to the current country settings, or as explicitly specified by d (see Date Display Formats). The time is separated from the date by a comma, and is always in 24-hour format, displayed with 1 ms precision, as the examples show. The conversion does not take leap seconds into account.

Example:

for /l %n in (1,1,6) echo %n %@agedate[128551146920835000,%n]

1 05-13-08,01:11:32.083

2 13-05-08,01:11:32.083

3 08-05-13,01:11:32.083

4 2008-05-13,01:11:32.083

5 2008-W20-2,01:11:32.083

6 2008-134,01:11:32.083

See also: Time Stamps, @FILEAGE and @MAKEAGE.

	@ALIAS	Not in LE

@ALIAS[name] : Returns the contents of the specified alias as a string, or a null string if the alias doesn't exist.

When manipulating strings returned by @ALIAS you may need to disable certain special characters with SETDOS /X. Otherwise, command separators, redirection characters, and other similar characters in the alias may be interpreted as part of the current command, rather than part of a simple text string.

Examples:

alias xyz=d:\path\myprog.exe -options

echo %@alias[xyz]

d:\path\myprog.exe -options

@ALTNAME

@ALTNAME[filename] : Returns the alternate (short, "8.3" FAT-format) name for the specified file. If the filename is already in 8.3 format, returns the filename. If the file does not exist, returns an empty string. If filename contains a \, @ALTNAME returns the SFN of the full path.

Examples:

echo %@altname["Long Name.exe"]

LONGNA~1.EXE

echo %@altname["C:\Program Files\Microsoft Office"]

C:\PROGRA~1\MICROS~4

echo %@altname["%CommonProgramFiles"]

C:\PROGRA~1\COMMON~1

	@ARRAYINFO	Not in LE

@ARRAYINFO[arrayname,option] : Returns information about the specified array.

arrayname - name of the array (defined by SETARRAY) to query

option - the type of information:

0 - total number of dimensions

1 - number of elements in the first dimension

2 - number of elements in the second dimension

3 - number of elements in the third dimension

4 - number of elements in the fourth dimension

5 - total number of elements

@ARRAYINFO will return -1 if the array doesn't exist.

Examples:

setarray array[5,10]

echo %@arrayinfo[array,0]

2

echo %@arrayinfo[array,2]

10

@ASCII

@ASCII[string] : Returns the space separated list of ASCII values of the characters in string. You can use the Escape character before a special character, e.g., a quote or greater than (>) sign, to include it in string.

Note: The @UNICODE function will generally return more useful values.

Examples:

	function

	value

	%@ascii[a]

	97

	%@ascii[A]

	65

	%@ascii[^`]

	96

	%@ascii[abc]

	97 98 99

See also: ASCII, Key Codes and Key Names.

	@ASSOC	Not in LE

@ASSOC[.ext[,u]] : Returns the file association for the specified extension. If the optional second argument u is specified, @ASSOC will look in HKCU\SOFTWARE\CLASSES.

Example:

echo %@assoc[.doc]

Word.Document.8

@ATTRIB

@ATTRIB[filename[,-rhsadecijlopt[,p]]] : If you do not specify any attributes, @ATTRIB returns the attributes of the specified file in the format RHSADECIJNOPTV, rather than 0 or 1. If two or more parameters are specified, @ATTRIB returns a 1 if the specified file has all the matching attribute(s); otherwise it returns a 0. If the optional third argument ,p is included (partial match), then @ATTRIB will return 1 if any of the attributes match

The basic attributes for FAT volumes are:

	N	Normal (no attributes set)

	R	Read-only

	A	Archive

	H	Hidden

	S	System

	D	Directory

In addition, NTFS volumes allow display of the following extended attributes:

	E	Encrypted

	C	Compressed

	I	Not content-indexed

	J	Junction or symbolic link

	L	Junction or symbolic link

	N	Normal

	O	Offline

	P	Sparse file

	T	Temporary

	V	Virtualized

The extended attributes are displayed when @ATTRIB is invoked with a single parameter, but they cannot be specified when querying files (two or more parameters). To query files based on the extended attributes, see @WATTRIB.

Attributes which are not set will be replaced with an underscore. For example, if SECURE.DAT has the read-only, hidden, and archive attributes set, %@ATTRIB[SECURE.DAT] would return RH_A_______. If the file does not exist, @ATTRIB returns an empty string.

The attributes (other than N) can be combined (for example %@ATTRIB[MYFILE,HS]). For example, %@ATTRIB[MYFILE,HS,p] will return 1 if MYFILE has the hidden, system, or both attributes. Without ,p the function will return 1 only if MYFILE has both attributes.

Filename must be in quotes if it contains white space or special characters.

See also: @WATTRIB, Attributes Switches and the ATTRIB command.

Examples:

echo %@attrib["C:\Program Files\My Program\myfile.exe",rhs,p]

echo Attributes for myfile.exe: %@attrib[myfile.exe]

	@AVERAGE	Not in LE

@AVERAGE[...] : Returns the average of a list of numbers. The average is returned as a double; you can adjust the decimal precision by running the result through @EVAL (or @INT).

Example:

echo %@average[1 3 6 8 10 13 15]

8.0

	@B64DECODE	Not in LE

@B64DECODE[s,string] : Decode a Base64 string (MIME encoding format). Returns the decoded string.

@B64DECODE[inputfile,outputfile] : Decode a Base64 file (MIME encoding format). Returns 0 if the output file was successfully written.

Example:

echo %@b64decode[s,dGhpcyBpcyBhIHN0cmluZw==]

this is a string

echo %@b64decode[data.file.b64,date.file]

	@B64ENCODE	Not in LE

@B64ENCODE[s,string] : Encode a base 64 string (MIME encoding format). Returns the encoded string

@B64ENCODE[inputfile,outputfile] : Encode a base 64 file (MIME encoding format). Returns 0 if the output file was successfully written.

Example:

echo %@b64encode[s,this is a string]

dGhpcyBpcyBhIHN0cmluZw==

echo %@b64encode[data.file,date.file.b64]

	@BALLOC	Not in LE

@BALLOC[size] : Allocate a buffer for binary operations. @BALLOC returns a handle to the buffer, which must be used for the subsequent binary functions. The only limit on the number and size of binary buffers is the amount of virtual memory available.

Example:

set handle=%@balloc[128]

echo %handle

5d4f280

	@BFREE	Not in LE

@BFREE[handle] : Free a binary buffer previously allocated by @BALLOC.

Example:

set handle=%@balloc[128]

echo %@bfree[%handle]

	@BPEEK	Not in LE

@BPEEK[handle,offset,size] : Read a value from a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer (decimal or hex)

size - the size of the value to read (in bytes):

 1 - character

 2 - short

 4 - int

 8 - int64

Example:

set handle=%@balloc[128]

set value=%@bpeek[%handle,0,4]

	@BPEEKSTR	Not in LE

@BPEEKSTR[handle,offset,type,length] : Read a string from a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer (decimal or hex)

type - the string type:

a - ASCII

u - Unicode

length - the maximum number of characters to read (decimal or hex)

Example:

set handle=%@balloc[128]

set value=%@bpeekstr[%handle,0,a]

	@BPOKE	Not in LE

@BPOKE[handle,offset,size,value] : Write a value to a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer (decimal or hex)

size - the size of the value (in bytes):

1 - character

2 - short

4 - int

8 - int64

value - the value to poke

@BPOKE returns 0 on success.

Example:

set handle=%@balloc[128]

set value=%@bpoke[%handle,0,4,1234]

	@BPOKESTR	Not in LE

@BPOKESTR[handle,offset,type,string] : Write a string to a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer (decimal or hex)

type - the type of the string to write:

a - ASCII

u - Unicode

string - the string to poke

@BPOKESTR returns 0 on success.

Example:

set handle=%@balloc[128]

set value=%@bpokestr[%handle,0,a,string value]

	@BREAD	Not in LE

@BREAD[handle,offset,filehandle,fileoffset,length] : Read from a file to a binary buffer.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer (decimal or hex)

filehandle - a file handle opened for reading (from @FILEOPEN)

fileoffset - the read offset (from the current file position) (decimal or hex)

length - number of bytes to read (decimal or hex)

@BREAD returns the number of bytes actually read.

Example:

set fhandle=%@fileopen[filename,r]

set bhandle=%@balloc[128]

set value=%@bread[%bhandle,0,%fhandle,0,32]

	@BWRITE	Not in LE

@BWRITE[handle,offset,filehandle,fileoffset,length] : Write from a binary buffer to a file.

handle - a binary handle from @BALLOC

offset - the byte offset in the buffer (decimal or hex)

filehandle - a file handle opened for writing (from @FILEOPEN)

fileoffset - the write offset (from the current file position) (decimal or hex)

length - the number of bytes to write (decimal or hex)

@BWRITE returns the number of bytes written

Example:

set fhandle=%@fileopen[filename,w]

set bhandle=%@balloc[128]

set value=%@bwrite[%bhandle,0,%fhandle,0,32]

	@CAPI	Not in LE

@CAPI[module,function[,integer | PING=n | PLONG=n | PDWORD=n | NULL | BUFFER | "string"] : Returns the result of calling a function with a _cdecl type in a DLL.

module - name of the DLL containing the function

function - function name (case sensitive)

integer - an integer value to pass to the function

PINT - a pointer to the integer n

PLONG - a pointer to the long integer n

PDWORD - a pointer to the DWORD n

NULL - a null pointer (0)

BUFFER - @CAPI will pass an address for an internal buffer for the API to return a Unicode string value.

aBUFFER - @CAPI will pass an address for an internal buffer for the API to return an ASCII string value.

"string" - text argument (this must be enclosed in double quotes). If the argument is preceded by an 'a' (i.e., a"Argument") then it is converted from Unicode to ASCII before calling the API. (Some Windows APIs only accept ASCII arguments.)

@CAPI supports a maximum of 8 arguments. The return value is either a string value returned by the API (if BUFFER or aBUFFER is specified), or the integer value returned by the API. The function must be defined as _cdecl. If @CAPI can't find the specified function, it will append a "W" (for the Unicode version) to the function name and try again.

See also @WINAPI.

	@CAPS	Not in LE

@CAPS[["xxx"],text] : Capitalizes the first letter of each word in the string (words that do not start with a letter remain unchanged). The optional first parameter, xxx, specifies the separators that you wish to use. The list must be enclosed in double quotes. If you want to use a double quote as a separator, prefix it with the Escape Character.

Examples:

echo %@caps[" ",i love take command]

I Love Take Command

echo %@caps[",",peter,paul,mary]

Peter,Paul,Mary

echo %@caps[" ^"","sacrebleu!", he said]

"Sacrebleu!", He Said

@CDROM

@CDROM[d:] : Returns 1 if the drive is an optical drive (CD-ROM, CD-RW, DVD, etc) or 0 otherwise. The drive letter must be followed by a colon.

Examples:

echo %@cdrom[C:]

0

echo %@cdrom[G:]

1

	@CEILING	Not in LE

@CEILING[n] : Returns the value of the smallest integer that is not less than n. @CEILING will perform an implicit @EVAL on its argument, so you can enter an arithmetic expression.

Examples:

echo %@ceiling[3.14]

4

echo %@ceiling[-3.14]

-3

echo %@ceiling[0]

0

echo %@ceiling[123*37.36]

4596

See also: @FLOOR.

@CHAR

@CHAR[n] : Returns the character corresponding to a Unicode numeric value. If the parameter is a set of numeric values, CHAR returns a string. For example %@CHAR[65] returns A; %@CHAR[65 66 67] returns ABC.

To display the non-ASCII Unicode characters (>= 128), you need to be using a Unicode font in Take Command and/or TCC.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Note: Not all characters are printable. High ASCII characters (128-255) and Unicode characters may vary depending on the font used.

Examples:

echo %@char[65]

A

echo %@char[65 97 66 98 67 99]

AaBbCc

@CLIP

@CLIP[n] : Returns line n from the Windows text clipboard. The first line is numbered 0. The string **EOC** is returned for all line numbers beyond the end of the clipboard.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Examples:

echo %@clip[0]

if "%@clip[2]" eq "**EOC**" echo No more data in the clipboard

@CLIPW

@CLIPW[string] : Writes the string to the Windows text clipboard. Returns 0 if the operation was successful.

Examples:

if "%@clipw[save this line]" eq "0" echo Saved to the clipboard

Saved to the clipboard

	@COLOR	Not in LE

@COLOR[r,g,b] : Displays the Windows color common dialog and returns the RGB value for the selected color as a string in the form r,g,b (e.g. 0,128,64). To specify the initially selected color, use the r (red), g (green) and b (blue) parameters. If no parameters are provided, the initial selection will be black (0,0,0). The parameters are optional, but if one is used all three must be used.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Examples:

echo %@color[]

[image: @color]

echo %@color[155,0,0]

[image: @color2]

@COMMA

@COMMA[n] : Returns the number with commas (or the appropriate Thousands character for your current country setting) inserted where appropriate.

Note: Some variable functions can directly generate a numeric result with appropriate thousand separators if you add a c to their scale parameter.

Examples:

echo %@comma[12345678]

12,345,678

echo %@comma[0.12345678]

0.12345678

echo %@comma[%_xpixels]

1,920

See also: @CONVERT, @FORMAT, @FORMATN.

	@COMPARE	Not in LE

@COMPARE[file1,file2] : Returns 1 if the two files are identical, or 0 if they differ. @COMPARE supports FTP filenames for either file1 or file2, but cannot compare two FTP files.

Example:

echo %@compare["c:\windows\system32\cmd.exe","c:\windows\syswow64\cmd.exe"]

0

	@CONSOLE	Not in LE

@CONSOLE[title] : Returns 1 if the specified window title belongs to a console window; 0 if it does not. The title may include wildcards.

Example:

echo %@console[TCC Prompt]

1

	@CONSOLEB	Not in LE

@CONSOLEB[handle] - create or restore a console screen buffer. "Handle" is the handle to the desired screen buffer. If "handle is -1, @CONSOLEB just returns the current buffer handle. If "handle" is 0, @CONSOLEB will create and activate a new console screen buffer. If "handle" is non-zero, @CONSOLEB will switch to that screen buffer. @CONSOLEB returns the handle to the active screen buffer. You can close an console handle with the @FILECLOSE function.

@CONSOLEB allows you to preserve the contents of the current screen buffer by switching to a second buffer temporarily and and then back to the original buffer.

	@CONVERT	Not in LE

@CONVERT[input, output, value] : Returns a numeric string value converted from one number base (input) to another (output). Valid bases range from 2 to 36. The value can be between 0 and 2**64-1. No error is returned if value is outside that range.

Examples:

echo binary 1010101 is decimal %@convert[2,10,1010101]

binary 1010101 is decimal 85

echo decimal 20 is hex %@convert[10,16,20]

decimal 20 is hex 14

echo hexadecimal FF is octal %@convert[16,8,FF]

hexadecimal FF is octal 377

echo this year is %@convert[10,2,%_year] in binary

this year is 11111011100 in binary

See also: @COMMA, @FORMAT, @FORMATN.

@COUNT

@COUNT[c,string] : Returns the number of times the character c appears in string.

Examples:

echo %@count[e,Another function example]

3

@CRC32

	String mode:	@CRC32[s,string]

	File mode:	@CRC32[[d,][f,]filename]

Returns the CRC32 value (using the same algorithm as PKZIP or WINZIP) of the character in string or of the contents of the file filename. The first parameter must be s for a string, and any leading or trailing whitespace characters in string are included.

If the first argument for file mode is a d, @CRC32 will return the result in decimal (base 10) format. (This is the same format as POSIX 1003.2.) Otherwise, the result is returned in hexadecimal format.

Filename may be specified with or without an optional f. @CRC32 returns -1 if the file does not exist, or it cannot be read.

Since Take Command handles all internal strings as Unicode, @CRC32 will return different results for a string and the identical string in an ASCII file.

See also: @SHA256, @SHA384, @SHA512, and @MD5..

Examples:

echo %@crc32["C:\windows\explorer.exe"]

3F1E7CFE

echo %@crc32["%comspec"]

F36EB74C

echo %@crc32[d,"%comspec"]

4084119372

@CWD

@CWD[d:] : Returns the current working directory of the specified disk drive in the format d:\pathname. If the current working directory is the root directory, the format is d:\. The drive letter must be followed by a colon.

Examples:

echo %@cwd[C:]

c:\Windows

echo %@cwd[%_disk:]

D:\release\version14

See also: @CWDS.

@CWDS

@CWDS[d:] : Returns the current working directory of the specified disk drive in the format d:\pathname\. The drive letter must be followed by a colon.

Examples:

echo %@cwds[C:]

c:\Windows\

echo %@cwds[%_disk:]

D:\release\version14

See also: @CWD.

@DATE

@DATE[date[,format]] : Returns the number of days since January 1, 1980 for the specified date. See date formats for information on acceptable date formats. Date must be between 1980-01-01 and 2099-12-31 (inclusive).

@DATE accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Examples:

echo %@date[01-01-2012]

11688

echo %@date[2012-01-01,4]

11688

echo %@date[%_date]

11814

	@DATECONV	Not in LE

@DATECONV[date,format] - convert a date from the default format to another format. The output formats are:

	0	system default

	1	USA (mm/dd/yy)

	2	European (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO 8601 (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Example:

echo %@dateconv[5-1-2012,4]

2012-05-01

@DAY

@DAY[date[,format]] : Returns the numeric day of the month for the specified date. See date formats for information on acceptable date formats.

@DAY accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Examples:

echo %@day[2012-01-01]

1

echo %@day[%_date]

6

	@DEBUG	Not in LE

@DEBUG[string] : Write a string to the system debugger.

@DEC

@DEC[string] : Returns :

●-1 if string is empty
●otherwise the same value as @EVAL[string - 1]

If string is the name of an environment variable, its value is used whether or not it is preceded by a percent sign % without modifying the value of the variable. To actually decrement the value of the variable var use:

set var=%@dec[%var]

Example:

set start=5

set result=%@dec[start]

echo %result

4

@DECIMAL

@DECIMAL[number]: Returns the portion of number to the right of the Decimal character as an integer numeric string. Trailing zeros are used to pad to the Minimum Precision specified for @EVAL. For example:

%@decimal[%@eval[1/2]]

is 5 if minimum width is 0, and 50000 if minimum width is 5.

@DECIMAL will perform an implicit @EVAL on its argument, so you can enter an arithmetic expression (including the @EVAL =min,max format string following the argument).

Examples:

	function

	value

	%@decimal[1234]

	0

	%@decimal[1.234]

	234

	%@decimal[12.34]

	34

@DESCRIPT

@DESCRIPT[filename]: Returns the file description for the specified filename (see DESCRIBE). If there is no description for the file, @DESCRIPT returns an empty string.

The filename must be in quotes if it contains white space or special characters.

Examples:

echo %@descript["D:\My Path\Myfile.exe"]

echo %@descript["%comspec"]

@DEVICE

@DEVICE[name] : Returns 1 if the specified name is a character device (such as a serial port), or 0 if not. A trailing : is optional except for the pseudo-device CLIP: (to differentiate it from a possible filename named "clip").

Examples:

echo %@device[%comspec]

0

echo %@device[lpt1]

1

echo %@device[com1]

1

echo %@device[com5]

0

echo %@device[clip]

0

echo %@device[clip:]

1

@DIGITS

@DIGITS[n]: Returns 1 if the string is composed of decimal digits only, otherwise it returns 0. The Decimal character, the Thousands character, and the sign characters (+ or -) are not digits, and if they are present in the string @DIGITS will return 0.

Examples:

echo %@digits[12345]

1

echo %@digits[-12345]

0

echo %@digits[1.2345]

0

	@DIRSTACK	Not in LE

@DIRSTACK[n] : Returns the name of the nth entry in the directory stack. The oldest is number 0. If no n parameter is specified, returns the total number of entries in the stack. The directory stack is set by calls to PUSHD / POPD.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

See also: DIRS, POPD, PUSHD and Directory Navigation.

Examples:

pushd c:\windows

pushd c:\windows\system32

echo %@dirstack[0]

C:\

echo %@dirstack[1]

C:\Windows

echo %@dirstack[]

2

@DISKFREE

@DISKFREE[d:[,scale[c]]] : Returns the amount of free disk space on the specified drive. If you're specifying a drive, the drive letter must be followed by a colon. Optionally, you can specify a directory or UNC name, and @DISKFREE will display the free disk space on the drive referenced by that name (which may be different from the drive if the directory is a link to a directory on another drive).

The optional second parameter specifies the reporting scale (see Memory Size / Disk Space / File Size Units and Report Format). If the scale specification is suffixed with c the result will be formatted using the thousands separator.

@DISKFREE supports OpenAFS names.

See also: @DISKTOTAL and @DISKUSED.

Examples:

echo %@diskfree[c:]

19941240832

echo %@diskfree[%_disk:,Kc]

503,709,632

@DISKTOTAL

@DISKTOTAL[d:[,scale[c]]] : Returns the total disk space on the specified drive. If you're specifying a drive, the drive letter must be followed by a colon. Optionally, you can specify a directory or UNC name, and @DISKTOTAL will display the total disk space on the drive referenced by that name (which may be different from the drive if the directory is a link to a directory on another drive).

The optional second parameter specifies the reporting scale (see Memory Size / Disk Space / File Size Units and Report Format). If the scale specification is suffixed with c the result will be formatted using the thousands separator.

@DISKTOTAL supports OpenAFS names.

See also: @DISKFREE and @DISKUSED.

Examples:

echo %@disktotal[c:]

120031539200

echo %@disktotal[%_disk:,Kc]

976,657,404

@DISKUSED

@DISKUSED[d:[,scale[c]]] : Returns the amount of disk space in use on the specified drive. If you're specifying a drive, the drive letter must be followed by a colon. Optionally, you can specify a directory or UNC name, and @DISKUSED will display the disk space in use on the drive referenced by that name (which may be different from the drive if the directory is a link to a directory on another drive).

The optional second parameter specifies the reporting scale (see Memory Size / Disk Space / File Size Units and Report Format). If the scale specification is suffixed with c the result will be formatted using the thousands separator.

@DISKUSED supports OpenAFS names.

See also: @DISKFREE and @DISKTOTAL.

Examples:

echo %@diskused[c:]

100090298368

echo %@diskused[%_disk:,Kc]

472,947,772

	@DOMAIN	Not in LE

@DOMAIN[name] : Returns the domain of the computer specified by the DNS or NetBios name. If name is not specified, returns the domain of the local computer.

@DOW

@DOW[date[,format]] : Returns the first three characters of the English name of the day of the week for the specified date ("Mon", "Tue", "Wed", etc.). See date formats for information on acceptable date formats.

@DOW accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Examples:

echo %@dow[01-01-1980]

Tue

echo %@dow[%_date]

Sun

See also: @IDOW.

@DOWF

@DOWF[date[,format]] : Returns the full English name of the day of the week for the specified date ("Monday", "Tuesday", etc.). See date formats for information on acceptable parameter formats.

@DOWF accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Examples:

echo %@dowf[01-01-1980]

Tuesday

echo %@dowf[%_date]

Sunday

See also: @IDOWF.

@DOWI

@DOWI[date[,format]] : Returns an integer representing the day of the week for the specified date (1 = Sunday, 2 = Monday, etc.). See date formats for information on acceptable date formats.

@DOWI accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Examples:

echo %@dowi[01-01-1980]

3

echo %@dowi[%_date]

1

@DOY

@DOY[date[,format]] : Returns the day of year (1 - 366) for the specified date. See date formats for information on acceptable date formats.

@DOY accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Examples:

echo %@doy[02-02-2010]

33

echo %@doy[%_date]

127

@DRIVETYPE

@DRIVETYPE[drive] : Return the type for the specified drive:

	0	The drive type cannot be determined

	1	The root path is invalid (no volume is mounted at the path)

	2	Removable disk

	3	Fixed disk

	4	Remote (network) drive

	5	CD-ROM

	6	RAM disk

Examples:

echo %@drivetype[c:]

3

echo %@drivetype[z:]

4

echo %@drivetype[e:]

5

	@DRIVETYPEEX	Not in LE

@DRIVETYPEEX[drive] : Return the type for the specified drive:

	0	The drive type cannot be determined

	1	The root path is invalid (no volume is mounted at the path)

	2	Removable disk

	3	Fixed disk

	4	Remote (network) drive

	5	CD-ROM

	6	RAM disk

	7	DVD

	8	Tape

Examples:

echo %@drivetypeex[c:]

3

echo %@drivetypeex[z:]

4

echo %@drivetypeex[e:]

7

	@ENUMSERVERS	Not in LE

@ENUMSERVERS[n,server[,type]] : Enumerate the servers on the network. n is the entry number in the list of servers (the first one is 0). server is the machine name(s) to match and it may contain wildcards. Returns a null string if there are fewer than n-1 matching servers. This function can be repeatedly called, incrementing n each time to enumerate all available server names until it returns a null string.

If n is -1, @ENUMSERVERS returns the number of matching servers.

@ENUMSERVERS takes an optional third argument to return only servers of that type. The possible types are:

WORKSTATION - All workstations.

SQLSERVER - Any server running Microsoft SQL Server

DOMAIN - Primary domain controller

DOMAINBACKUP - Backup domain controller

DOMAIN_ENUM - Primary domain

LOCAL - Servers maintained by the browser

AFP - Apple File Protocol servers

TIME - Servers running the Timesource service

PRINTQ - Server sharing print queue

TERMINAL - Terminal Servers

CLUSTER - Server clusters in the domain

VSCLUSTER - Cluster virtual servers in the domain

MASTER - Server running the master browser service

WARNING! Windows may require a significant amount of time before returning data to this function when used on large networks.

Examples:

echo %@enumservers[0,L*]

\\LINKSTATION

for %i in (0 1 2) echo %@enumservers[%i,*]

\\LINKSTATION

\\MUSIC

\\WEBHOST

	@ENUMSHARES	Not in LE

@ENUMSHARES[n,\\server\shares] : Enumerate the share names for the specified server. n is the entry number in the list of shares (the first one is 0). server is the server name, and shares is the sharename(s) to match. Shares may contain wildcards. Returns a null string If there are fewer than n-1 matching shares. This function can be repeatedly called, incrementing n each time to enumerate all available shares until it returns a null string.

If the n is -1, @ENUMSHARES returns the number of matching sharenames.

Examples:

echo %@enumshares[0,\\LINKSTATION*]

\\LINKSTATION\info

for %i in (0 1 2) echo %@enumshares[%i,\\LINKSTATION*]

\\LINKSTATION\info

\\LINKSTATION\share

\\LINKSTATION\archive

	@ERRTEXT	Not in LE

@ERRTEXT[n] : Returns the operating system error text for the specified code. The text will be in the default language.

Examples:

echo %@errtext[2]

The system cannot find the file specified.

echo %@errtext[255]

The extended attributes are inconsistent.

echo %@errtext[%_syserr]

Incorrect function.

@EVAL

@EVAL[expression[=displayformat]]: Evaluates a mathematical expression and returns its value in the format specified by displayformat or in the default format. Parameter Interpretation below describes what expression may contain. Display precision and output format below explains the result format.

The expression can contain environment variables and other variable functions, and may use any of the operators listed below. @EVAL also supports parentheses (to control evaluation order), commas, hexadecimals and decimal separators. Parentheses can be nested. @EVAL will strip leading and trailing zeros from the result unless you use the output formatting operators.

@EVAL supports very large numbers. The maximum size is 20,000 digits (10,000 digits to the left of the decimal point and 10,000 decimal places). If you want to use more than the default decimal values you'll need to change your @Eval Precision configuration options or use the "=x.y" format in @EVAL. The integer-only operators (AND, OR, and XOR) are limited to 64-bit integers.

[image: Onestep] Parameter Interpretation

[image: Onestep] Arithmetic operators

[image: Onestep] Trigonometric and transcendental functions

[image: Onestep] Other functions

[image: Onestep] Order of precedence

[image: Onestep] Precision of internal calculations

[image: Onestep] Display precision and output format

[image: Onestep] Examples

Parameter Interpretation

Expression may contain environment and internal variables, array variables (not in TCC/LE), and variable functions. After all variables and functions have been expanded, it must be composed only of numeric strings and names of functions in Trigonometric and transcendental functions or Other functions, connected by Arithmetic operators and optionally grouped with parentheses.

@EVAL permits you to simplify expression by dropping the % percent mark in front of the names of environment variables. This also prevents the TCC parser from expanding (possibly erroneously) variables before passing them to @EVAL. You must include % for internal variables and variable functions. @EVAL also permits you to use characters which normally have special meaning for TCC e.g., & < > ^ | without disabling their special meaning or quoting them.

Note: To ensure that expression is interpreted correctly, spaces should be placed on both sides of each operator, and parentheses used liberally. For example:

%@eval[(20 %% 3) + 4]

%@eval[12 and 65]

@EVAL also accepts numbers in the e exponent syntax; i.e. 1575e-2 = 15.75.

Number base

If a string starts with the characters 0x it is interpreted as an integer in hexadecimal notation. If a string starts with the characters 0b it is interpreted as an integer in binary notation. Any other numeric string is considered to be a decimal number.

For example:

[c:\] echo %@eval[0x10 + 16]

32

You can specify hexadecimal output with the special syntax @eval[...=H]. For example:

 echo %@eval[3*6=H]

will output 12 (hex). No leading 0x is included in the output. To convert between decimal and hexadecimal formats, see the @CONVERT function.

You can specify binary output with the special syntax @eval[...=B]. For example:

 echo %@eval[3*6=B]

Arithmetic operators

Every operator accepts both integer and non-integer parameters, except as noted below.

Operators accepting fractional parameters

	+	(with one parameter) sign of numeric parameter (e.g. +3)

	+	(with two parameters) addition

	-	(with one parameter) negation of symbolic parameter (e.g., -n) or sign of numeric parameter (e.g. -1, +3)

	-	(with two parameters) subtraction

	*	multiplication

	/	division

	**	exponentiation

	!	boolean not

Operators requiring integer parameters

	\	integer division (returns the integer part of the quotient)

	MOD	modulo (returns the remainder when the first parameter is divided by the second)

	%%	same as MOD

	SHL	arithmetic left shift of the first parameter, truncated toward zero to an integer, by the number of bits specified by the second parameter

	<<	same as SHL

	SHR	arithmetic right shift of the first parameter, truncated toward zero to an integer, by the number of bits specified by the second parameter

	>>	same as SHR

	>	greater than

	<	less than

Operators which truncate parameters to integer

	AND	bitwise and (returns 1 for each bit position where the corresponding bits in both parameters are 1)

	&	same as AND

	OR	bitwise or (returns 1 for each bit position where the corresponding bit in at least one parameter is 1)

	|	same as OR

	XOR	bitwise exclusive or (returns 1 for each bit position where the corresponding bits of the two parameters are different)

	^	same as XOR

	~	unary NOT

Trigonometric and transcendental functions

Expression may include the trigonometric and transcendental functions below. The argument is interpreted as radians.

	log(x)	natural logarithm

	log10(x)	log 10

	exp(x)	exponential

	sin(x)	sine

	asin(x)	arcsine

	sinh(x)	hyperbolic sine

	cos(x)	cosine

	acos(x)	arccosine

	cosh(x)	hyperbolic cosine

	tan(x)	tangent

	atan(x)	arctangent

	tanh(x)	hyperbolic tangent

The special string PI is a shortcut for the value 3.14159265358979323846.

Other functions (Not available in TCC/LE)

abs(x) absolute value

ceil(x) ceiling

fact(x) factorial

floor(x) floor

gcd(x y) greatest common divisor

lcm(x y) least common multiple

ror(x y z) rotate x right y bits with a variable size of z (in bits)

rol(x y z) rotate x left y bits with a variable size of z (in bits)

Order of precedence

	1.	variables

	2.	expressions in matching parentheses

	3.	functions listed in Trigonometric and transcendental functions

	4.	exponentiation

	5.	multiplication, division, and MOD

	6.	addition and subtraction

	7.	>, <, AND, OR, XOR, NOT, SHL, and SHR

When multiple consecutive expressions of a single precedence level are used, evaluation is left to right.

For example, 3 + 4 * 2 will be interpreted as 3 + 8, not as 7 * 2. To change this order of evaluation, use parentheses to specify the order you want.

Precision of internal calculations

@EVAL supports numbers up to 20,000 digits; it is highly unlikely you'll need greater precision than this!

Display precision and output format

The maximum display precision is 10,000 digits to the left of the decimal point and 10,000 digits to the right. You can alter the default decimal precision with the OPTION command, the @EVAL Precision configuration options, and with the SETDOS /F command. You can change the decimal separator with the decimal character configuration option or the SETDOS /G command.

You can alter the display format for the current instance of @EVAL by specifying displayformat.

Hexadecimal display format

If displayformat is the letter H, output will be hexadecimal. If displayformat is X, the output will be hexadecimal with a leading 0x.

Binary display format

If displayformat is the letter B, output will be binary.

Explicit precision

If displayformat is i.a, then:

●i must be a number which specifies the minimum decimal precision (the minimum number of decimal places displayed);
●a must be a number which sets the maximum decimal precision.
●the character separating i and a may be the comma if it is your decimal separator

You may specify either or both parameters i and a. If i >a, or if only i is specified, i is used as both the minimum and maximum precision, e.g. both =2 and =2.1 are equivalent to =2.2.

Examples

	Expression

	Value

	@eval[3 / 6=2.4]

	0.50

	@eval[3 / 6=4.4]

	0.5000

	@eval[3 / 7]

	0.4285714286

	@eval[3 / 7=.4]

	0.4286

	@eval[3 / 7=2.2]

	0.42

	@eval[3 / 7=2]

	0.42

See also: @DEC and @INC.

@EXEC

@EXEC[command] : Execute command and return its numeric exit code.

Command can be an alias, internal command, external command, .BTM, .BAT, or .CMD file.

By default, @EXEC returns the result code from command (see the ? and _? variables). However, if in command you preface the command name with @ then @EXEC returns an empty string.

Example:

PROMPT=%@exec[@color 15 on %@if[%@removable[%_disk] eq 0,2,4] & echos [%_cwd%] & color 11 on 0]$s

See also: @EXECSTR.

	@EXECARRAY	Not in LE

@EXECARRAY[array,command] : Execute the specified command and store the resulting lines in the specified array variable. The array must be one-dimensional.

You must define the array before running @EXECARRAY. For example:

setarray aresult[10]

echo %@execarray[aresult,dir /u] >& nul

@EXECARRAY will read the number of lines specified in the array size definition, or the number of lines in the command output (whichever is less). @EXECARRAY returns the return value of the command.

The number of lines stored in the array is saved in the _EXECARRAY internal variable.

@EXECSTR

●@EXECSTR[[n,]command] : Runs the specified command and returns line n (or the first line if n is not specified) written to stdout by command. For example, to return the third line returned by VER /R:

 echo %@execstr[2,command]

If n is negative, @EXECSTR starts at the last line and counts backwards.

(The /n option is not available in TCC/LE.)

@EXECSTR is useful for retrieving a result from an external utility. For example, if you have an external utility called NETTIME.EXE which retrieves the time of day from your network server and writes it to standard output, you could save it in an environment variable using a command like this:

set server_time=%@execstr[d:\path\nettime.exe]

If the same utility returned a result properly formatted for the TIME command, you could also use it to set the time on your system:

time %@execstr[d:\path\nettime.exe]

@EXECSTR can also be used with internal commands:

echo Newest file is: %@execstr[*dir /a:-d /h /o:-d /f]

@EXECSTR involves several extensive internal processing stages. You might be able to use more complex command sequences (pipes, command groups, etc.) as its parameter, but always test carefully first as the results may not always be what you expect. We recommend that you only use a single command (internal, external, batch file, etc.) parameter.

See also: @EXEC and @EXECARRAY.

	@EXETYPE	Not in LE

@EXETYPE[filename]: Returns the application type for an executable file:

	Code

	Application type

	0

	Unknown

	1

	DOS app

	2

	PIF file

	3

	Win16

	4

	Win 3.x VxD

	5

	OS/2

	6

	Win32 GUI

	7

	Win32 console

	8

	Posix

Examples:

echo %@exetype["dc:\windows\explorer.exe"]

6

echo %@exetype["%comspec"]

7

@EXPAND

@EXPAND[[range...] filename[,[{+|-}]rhsadecijopt]] : Returns (in a single line), the names of all files and directories that are within the specified range[s], AND match filename, AND have the specified attributes. Filename may contain wildcards and include lists. Returns an empty string if no files match. If the file list is longer than the allowed command line length, it will be truncated without an error message. Each returned filename which contains white space or other special characters will be delimited by double quotes.

Filename must be in double quotes if it contains white space or special characters.

The range and attribute parameters, if included, define properties of the files that will be included in the result as specified in File Selection. Multiple range parameters may be included, but not more than one each of description range, size range, date range, and time range. Range parameters must precede filename.

Examples:

echo %@expand[/[s2k,3k] *.txt]

displays all files with extension txt in the current directory with size at least 2000 bytes and at most 3000 bytes

echo %@expand[*,d]

displays all subdirectories

echo %@expand[/[d-365] %windir\w*.exe;w*.dll]

displays all files at most 365 days old in the Windows directory, with extension EXE or DLL, and name beginning with W.

@EXT

@EXT[filename] : Returns the extension from filename, without a leading period. On volumes which support long file names, the extension can be up to 255 characters long. On FAT drives it can be up to 3 characters long. filename must be quoted if it contains white space or special characters.

On an LFN drive, the returned extension may contain white space or special characters. To avoid problems which could be caused by these characters, quote the returned extension before you pass it to other commands.

Examples:

set COMSPEC="c:\program files\jpsoft\tcmd14x64\tcc.exe"

echo %@ext[%@comspec]

exe

echo %@ext["LFN Names may have.very long extensions"]

very long extensions

@FIELD

@FIELD[["sep_list",]n,string] : Returns the nth field in string. The first field is numbered 0. If n is negative, fields are counted backwards from the end of string. You can specify the rightmost field by setting n to -0.

You can specify a range of fields to return with the syntax:

@FIELD[["sep_list",]start[-end | +range],string]

Specify an inclusive range with a -. For example:

%@FIELD[2-4,A B C D E F G] will return "C D E". (Note that you cannot use inclusive ranges when starting from the end.)

You can specify a relative range with a +. For example:

%@FIELD[2+1,A B C D E F G] will return "C D".

The default list of separators for @FIELD, @FIELDS, @WORD and @WORDS consists of space, tab, and comma. You can use the optional first parameter, sep_list, to specify the separators that you wish to use. If you want to use a double quote as a separator, prefix it with an escape character, e.g., ^". Alphabetic characters in sep_list are case sensitive. If you do not specify a separator list, @FIELD will skip any leading separators.

@FIELD and @FIELDS differ from @WORD and @WORDS in how multiple consecutive separators are counted. @WORD and @WORDS consider a sequence as a single separator, and ignore separators at either end of string. In contrast, @FIELD and @FIELDS count each occurrence of a separator individually, including those at either end of string.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits). To use hexadecimal form for a negative n, remember to use 32-bit 2's complement arithmetic, e.g., 0xFFFFFFFF for -1. There is no hexadecimal form to specify field -0 (the rightmost field).

If string is double quoted, you must specify sep_list.

See also: @WORD, @WORDS, @FIELDS.

Examples:

	function

	value

	%@field[2,zero,one,two,three]

	two

	%@field[2,zero,,two,three]

	two

	%@field["\",2,C:\Program Files\My Dir\myapp.exe]

	My Dir

	%@field[-2,zero,one,two,three]

	one

@FIELDS

@FIELDS[["sep_list",]string] : Returns the number of fields in string.

The default list of separators for @FIELD, @FIELDS, @WORD and @WORDS consists of space, tab, and comma. You can use the optional first parameter, sep_list, to specify the separators that you wish to use. If you want to use a quote mark as a separator, prefix it with an escape character, e.g., ^". Alphabetic characters in sep_list are case sensitive. If you do not specify a separator list, @FIELD will skip any leading separators.

@FIELD and @FIELDS differ from @WORD and @WORDS in how multiple consecutive separators are counted. @WORD and @WORDS consider a sequence as a single separator, and ignore separators at either end of string. In contrast, @FIELD and @FIELDS count each occurrence of a separator individually, including those at either end of string.

If string is double quoted, you must specify sep_list.

Example:

echo %@fields[" ,",Now is the time]

4

See also: @WORD, @WORDS, @FIELD.

	@FILEAGE	Not in LE

@FILEAGE[filename[,a|c|w[u]]] : Returns the date and time of the file as an age.

Filename must be in quotes if it contains white space or special characters. The optional second parameter selects which date field is returned for files on a VFAT or NTFS drive: a means the last access date, c means the creation date, and w means the last modification (write) date. The default is w.

If you append a u to the second argument, @FILEAGE will display the age in UTC.

Examples:

echo %@fileage["c:\windows\explorer.exe]

129801709001110605

echo %@fileage["%comspec",c]

129801709001110605

See also: Time Stamps, @AGEDATE and @MAKEAGE.

	@FILEARRAY	Not in LE

@FILEARRAY[array,filename] : Read the specified file and store the resulting lines in the specified array variable (one line per element). The array must be one-dimensional.

You must define the array before running @FILEARRAY. For example:

setarray aresult[10]

echo %@filearray[aresult,test.dat]

@FILEARRAY will read the number of lines specified in the array size definition, or the number of lines in the files (whichever is less).

@FILEARRAY will return the number of lines read.

@FILECLOSE

@FILECLOSE[n] : Closes the file whose handle is n. Returns 0 if the file was successfully closed, or -1 if an error occurred.

This function should only be used with file handles returned by @FILEOPEN! If you use it with any other number you may damage other files opened by TCC (or by the program which started TCC).

See also the related handle-based functions:

	@FILEOPEN	Open a file handle

	@FILEREAD	Read next line from a file handle

	@FILESEEK	Move a file handle pointer

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITE	Write next line to a file handle

	@FILEWRITEB	Write data to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer.

Examples:

set h=%@fileopen["d:\path\myfile.txt",write]

echo writing %@filewrite[%h,this is a test] bytes

echo closing handle #%h: %@fileclose[%h]

@FILEDATE

@FILEDATE[filename[,a|c|w[u,d]]] : Returns the date a file was last modified, in the default country format (mm-dd-yy for the US), or as explicitly specified by the optional third parameter d (see Date Display Formats). Filename must be in quotes if it contains white space or special characters. The optional second parameter selects which date field is returned for files on an LFN drive: a means the last access date, c means the creation date, and w means the last modification (write) date, which is the default.

If you append a u to the second argument, @FILEDATE will display the date in UTC.

Example:

echo %@filedate["%comspec",c,4]

2012-04-29

See Time Stamps, @FILETIME, @FILEAGE.

	@FILEHANDLE	Not in LE

@FILEHANDLE[handle] : Returns the filename for the specified file handle (opened with @FILEOPEN).

Example:

set h=%@fileopen["d:\path\myfile.txt",r]

echo handle %h is : %@filehandle[%h]

handle 756 is : d:\path\myfile.txt

@FILENAME

@FILENAME[filename] : Returns the name and extension of a file, without a path.

The filename must be in quotes if it contains white space or special characters. On an LFN drive, the returned filename may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands.

Examples:

echo %@filename["D:\my path\myfile.exe"]

myfile.exe

echo %@filename["comspec"]

tcc.exe

@FILEOPEN

@FILEOPEN[filename,r[ead]|w[rite]|a[ppend][,b|t]] : Opens the file in the specified mode and returns the file handle as an integer. The optional third parameter controls whether the file is opened in binary or text mode. Text mode (the default) should be used to read text using @FILEREAD without a length, and to write text using @FILEWRITE. Binary mode should be used to read binary data with @FILEREAD with a length, and to write binary data with @FILEWRITEB. Returns -1 if the file cannot be opened.

Filename must be in quotes if it contains white space or special characters. To read from standard input, use CON: for the filename.

To open a file for both reading and writing, open it in append mode, then use @FILESEEK to position to the start of the file (or any other desired location) before performing additional operations.

@FILEOPEN can also open named pipes. The pipe name must begin with \\.\pipe\. @FILEOPEN first tries to open an existing pipe; if that fails it tries to create a new pipe. Pipes are opened in blocking mode, duplex access, byte-read mode, and are inheritable. @FILEOPEN will not return until another process connects to the pipe. For more information on named pipes see your Windows documentation.

@FILEOPEN can open file streams on NTFS drives if the stream name is specified. See NTFS File Streams for additional details on file streams.

You must reference the file exclusively using the returned file handle, and you must close the file using the file handle. This is especially important when you are debugging a batch program which uses @FILEOPEN. If you suspect that file handles have been opened and not closed, you should restart TCC.

Examples:

set h=%@fileopen["d:\path\myfile.txt",write]

echo writing %@filewrite[%h,this is a test] bytes

echo closing handle #%h: %@fileclose[%h]

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEREAD	Read next line from a file handle

	@FILESEEK	Move a file handle pointer

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITE	Write next line to a file handle

	@FILEWRITEB	Write data to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer.

@FILEREAD

@FILEREAD[n[,length]] : Reads data from the file whose handle is n. Returns the string **EOF** if you attempt to read past the end of the file. If length is not specified, @FILEREAD will read until the next CR or LF (end of line) character. If length is specified, @FILEREAD will read length bytes regardless of any end of line characters.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

This function should only be used with file handles returned by @FILEOPEN. If you use it with any other number you may damage other files opened by TCC (or by the program which started TCC).

Beware of characters with special meaning to Take Command, such as redirection and piping symbols, within the file. Use SETDOS /X with appropriate codes as needed.

Example:

set h=%@fileopen["d:\path\myfile.txt",r]

echo reading %@fileread[%h,32]

echo closing handle #%h: %@fileclose[%h]

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEOPEN	Open a file handle

	@FILESEEK	Move a file handle pointer

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITE	Write next line to a file handle

	@FILEWRITEB	Write data to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer.

@FILEREADB

@FILEREADB[n,length] : Reads n bytes of data from the file whose handle is n. Returns the string **EOF** if you attempt to read past the end of the file. The data will be returned as a string of space-separated numeric digits representing the ASCII value of each character.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

This function should only be used with file handles returned by @FILEOPEN. If you use it with any other number you may damage other files opened by TCC (or by the program which started TCC).

Beware of characters with special meaning to TCC, such as redirection and piping symbols, within the file. Use SETDOS /X with appropriate codes as needed.

Example:

set h=%@fileopen["d:\path\myfile.txt",r]

echo reading %@filereadb[%h,32]

echo closing handle #%h: %@fileclose[%h]

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEOPEN	Open a file handle

	@FILESEEK	Move a file handle pointer

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITE	Write next line to a file handle

	@FILEWRITEB	Write data to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer.

@FILES

@FILES[[/S[[+]n]] [range...][/H] filename[,[{+|-}]rhsadecijopt]] : Returns the number of files within range that match filename and have the specified attributes. Filename may contain wildcards and include lists. Returns 0 if no files match. To check files in multiple directories use @FILES once for each, and add the results with @EVAL.

Filename must be in double quotes if it contains white space or special characters.

The range and attribute parameters, if included, define properties of the files that will be included in the result as specified in File Selection. Multiple range parameters may be included, but not more than one each of description range, size range, date range, and time range. Range parameters must precede filename. Exclusion ranges are not supported.

If you include the optional /S argument, @FILES will search the current directory and all of its subdirectories for matching files. If you specify a number after the /S, @FILES will limit the subdirectory recursion to that number. (For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.)

If you specify a + followed by a number after the /S, @FILES will not count any files until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not count anything in \a or \a\b. (Not available in TCC/LE.)

If you include the optional /H argument, @FILES will not include the "." and ".." directory entries in the count.

Examples:

echo %@files[/[s2k,3k] *.txt]

number of files with extension txt in the current directory with size at least 2000 bytes and at most 3000 bytes

echo %@files[*,d]

number of subdirectories

echo %@files[/[d-365] %windir\w*.exe;w*.dll]

number of files at most 365 days old in the Windows directory, with extension EXE or DLL, and name beginning with w

@FILESEEK

@FILESEEK[n,offset,start] Moves the file pointer of the file whose handle is n by offset bytes from the reference location specified via start (see the table below). The return value of @FILESEEK is the offset of the file pointer from the beginning of the file after the specified move. If offset is negative, the file pointer is moved from the reference location toward the beginning of the file. If offset is positive, the file pointer is moved from the reference location toward the end of the file. If offset is 0, the pointer is moved to the reference location.

If the function fails, the return value is -1.

	start

	reference location

	0

	beginning of file

	1

	current file pointer

	2

	end of file

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

This function should only be used with file handles returned by @FILEOPEN. If you use it with any other number you may damage other files opened by TCC (or by the program which started TCC).

Useful special cases

If you set offset to 0 :

●@FILESEEK[n,0,0] moves the file pointer to the beginning of file
●@FILESEEK[n,0,1] returns the current location of the file pointer without moving it.
●@FILESEEK[n,0,2] moves the file pointer to the end of file, and returns the current file size.

Example:

set h=%@fileopen["d:\path\myfile.txt",rw]

echo file size = %@fileseek[%h,0,2]

echo closing handle #%h: %@fileclose[%h]

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEOPEN	Open a file handle

	@FILEREAD	Read next line from a file handle

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITE	Write next line to a file handle

	@FILEWRITEB	Write data to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer.

@FILESEEKL

@FILESEEKL[n,line[,1]] : Moves the file pointer to the specified line in the open file whose handle is n. The first line in the file is numbered 0. Returns the new position of the pointer, in bytes from the start of the file. The third parameter is optional, and determines the starting point for the seek. If not specified, or set to a value other than 1, @FILESEEKL starts at the beginning of the file. If set to 1, @FILESEEKL will start from the current position in the file.

If the function fails, the return value is -1.

@FILESEEKL must read each line of the file up to the target line in order to position the pointer, and can therefore cause significant delays if used in a loop or on a large file.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

This function should only be used with file handles returned by @FILEOPEN. If you use it with any other number you may damage other files opened by TCC (or by the program which started TCC).

Example:

set h=%@fileopen["d:\path\myfile.txt",rw]

echo file line 10 = %@fileseekl[%h,10,2]

echo closing handle #%h: %@fileclose[%h]

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEOPEN	Open a file handle

	@FILEREAD	Read next line from a file handle

	@FILESEEK	Move a file handle pointer

	@FILEWRITE	Write next line to a file handle

	@FILEWRITEB	Write data to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer.

@FILESIZE

@FILESIZE[[/S[[+]n]] [range...] filename[,[scale[c][,a]]] : Returns the size of a file, or -1 if the file does not exist. If filename includes wildcards or an include list, it returns the combined size of all matching files. The optional third parameter a tells @FILESIZE to return the amount of space allocated for the file(s) on the disk. (Network drives and compressed drives may not always report allocated sizes accurately, depending on the way the network or disk compression software is implemented.)

Filename must be in quotes if it contains white space or special characters.

The second parameter specifies the reporting scale (see Memory Size / Disk Space / File Size Units and Report Format). Adding the letter c requests the result be formatted using the thousands separator.

The optional range parameter defines properties of the files that will be included in the result as specified in File Selection. Multiple range parameters may be included, but not more than one each of description range, size range, date range, and time range. Range parameters must precede filename. Exclusion ranges are not supported.

If you include the optional /S argument, @FILESIZE will search the current directory and all of its subdirectories for matching files. If you specify a number after the /S, @FILES will limit the subdirectory recursion to that number. For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories. (Not available in TCC/LE.)

If you specify a + followed by a number after the /S, @FILESIZE will not count any file sizes until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not count anything in \a or \a\b.

Examples:

echo %@filesize[d:\path\myfile.ext]

417

echo %@filesize["%comspec",bc]

359,400

echo %@filesize["%comspec",bc,a]

360,448

@FILETIME

@FILETIME[filename[,[a|c|w[u]][,s]]] : Returns the time of day a file was last modified, in hh:mm format. Filename must be in quotes if it contains white space or special characters. The optional second parameter selects which time field is returned for files on an LFN drive: a means the last access time, c means the creation time, and w means the last modification (write) time, which is the default. Times are normally returned with hours and minutes only. To retrieve seconds as well, add s as the optional third parameter. On non-NTFS drives, the last access time is always returned as 00:00, and without a seconds field (see Time Stamp for additional details).

If you append a u to the second argument, @FILETIME will display the time in UTC.

Examples:

echo %@filetime["D:\my path\myfile.exe"]

16:40

echo %@filetime["%comspec",c,s]

11:01:40

See also: @FILEDATE, @FILEAGE.

@FILEWRITE

@FILEWRITE[n,text]: Writes a line to the file whose handle is n. Returns the number of characters written, or -1 if an error occurred. A CR/LF will be appended to text.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

This function should only be used with file handles returned by @FILEOPEN If you use it with any other number you may damage other files opened by TCC (or by the program which started TCC).

Beware of characters with special meaning to TCC, such as redirection and piping symbols, within the file. Use SETDOS /X with appropriate codes as needed.

Example:

set h=%@fileopen["d:\path\myfile.txt",w]

echo writing %@filewrite[%h,32]

echo closing handle #%h: %@fileclose[%h]

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEOPEN	Open a file handle

	@FILEREAD	Read next line from a file handle

	@FILESEEK	Move a file handle pointer

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITEB	Write data to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer.

@FILEWRITEB

@FILEWRITEB[n,length,string] : Writes the specified number of bytes from the string to the file whose handle is n. Returns the number of bytes written, or -1 if an error occurred.

Note: Writes ASCII output when passed a Unicode string. Note that if you're trying to write non-English (>128) characters with @FILEWRITEB, the output will probably not match the input.

If the length argument is -1, @FILEWRITEB will read the string argument as a series of ASCII values in decimal or hex to write to the file. For example:

 echo %@filewriteb[%file,-1,0xe0 0xF2 0xA9]

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

This function should only be used with file handles returned by @FILEOPEN! If you use it with any other number you may damage other files opened by TCC (or by the program which started TCC).

Beware of characters with special meaning to TCC, such as redirection and piping symbols, within the file. Use SETDOS /X with appropriate codes as needed.

Example:

set h=%@fileopen["d:\path\myfile.txt",r]

echo writing %@filewriteb[%h,10,Write some characters from this string]

echo closing handle #%h: %@fileclose[%h]

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEOPEN	Open a file handle

	@FILEREAD	Read next line from a file handle

	@FILESEEK	Move a file handle pointer

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITE	Write next line to a file handle

	@TRUNCATE	Truncate the file at the current position of the file handle pointer

	@FILTER	Not in LE

@FILTER[chars,string] : Removes any characters in "string" that aren't in "chars".

Example:

To remove all non-numeric characters from a variable:

set var=abc1234

echo %@filter[0123456789,%var]

1234

@FINDCLOSE

@FINDCLOSE[filename]: Signals the end of a @FINDFIRST ... @FINDNEXT sequence. You must use this function to release the directory search handle. Filename is unnecessary, this function can be simply called as %@FINDCLOSE[] without parameters. @FINDCLOSE returns 0 if a @FINDFIRST ...@FINDNEXT sequence is in effect, a non-zero value otherwise.

Examples:

echo %@findfirst[*.exe]

echo %@findclose[]

@FINDFIRST

@FINDFIRST[[range...] filename[,[+|-]rhsadecijopt]] : Returns the name of the first file that matches filename, which may include wildcards and/or an include list, and which file has the properties specified in the optional range and attribute parameters.

Filename must be in quotes if it contains white space or special characters.

The range and attribute parameters, if included, define properties of the files that will be included in the search as specified in File Selection Multiple range parameters may be included, but not more than one each of size, date, time, and file exclusion. Range parameters must precede filename. Each range parameter is of the form

/[a...]

where a is one of d, s, t, and/or !, followed by the range parameters.

On an LFN drive, the returned filename may contain white space or other special characters. Unlike @EXPAND[], no double quotes are added by this function. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. See the notes under Variable Functions for additional details.

@FINDFIRST[] locates the first file matching the requirements. To find more matching files, you must use @FINDNEXT[], and terminate the search with @FINDCLOSE[].

Warning: @FINDFIRST searches may not be nested!

Examples:

%@findfirst[/[d-30] *]

locate files created no more than 30 days ago

%@findfirst[/[s2k,3k] "%windir*.exe",a]

locate files with the extension exe, the archive flag set, and at least 2,000 bytes but not more than 3,000 bytes long, in the Windows directory.

@FINDNEXT

@FINDNEXT[[filename[,[][-]rhsadecijopt]]]: Returns the name of the next file that matches the filename(s) in the previous @FINDFIRST call. Returns an empty string when no more files match. @FINDNEXT should only be used after a successful call to @FINDFIRST.

You do not need to include the filename parameter, because it must be the same as the one used in the previous @FINDFIRST call, unless you want to change the file attributes for @FINDNEXT. Filename, if used, must be in quotes if it contains white space or special characters.

The attribute parameter, if included, defines the attributes of the files that will be included in the search as specified in Attribute Switches.

Range parameters may not be used in this function. The range parameters specified in the preceding @FINDFIRST call remain effective.

If you don't need to change the attribute parameters established by the preceding @FINDFIRST, you can simply use this function as %@FINDNEXT[] without parameters.

On an LFN drive, the returned filename may contain white space or other special characters. Unlike @EXPAND[], no double quotes are added by this function. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. See the notes under Variable Functions for additional details.

@FINDFIRST[] locates the first file matching the requirements. To find more matching files, you must use @FINDNEXT[], and terminate the search with @FINDCLOSE[].

Examples:

echo %@findfirst[*]

echo %@findnext[]

echo %@findnext[*,d]

echo %@findclose[]

	@FLOOR	Not in LE

@FLOOR[n]: Returns the largest integer that is not greater than n. @FLOOR will perform an implicit @EVAL on its argument, so you can enter an arithmetic expression.

Examples:

echo %@floor[3.14]

3

echo %@floor[-3.14]

-4

echo %@floor[0]

0

echo %@floor[123]

123

See also: @CEILING.

	@FOLDERS	Not in LE

@FOLDERS[[/S[[+]n]] [range...] dirname[,[{+|-}]rhsadecijopt]] : Returns the number of folders (subdirectories) within range that match dirname and have the specified attributes. Dirname may contain wildcards and include lists. Returns 0 if no folders match. To check folders in multiple source directories use @FOLDERS once for each, and add the results with @EVAL.

Dirname must be in double quotes if it contains white space or special characters.

The range and attribute parameters, if included, define properties of the folders that will be included in the result as specified in File Selection. Multiple range parameters may be included, but not more than one each of description range, date range, and time range. Range parameters must precede dirname. Exclusion ranges are not supported.

If you include the optional /S argument, @FOLDERS will search the current directory and all of its subdirectories for matching folders. If you specify a number after the /S, @FOLDERS will limit the subdirectory recursion to that number. (For example, if you have a directory tree "\a\b\c\d\e", /S2 will only affect the "a", "b", and "c" directories.)

If you specify a + followed by a number after the /S, @FOLDERS will not count any files until it gets to that depth in the subdirectory tree. For example, if you have a directory tree \a\b\c\d\e, /S+2 will not count anything in \a or \a\b.

If you are searching for subdirectories (i.e., by specifying "d" in the attribute argument), @FOLDERS will not count the "." and ".." directory entries.

Example:

echo %@folders[c:\windows]

58

echo %@folders[/s,c:\windows]

17728

@FORMAT

@FORMAT[format,string] : Reformats string, truncating it or padding it with spaces or zeros as necessary. format is of the format [-]i.a. If the optional minus sign is present, the result is left justified; otherwise it is right justified. If i is specified, and its first digit is 0, the padding character will will be 0, otherwise it will be a space. i is the minimum number of characters in the result, a is the maximum number of characters. If a is less than i, it will be ignored.

If string doesn't exist, @FORMAT treats it as an empty string and pads the output accordingly.

Examples

	function

	value

	"%@format[7,Hello]"

	" Hello"

	"%@format[.3,Hello]"

	"Hel"

	"%@format[4,5]"

	" 5"

	"%@format[04,5]"

	"0005"

	"%@format[-04,5]"

	"5000"

See also: @COMMA, @CONVERT, @FORMATN.

@FORMATN

@FORMATN[[-]width[.precision],value] : Formats a numeric value. Width is a nonnegative integer specifying the minimum number of characters printed. If Width has a leading 0, the number will be left-padded with zeros. If the number of characters in the output value is less than the specified width, blanks are added to the left or the right of the values depending on whether the "-" flag (for left alignment) is specified, until the minimum width is reached. Precision specifies the number of digits after the decimal point. The value is rounded to the appropriate number of digits.

If you don't specify a precision, @FORMATN will default to 16 decimal places, and may not round the number appropriately. (For example, @FORMATN[3,3.4] will produce "3.3999999999999999".)

Examples:

echo %@formatn[5.10,%@eval[2300*4.7]]

10810.0000000000

echo %@formatn[010.3,5]

000005.000

See also: @COMMA, @CONVERT, @FORMAT, @FORMATNC.

@FORMATNC

@FORMATNC[[-]width[.precision],value] : Formats a numeric value and automatically inserts the thousands separator. Width is a nonnegative integer specifying the minimum number of characters printed. If Width has a leading 0, the number will be left-padded with zeros. If the number of characters in the output value is less than the specified width, blanks are added to the left or the right of the values depending on whether the "-" flag (for left alignment) is specified, until the minimum width is reached. Precision specifies the number of digits after the decimal point. The value is rounded to the appropriate number of digits.

Examples:

echo %@formatnc[5.10,%@eval[2300*4.7]]

10,810.0000000000

echo %@formatnc[010.3,5]

000005.000

See also: @COMMA, @CONVERT, @FORMAT, @FORMATN.

@FSTYPE

@FSTYPE[d:] : Returns the file system type for the specified drive or sharename. @FSTYPE returns NTFS for a drive that uses the Windows NTFS file system. It returns FAT32 for FAT32 drives, and FAT for FAT12, FAT16, and VFAT drives.

You can specify either a drive name or a UNC name.

Examples:

echo %@fstype[c:]

NTFS

echo %@fstype[e:]

FAT32

echo %@fstype[\\Music\iTunes]

NTFS

	@FTYPE	Not in LE

@FTYPE[xxx[,u]] : Returns the open command string for the specified file type. @FTYPE looks first in ...\SHELL\OPEN2\COMMAND, then (if no match was found) in ...\SHELL\OPEN\COMMAND. If the optional second argument u is specified, @FTYPE will look in HKCU\SOFTWARE\CLASSES.

Example:

echo %@ftype[Word.Document.8]

"C:\Program Files\Microsoft Office\Office14\WINWORD.EXE" /n ""

See also @ASSOC and FTYPE.

@FULL

@FULL[filename] : Returns the full path and filename of a file. Filename must be in quotes if it contains white space or special characters. On an LFN drive, the returned filename may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. See the notes under Variable Functions for additional details.

Note: The @FULL function makes no assumption about the existence of a file or directory. The filename parameter can be any string and the function will attempt to turn it into a fully qualified "volume + path + name" specification, whether that full reference exists or not.

Examples:

cdd c:\windows

echo %@full[explorer.exe]

C:\Windows\explorer.exe

echo "%@full[.]"

"C:\Windows"

echo "%@full["\Program Files"]"

"C:\Program Files"

	@FUNCTION	Not in LE

@FUNCTION[name] : Returns the definition of the specified user-defined function name as a string, or a null string if the function doesn't exist. When manipulating strings returned by @FUNCTION you may need to disable certain special characters with SETDOS /X. Otherwise, command separators, redirection characters, and other similar punctuation in the function may be interpreted as part of the current command, rather than part of a simple text string.

Example:

echo %@function[myfunction]

See the FUNCTION command.

	@GETDATE	Not in LE

@GETDATE[[date]] : Display a calendar dialog and returns the selected date in yyyy-mm-dd format.

You can optionally pass a default date (also in yyyy-mm-dd format). If you do not specify a default date, @GETDATE will use the current date.

Example:

echo %@getdate[]

[image: @getdate]

	@GETDATETIME	Not in LE

@GETDATETIME[[date time]] :Display a date/time picker dialog and returns the selected date in yyyy-mm-dd hh:mm:ss format.

You can optionally pass a default date and time (also in yyyy-mm-dd hh:mm:ss format). If you do not specify a default date, @GETDATETIME will use the current date and time.

Example:

echo %@getdatetime[]

[image: @getdatetime]

@GETDIR

@GETDIR[d:\path[,title]] : Pops up a dialog box to select a directory. d:\path specifies the initial directory; if it is not specified, @GETDIR defaults to the current directory. Returns the chosen directory as a string, or an empty string if the user selects "Cancel" or presses Esc.

d:\path must be in quotes if it contains white space or special characters. On an LFN drive, the returned path may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned path before you pass it to other commands. See the notes under Variable Functions for additional details.

@GETDIR accepts an optional second parameter to set the title of the dialog box.

Example:

cdd %@getdir["C:\windows"]

[image: @getdir]

Note: @GETDIR deals with directories. All directories are folders, but not all folders are directories. To select a symbolic folder, see @GETFOLDER.

@GETFILE

@GETFILE[d:\path\filename[,filter[,title]]]: Pops up a dialog box to select a file. d:\path\filename specifies the initial directory and filename shown in the dialog, and may include wildcards. Returns the full path and name of the selected file or an empty string if the user selects "Cancel" or presses Esc. The optional second parameter specifies the file extension to use. You can specify multiple extensions by separating them with semicolons. For example, %@getfile[c:\windows,*.exe;*.btm] lets the user select from .EXE and .BTM files only.

The parameters must be in quotes if they contain white space or special characters. On an LFN drive, the returned filename may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. See the notes under Variable Functions for additional details.

@GETFILE accepts an optional third parameter to set the title of the dialog box.

If you're looking for directories, use @GETFOLDER.

Examples:

echo %@getfile[*]

[image: @getfile]

echo %@getfile["%windir",*.exe]

[image: @getdir3]

@GETFOLDER

@GETFOLDER[startdir[,title]] : Returns a folder selected from a tree view of available symbolic folders. If you don't specify a start folder, @GETFOLDER starts at My Computer or the equivalent symbolic folder in your Windows configuration.

The optional second argument sets the text to display above the tree view.

Examples:

echo %@getfolder[]

[image: @getfolder]

echo %@getfolder["c:\windiws"]

[image: @getfolder2]

Note: @GETFOLDER deals with folders. All directories are folders, but not all folders are directories. To select a directory, see @GETDIR.

	@GROUP	Not in LE

@GROUP[server,group,user] : Returns 1 if user is a member of the specified group. server specifies the DNS or NetBIOS name of the computer on which the function is to execute.

@HEXDECODE

@HEXDECODE[s,string] : Create a text string from a hexadecimal input string. Returns the text string.

@HEXDECODE[inputfile,outputfile] : Decode a hex encoded file. Returns 0 if the output file was successfully written.

Example:

echo %@hexdecode[s,656e636f6465207468697320737472696e67]

decode this string

@HEXENCODE

@HEXENCODE[s,string] : Create a hexadecimal string from a text input string. Returns the hex string.

@HEXENCODE[inputfile,outputfile] : Encode a text file as a hex encoded file. Returns 0 if the output file was successfully written.

Example:

echo %@hexencode[s,encode this string]

656e636f6465207468697320737472696e67

	@HISTORY	Not in LE

@HISTORY[x[,y]] : Returns a line or word from the command history. (This function will prove most useful in keystroke aliases). x is the line to retrieve (current line = 0), and y is the specific word (first word = 0) desired within that line. If y is omitted, @HISTORY returns the entire line.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

@HTMLDECODE

@HTMLDECODE[string] : Decode an HTML string. The HTML escaped characters (i.e., >) are replaced with their original values.

Example:

echo "%@htmldecode[This is & a string]"

"This is & a string"

See also TPIPE.

@HTMLENCODE

@HTMLENCODE[string] : Encode a string for HTML, replacing characters like > < & with the HTML escaped characters (i.e., > for >).

Example:

echo "%@htmlencode[This is & a string]"

"This is & a string"

See also TPIPE.

@IDOW

@IDOW[date[,format]] : Returns the 3-character abbreviation for the day of the week for the specified date, in the current locale language. See date formats for information on date formats.

@IDOW accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

Examples:

echo %@idow[01-01-1980]

Tue

echo %@idow[%_date]

Sun

See also: @DOW.

@IDOWF

@IDOWF[date[,format]] : Returns the full name for the day of the week for the specified date, in the current locale language. See date formats for information on date formats.

@IDOWF accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

Examples:

echo %@idowf[01-01-2010]

Tuesday

echo %@idowf[%_date]

Sunday

See also: @DOWF.

@IF

@IF[condition,string1,string2]: Evaluates condition according to the rules described in Conditional Expressions, and if true, it returns string1, otherwise it returns string2. Leading and trailing white space in string1 and string2 is retained. Either string may be empty or contain white space only. WARNING: Both string1 and string2 are evaluated whether or not used. Do not use @IF if evaluating either one of the strings may fail; use the IF or IFF command instead.

Examples

	1)	The expression

	

		%@IF[2 == 2,Correct!,Oops!]

	

		returns Correct!

	2)	The command

		echo Good %@if[%_hour ge 12,evening,morning]!

	

		displays Good morning! in the AM hours and Good evening! in the PM hours.

	3)	Assuming A and C are files in the current directory, but B is a subdirectory, the command:

		

		for %x in (A B C) echo "%x" is %@if[isfile "%x", ,not] a file

	

		will display

	

		"A" is a file

		"B" is not a file

		"C" is a file

@INC

@INC[string] returns

●1 if string is empty
●otherwise the same value as @EVAL[string + 1]

If string is the name of an environment variable, its value is used whether or not it is preceded by a percent mark % without modifying the value of the variable. To actually increment the value of the variable var use

set var=%@inc[%var]

Example:

set start=5

set result=%inc[start]

echo %result

6

@INDEX

@INDEX[string1,string2[,n]]: Returns the offset of string2 within string1, or -1 if string2 is not found or if string1 is empty. The first or leftmost position in string1 is numbered 0. The optional third parameter n has three different interpretations:

If n > 0, it specifies that the nth match from left to right is desired.

If n < 0 or it is prefixed with the minus sign -, it specifies that the -nth match from right to left is desired.

If n=0, the total number of matches is desired.

When n is omitted, the value returned is the offset of the first (leftmost) match.

Tips

●searching for a comma :

	1.	quote string1 (to prevent the expected comma making it appear as more than one parameter)

	2.	use escape character or its pseudovariable form %= in string2 to escape the comma

		 echo %@index["TCC, Take Command, TCCLE",^,,2]

●searching for a double quote :

	1.	use escape character or its pseudovariable form %= in string2 to escape the double quote

	2.	use the special form ^q to represent it in string2:

		echo %@index[contains a "quoted" word,^q,0]

See Codes for Escapable Characters for details.

Examples:

In all examples below

●string1: This is a fine help file
●string2: h

	 n

	result

	purpose

	omitted

	 1

	locate leftmost

	 0

	 2

	count occurrences

	 1

	 1

	locate leftmost

	 2

	15

	locate second leftmost

	 3

	-1

	locate third leftmost

	-1

	15

	locate rightmost

	-2

	 1

	locate second rightmost

	-3

	-1

	locate third rightmost

@INIREAD

@INIREAD[file,section,entry]: Returns the value of the first matching entry from the specified file, or an empty string if either file or the entry in file does not exist. If file contains more than one section named section, only the first one is searched for entry.

File, section, and entry must be in quotes if they contain white space or special characters.

File selection

Both the name and extension of file must be specified. This function does not apply a default extension. If file does not explicitly include a path, @INIREAD uses %Windir, the Windows installation directory. To use the current directory, you must explicitly specify it, e.g., using .\ as the path.

Example

%@iniread[c:\tcmd\tcmd.ini,TakeCommand,history]

returns the size of the command history if it is specified in TCMD.INI.

@INIWRITE

@INIWRITE[file,section,entry,string]: Creates, updates, or deletes an entry in the specified file. If file does not exist, it will be created. @INIWRITE returns 0 for success or -1 for failure.

File, section, and entry must be in quotes if they contain white space or special characters.

File selection

Both the name and extension of file must be specified. This function does not apply a default extension. If file does not explicitly include a path, @INIWRITE uses %Windir, the Windows installation directory. To use the current directory, you must explicitly specify it, e.g., using .\ as the path.

Action

If file does not exist, it will be created. If string is empty, file will be empty, otherwise a section line and a directive line will be created.

The remaining descriptions relate to the case when file exists.

If more than one match for section exists in file, only the first one is searched for entry. If more than one match exists for section and entry, only the first match is one is affected. Searching starts at the beginning of the file, and stops on the first match.

If string is empty, the matching entry, if any, is deleted. If string is not empty, and there is a matching section and entry, it is modified. If string is not empty, and there is no matching section and entry, it is created.

If entry is empty, the matching section (if any) is deleted.

Examples

echo %@iniwrite[c:\tcmd\tcmd.ini,TakeCommand,history,8192]

will set the size of the command history to 8,192 bytes.

echo %@iniwrite[c:\tcmd\tcmd.ini,TakeCommand,history,]

will remove the history entry from the file.

	@INODE	Not in LE

@INODE[filename] : Returns the inode (in hex) for the specified file.

When files are hard-linked to one another (see MKLNK), they share the same inode.

@INODE may not work for remote files (depending on your network redirector and the type of server you are querying).

Example:

echo %@inode[c:\windows\explorer.exe]

00040000:000199D3

@INSERT

@INSERT[offset,string1,string2] : Inserts string1 into string2 starting at offset. The first offset in string2 is 0. If offset is greater than the length of string2, string1 will be appended to the end of string2. If offset is negative, its value is used to count backward form the end of string2 (but not past its beginning). Setting offset to -0 is the same as setting it to 0, i.e., string1 will precede string2 in the result. To include a comma in string1, precede it with your escape character.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits). To use hexadecimal form for a negative offset, remember to use 32-bit 2's complement arithmetic.

Examples:

	function

	value

	%@insert[1,arm,wing]

	warming

	%@insert[8,very ,this is useful]

	this is very useful

	%@insert[255,^, very!,this is useful]

	this is useful, very!

	%@insert[-9,very ,this is useful]

	this very is useful

	%@insert[0,abcde,xyz]

	abcdexyz

@INSTR

@INSTR[start,[length],string] : Returns a substring, beginning at offset start and continuing for length characters. If length is positive or it is omitted, the offset is measured from the beginning (i.e., left end) of the string. If length is omitted, all of the string beginning at offset start is returned. If length is negative, the offset is measured leftward from the right end of the string, and its length is specified by the value of length without the minus sign. @SUBSTR is an older version of the same function.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits). To use hexadecimal form for a negative length, remember to use 32-bit 2's complement arithmetic.

Examples:

	function

	value

	=%@instr[8,3,this is useful]=

	=use=

	=%@instr[8,,this is useful]=

	=useful=

	=%@instr[8,-4,this is useful]=

	=is u=

	=%@instr[8,,commas, they don't matter]=

	=they don't matter=

@INT

@INT[n]: Returns the integer part of the number n. @INT will perform an implicit @EVAL on its argument, so you can use an arithmetic expression for n.

Examples:

echo %@int[1234]

1234

echo %@int[1.234]

1

echo %@int[12.34]

12

	@IPADDRESS	Not in LE

@IPADDRESS[hostname]: Returns the numeric IP address for the specified hostname. The result is displayed in the standard format nnn.nnn.nnn.nnn. An invalid or unknown hostname will return an error (see @ERRTEXT to decipher the error number if necessary).

See also @IPNAME.

Example:

echo %@ipaddress[jpsoft.com]

141.101.124.120

	@IPNAME	Not in LE

@IPNAME[numeric_IP] : Returns the host name for the specified numeric_IP address. An IP address 0 returns the name of the current local host (usually the computer name). The IP address can be expressed in the common format nnn.nnn.nnn.nnn or as a packed decimal. An invalid or unknown IP address returns an error (see @ERRTEXT to decipher the error number if necessary).

See also: @IPADDRESS.

Examples:

echo %@ipname[173.194.43.40]

lga15s35-in-f8.1e100.net

echo %@ipname[0]

ASUS-PC

@ISALNUM

@ISALNUM[string]: Returns 1 if string is entirely composed of alphabetic (a-z, A-Z) and/or numeric (0 - 9) characters; 0 otherwise.

See also: @ISALPHA, @ISASCII, @ISCNTRL, @ISDIGIT, @ISPRINT, @ISPUNCT, @ISSPACE, @ISXDIGIT.

Example:

echo %@isalnum[123abc]

1

echo %@isalnum[123 abc]

0

echo %@isalnum[123.456]

0

@ISALPHA

@ISALPHA[string]: Returns 1 if string is entirely composed of alphabetic (a-z, A-Z) characters; 0 otherwise.

See also: @ISALNUM, @ISASCII, @ISCNTRL, @ISDIGIT, @ISPRINT, @ISPUNCT, @ISSPACE, @ISXDIGIT.

Example:

echo %@isalpha[abc]

1

echo %@isalpha[ABC]

1

echo %@isalpha[A B C]

0

@ISASCII

@ISASCII[string]: Returns 1 if string is entirely composed of 7-bit ASCII characters (0x00 - 0x7F); 0 otherwise.

See also: @ISALNUM, @ISALPHA, @ISCNTRL, @ISDIGIT, @ISPRINT, @ISPUNCT, @ISSPACE, @ISXDIGIT.

Examples:

echo %@isascii[abc]

1

echo %@isascii[abc 123]

1

echo %@isascii["abc"a]

0

@ISCNTRL

@ISCNTRL[string]: Returns 1 if string is entirely composed of ASCII control characters (0x00 - 0x1F or 0x7F); 0 otherwise.

See also: @ISALNUM, @ISALPHA, @ISASCII, @ISDIGIT, @ISPRINT, @ISPUNCT, @ISSPACE, @ISXDIGIT.

Examples:

echo %@iscntrl[abc]

0

set var=^r^n

echo %@iscntrl[%var]

1

@ISDIGIT

@ISDIGIT[string] : Returns 1 if string is entirely composed of decimal digits (0- 9); 0 otherwise.

See also: @ISALNUM, @ISALPHA, @ISASCII, @ISCNTRL, @ISPRINT, @ISPUNCT, @ISSPACE, @ISXDIGIT.

Example:

echo %@isdigit[0]

1

echo %@isdigit[123.456]

0

echo %@isdigit[-123]

0

	@ISFLOAT	Not in LE

@ISFLOAT[string] : Returns 1 if string is composed only of numeric characters, a decimal separator, and an optional sign and/or thousands separator(s). The decimal separator and thousands separator are determined by your default country settings.

Example:

echo %@isfloat[1234]

0

echo %@isfloat[1234.5]

1

	@ISLOWER	Not in LE

@ISLOWER[string] - returns 1 if string is composed only of lower case letters.

Example:

echo %@islower[hello]

1

echo %@islower[Hello]

0

	@ISODOWI	Not in LE

@ISODOWI[date] : Returns the ISO 8601 numeric day of the week (Monday=1, Sunday=7).

Example:

echo %@isodowi[%_date]

7

echo %@isodowi[2012-01-02]

1

	@ISOWEEK	Not in LE

@ISOWEEK[date] : Returns the ISO8601 numeric week of year.

Example:

echo %@isoweek[%_date]

23

echo %@isoweek[2012-23-02]

1

	@ISOWYEAR	Not in LE

@ISOWYEAR[date] : Returns the ISO8601 numeric week date year.

Example:

echo %@isowyear[%_date]

2012

	@ISPRIME	Not in LE

@ISPRIME[n] : Returns 1 if the (64-bit integer) n is a prime number.

Example:

echo %@isprime[7]

1

echo %@isprime[22]

0

echo %@isprime[30181]

1

@ISPRINT

@ISPRINT[string]: Returns 1 if string is entirely composed of printable characters; 0 otherwise.

See also: @ISALNUM, @ISALPHA, @ISASCII, @ISCNTRL, @ISDIGIT, @ISPUNCT, @ISSPACE, @ISXDIGIT.

Examples:

echo %@isprint[abc]

1

set var=abc^ndef

echo %@isprint[%var]

0

	@ISPROC	Not in LE

@ISPROC[pid] : Returns 1 if the specified process ID is an active process, or 0 if it is not.

Example:

echo %@pid[tcc.exe]

447988

echo %@isproc[447988]

1

@ISPUNCT

@ISPUNCT[string]: Returns 1 if string is entirely composed of punctuation characters, i.e. printable characters which are not alphanumeric or space; 0 otherwise.

See also: @ISALNUM, @ISALPHA, @ISASCII, @ISCNTRL, @ISDIGIT, @ISPRINT, @ISSPACE, @ISXDIGIT.

Examples:

echo %@ispunct[.]

1

echo %@ispunct[+]

1

echo %@ispunct[:-)]

1

echo %@ispunct[.,a]

0

@ISSPACE

@ISSPACE[string]: Returns 1 if string is entirely composed of white space characters (0x09 - 0x0D or 0x20); 0 otherwise.

See also: @ISALNUM, @ISALPHA, @ISASCII, @ISCNTRL, @ISDIGIT, @ISPRINT, @ISPUNCT, @ISXDIGIT.

Example:

echo %@isspace[]

1

echo %@isspace[hello world]

0

	@ISUPPER	Not in LE

@ISUPPER[string] : Returns 1 if string is composed only of upper case letters.

Example:

echo %@isupper[HELLO]

1

echo %@isupper[Hello]

0

@ISXDIGIT

@ISXDIGIT[string]: Returns 1 if string is entirely composed of hexadecimal digits (0- 9,A-F, a-f); 0 otherwise.

See also: @ISALNUM, @ISALPHA, @ISASCII, @ISCNTRL, @ISDIGIT, @ISPRINT, @ISPUNCT, @ISSPACE.

Example:

echo %@isxdigit[0]

0

echo %@isxdigit[7F]

1

echo %@isxdigit[0x7F]

1

	@JUNCTION	Not in LE

@JUNCTION[dir] : Returns the directory referenced by the specified junction.

@LABEL

@LABEL[d:]: Returns the volume label of the specified disk drive. The drive letter must be followed by a colon.

Examples:

echo %@label[C:]

Windows7

echo %@label[%_disk:]

Development

See also: VOL.

	@LCS	Not in LE

@LCS[string1,string2] : Returns a pointer to the Longest Common Subsequence in string1 and string2.

@LEFT

@LEFT[n,string] : If n is positive, it returns the leftmost n characters of string. If n is greater than the length of string, it returns the entire string. If n is negative, it returns string after dropping its rightmost n characters, unless -n is greater than the length of string, in which case it returns an empty string.

Examples:

echo %@LEFT[2,jpsoft]

	jp	

echo %@LEFT[22,jpsoft]

jpsoft

echo %@LEFT[-2,jpsoft]

jpso

echo "%@LEFT[-22,jpsoft]"

""

@LEN

@LEN[string] : Returns the length of string.

Examples:

echo %@len[this is a test]

14

echo %@len[%comspec]

41

@LFN

@LFN[filename]: Returns the long filename for a short ("8.3") filename. The filename may contain any valid filename element including drive letter, path, filename and extension; the entire name including all intermediate paths will be returned in long name format. If filename does not refer to an actual file, the results are unpredictable.

On an LFN drive, the returned name may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. See the notes under Variable Functions for additional details.

Example:

echo "%@lfn[c:\progra~1]"

"C:\Program Files"

@LINE

@LINE[filename,n]: Returns line n from the specified file. The first line in the file is numbered 0. **EOF** is returned for all line numbers beyond the end of the file.

The filename must be in quotes if it contains white space or special characters.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

@LINE works with files having lines of no more than 32,767 characters. Longer lines will not be counted accurately.

The @LINE function must read each line of the file to find the line you request, and will therefore cause significant delays if used in a long loop or on a large file. For a more effective method of processing each line of a file in sequence use the DO command, or @FILEOPEN and a sequence of @FILEREADs.

You can retrieve input from standard input if you specify CON as the filename. If you are redirecting input to @LINE using this feature, you must use command grouping or the redirection will not work properly (you can pipe to @LINE without a command group; this restriction applies only to input redirection). For example:

(echo %@line[con,0]) < myfile.dat

@LINE can retrieve data from file streams on NTFS drives if the stream name is specified. See NTFS File Streams for additional details on file streams.

Beware of characters with special meaning to TCC, such as redirection and piping symbols, within the file. Use SETDOS /X with appropriate codes as needed.

@LINES

@LINES[filename]: Returns the line number of the last line in the file, or "-1" if the file is empty. The first line in the file is numbered 0, so (for example) @LINES will return 0 for a file containing one line. To get the actual number of lines, use %@INC[%@LINES[filename]].

The filename must be in quotes if it contains white space or special characters.

@LINES works with files having lines of no more than 32,767 characters; longer lines will not be counted accurately. @LINES must read each line of the file in order to count it, and will therefore cause significant delays if used on a large file.

@LINES can count lines in file streams on NTFS drives if the stream name is specified. See NTFS File Streams for additional details on file streams.

@LINES also sets two environment variables:

	%_LINES_MAXLEN	The length of the longest line (in characters)

	%_LINES_MAXLOC	The line number (base 0) of the longest line

Example:

echo %@lines[readme.txt]

170

	@LINKS	Not in LE

@LINKS[filename] : Returns the number of hard links for the specified file (NTFS only).

@LINKS may not work for remote files (depending on your network redirector and the type of server you are querying).

See also MKLNK.

Example:

echo %@links[c:\windows\explorer.exe]

2

@LOWER

@LOWER[string] : Returns the string converted to lower case.

Examples:

echo %@lower[ThiS iSS aTeSt]

this is a test

echo %@lower[%path]

c:\windows\system32

@LTRIM

@LTRIM[string1,string2] : - Returns string2 with all the leading characters in string1 removed. String1 must be enclosed in double quotes if it contains any spaces, tabs, or commas.

Examples:

echo "%@ltrim[JP,JP Software]"

" Software"

	@MACADDRESS	Not in LE

@MACADDRESS[IPaddress]: Returns the unique Media Access Control (MAC) address of the network interface at IPAddress.. An invalid or unknown address will return an error (see @ERRTEXT to decipher the error number if necessary).

See also @IPADDRESS.

Example:

echo %@macaddress[192.168.1.2]

00-7e-18-d5-2d-09

	@MAKEAGE	Not in LE

@MAKEAGE[date[,time[,format]]] : Converts date and time (if included) to an age, a single value in the same format as @FILEAGE.

@MAKEAGE accepts an optional third parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4 	ISO (yyyy-mm-dd)

	5	ISO 8601 (yyyy-Www-d)

	6	ISO 8601 (yyyy-ddd)

@MAKEAGE can be used to compare the time stamp of a file with a specific date and time, for example:

if %@fileage[myfile] lt %@makeage[1/1/85] echo OLD!

@AGEDATE is the inverse of this function.

Examples:

echo %@makeage[%_date]

129807360000000000

echo %@makeage[%_date,%_time]

129808104040000000

See also: Time Stamps, @FILEAGE, @AGEDATE.

	@MAKEDATE	Not in LE

@MAKEDATE[n[,d]]: Returns a date, formatted according to the current country settings, or as explicitly specified by d (see Date Display Formats). n is interpreted as the number of days since 1980-01-01, and must be in the range 0 to 43829 (corresponding to the date 2099-12-31). This is function is the inverse of @DATE. The optional second parameter specifies the date format:

	0	system default

	1	USA (mm/dd/yy)

	2	European (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO 8601 (yyyy-mm-dd)

	5	ISO 8601 (yyyy-Www-d)

	6	ISO 8601 (yyyy-ddd)

Examples:

echo %@makedate[7924]

09/11/01

echo %@makedate[7924,4]

2001-09-11

	@MAKETIME	Not in LE

@MAKETIME[n] : Returns a time (formatted using the Time Separator specified in Regional Settings). n is interpreted as the number of seconds since midnight, and must not exceed 86399. This function is the inverse of @TIME.

Examples:

echo %@maketime[45240]

12:34:00

echo %@maketime[79244]

22:00:44

	@MAX	Not in LE

@MAX[a,b,c,...]: Returns the largest in the list of parameters. All parameters must be integers in the range -2147483647 to 2147483647 and must be separated either by whitespace or by commas.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Example:

echo %@max[1,5,2,0,-1]

5

@MD5

String mode: @MD5[s,string]

File mode: @MD5[[f,]filename]

Returns the 32 hexadecimal digit MD5 hash of the character in string or of the contents of the file filename. The first parameter must be s for a string, and any leading or trailing whitespace characters in string are included.

Filename may be specified with or without an optional f. @MD5 returns -1 if the file does not exist, or it cannot be read.

Since Take Command handles all internal strings as Unicode, @MD5 will return different results for a string and the identical string in an ASCII file.

See also: @SHA256, @SHA384, @SHA512, and @CRC32.

Example:

echo %@md5[s,this is a string]

93D64091ADF43E8FC0B74257AFD82FC3

	@MIN	Not in LE

@MIN[a,b,c,...] : Returns the smallest in the list of parameters. All parameters must be integers in the range -2147483647 to 2147483647 and must be separated either by whitespace or by commas.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Example:

echo %@min[1,5,2,0,-1]

-1

@MONTH

@MONTH[date[,format]] : Returns the month number for the specified date (1-12). See date formats for information on acceptable date formats.

@MONTH accepts an optional second parameter specifying the date format:

	0	default

	1	USA (mm/dd/yy)

	2	Europe (dd/mm/yy)

	3	Japan (yy/mm/dd)

	4	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Examples:

echo %@month[2010-01-01]

1

echo %@month[%_date]

5

	@MX	Not in LE

@MX[address] : Returns the email server for the specified user address.

Example:

echo %@mx[support@jpsoft.com]

direct-connect.jpsoft.com

@NAME

@NAME[filename]: Returns the base name of a file, without the path or extension.

The filename must be in quotes if it contains white space or special characters. On an LFN drive, the returned filename may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. See the notes under Variable Functions for additional details.

Note: The @NAME function makes no assumption about the existence of a file or directory. Its filename parameter can be any string and the function will attempt to extract from it a base name.

Examples:

echo %@name[xyz.abc]

xyz

echo "%@name[%_comspec]"

"tcc"

@NUMERIC

@NUMERIC[[+|-]string] : Returns 1 if string is numeric, and 0 otherwise.

To be numeric, the following must be true:

	1.	The first character may be a + or - sign,

	2.	The next character must be a decimal digit (0 to 9) or the decimal separator.

	3.	The remainder of string must be composed entirely of decimal digits (0 to 9), the thousands separator, and no more than a single decimal separator, with no thousands separators following the decimal separator.

Examples:

	function

	value

	%@numeric[12345]

	1

	%@numeric[-12345]

	1

	%@numeric[.12345]

	1

	%@numeric[$12.34]

	0

	%@numeric[5.00.125]

	0

	%@numeric[+5.00.125,5]

	0

	%@numeric[.00.125]

	0

	%@numeric[-5,.00.125]

	0

@OPTION

@OPTION[directive] : Returns the current value of the requested configuration option. All directives which can be altered dynamically are supported. If directive is not supported, an error is returned.

For configuration directives, the current value returned may not match that stored in the .INI file.

For color directives, the current value is returned as a single number (0-255) combining foreground and background specifications. See Colors, Color Names & Codes for details.

Examples:

echo %@option[passiveftp]

Yes

echo %@option[stdcolors]

0

	@OWNER	Not in LE

@OWNER[filename]: Returns the owner of the specified file (if any).

Examples:

echo %@owner[c:\windows\explorer.exe]

NT SERVICE\TrustedInstaller

echo %@owner[v.exe]

ASUS-PC\Rex

@PATH function

@PATH[filename]: Returns the path portion of filename, if present, including the drive letter and a trailing backslash but not including the base name or extension. If the filename parameter doesn't contain path information, you may expand it first with the @FULL function.

The filename must be in quotes if it contains white space or special characters. On an LFN or NTFS drive, the returned filename may contain white space or other special characters. To avoid problems which could be caused by these characters, quote the returned name before you pass it to other commands. See the notes under Variable Functions for additional details.

Note: The @PATH function makes no assumption about the existence of a file or directory. Its filename parameter can be any string, and the function will attempt to remove from it a "base name".

Examples:

echo "%@path["c:\program files\xyz.abc"]

"c:\program files\"

echo "%@path[xyz.abc]"

""

	@PERL	Not in LE

@PERL[expression] : Executes the specified Perl expression. @PERL requires PerlScript, the WSH COM interface to Perl. PerlScript is available with Active State Perl (free from www.activestate.com).

	@PID	Not in LE

@PID[filename] : Returns the PID for specified name (or 0 if no match). If you have multiple copies of the same executable running, @PID will return the first one it finds.

Example:

echo %@pid[tcc.exe]

22420

@PIDCOMMAND

@PIDCOMMAND[pid] : Returns the startup command line for the specified process ID.

set pid=%@pid[tcc.exe]

echo %@pidcommand[%pid]

"C:\Program Files\JPSoft\TCMD14x64\TCC.EXE"

	@PING	Not in LE

@PING[host[,timeout[,packetsize]]] : Returns the response time in milliseconds for the specified host. Host is the IP address or name, timeout is the maximum number of seconds to wait, and packetsize is the size of the data packet sent to the host in the ping request. The timeout defaults to 60 seconds, and packetsize defaults to 64 bytes. The minimum packet size is 12 bytes, and the maximum is 65520 bytes.

A negative value indicates an error. If the request times out, @PING returns -1. An unreachable host returns -2. An invalid address returns -3.

Examples:

echo %@ping[microsoft.com]

echo %@ping[microsoft.com,10]

echo %@ping[microsoft.com,,16]

echo %@ping[192.168.1.100,2,512]

@PLUGINVER

@PLUGINVER[plugin] : Returns the version number (major.minor.build) for the specified plugin.

	@PPID	Not in LE

@PPID[filename] : Returns the PID for the parent process of the specified name (or 0 if no match). If you have multiple copies of the same executable running, @PPID will return the parent PID for the first one it finds.

Example:

echo %@ppid[tcc.exe]

21960

@PRIME

@PRIME[n] : Returns the first prime number >= n (a 64-bit integer).

Example:

echo %@prime[13798225]

13798247

	@PRIORITY	Not in LE

@PRIORITY[pid] : Returns the priority class for the specified process ID. The return values are (in hex):

8000 - Above normal

4000 - Below normal

100 - Realtime

80 - High

40 - Idle

20 - Normal

Example:

echo %@priority[33900]

20

	@PROCESSTIME	Not in LE

@PROCESSTIME[pid,n] : Return the process time as a fileage. n is the time to return:

0 - Start time

1 - End time

2 - Kernel mode time

3 - User mode time

Example:

echo %@processtime[33900]

129811263230521496

	@PYTHON	Not in LE

@PYTHON[expression] : Executes the specified Python expression.

The Python interpreter in TCC is persistent, so if you want to reset it pass an empty string to @PYTHON.

@QUOTE

@QUOTE[string] : Returns a double quoted argument if it contains any whitespace characters.

Examples:

echo %@quote[Now is the time]

"Now is the time"

echo %@quote[Nowisthetime]

Nowisthetime

@RANDOM

@RANDOM[min, max]: Returns a pseudo random integer value between min and max, inclusive. The random number generator is initialized from the system clock the first time it is used after TCC starts and will therefore produce a different sequence of numbers each time you use it. Min and max are 32-bit signed integers, so the allowable range is -2,147,483,647 to 2,147,483,647.

Examples:

echo %@random[0,1]

0

echo %@random[-10,10]

7

echo %@random[-10,10]

9

echo %@random[-10,10]

-6

@READSCR

@READSCR[row,col,length]: Returns the text displayed in the TCC window at the specified location. The upper left corner of the window is location 0,0. The row and column can be specified as an offset from the current cursor location by preceding either value with a [+] or [-]. For example:

%@readscr[-2,+2,10]

returns 10 characters from the screen, starting 2 rows above and 2 columns to the right of the current cursor position.

@READY

@READY[d:]: Returns 1 if the specified drive is ready; otherwise returns 0. The drive letter must be followed by a colon.

@READY does not support UNC names.

Examples:

echo %@ready[E:]

0

echo %@ready[%_boot:]

1

@REGBREAD

@REGBREAD[HKEY...\subkey\value,handle,length]: Read a value from the registry to a binary buffer.

handle : A buffer previously created with @BALLOC.

length : The length (in bytes) to write to the registry key.

If @REGBREAD succeeds, it returns "0", otherwise it returns the Windows error number.

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

Note: Remember to use quotes around any entry containing spaces or commas!

See @REGBWRITE and @BALLOC.

@REGBWRITE

@REGBWRITE[HKEY...\subkey\value,type,handle,length]: Write a value from a binary buffer to the registry.

type : The type of key. @REGBWRITE supports keys of type REG_BINARY and REG_NONE.

handle : A buffer previously created with @BALLOC.

length : The length (in bytes) to write to the registry key.

If @REGBWRITE succeeds, it returns "0", otherwise it returns the Windows error number.

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

Note: Remember to use quotes around any entry containing spaces or commas!

See @REGBREAD and @BALLOC.

@REGCOPYKEY

@REGCOPYKEY[HKEY...\key, targetkey] : Recursively the specified key and all of its subkeys to the target key. Returns 1 if the key was copied, 0 otherwise. The key names must be enclosed in double quotes if they contain any separator characters (space, comma, or tab).

Both keys must be in the same root (HKCR, HKCU, HKLM, HKU, or HKCC).

If you are running a 32-bit version of TCC in a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

Note: If you are copying a very large tree, this function can take several minutes to finish. (This is a Windows issue, not TCC.)

See @REGCREATE for information on the format of the key name.

@REGCREATE

@REGCREATE[HKEY...\subkey]: Create a new registry subkey. The parameter starts with the root key, which can be abbreviated:

	Full root key	Short

	HKEY_CLASSES_ROOT	HKCR

	HKEY_CURRENT_USER	HKCU

	HKEY_LOCAL_MACHINE	HKLM

	HKEY_USERS	HKU

	HKEY_CURRENT_CONFIG	HKCC

The remainder of the parameter (after the backslash) specifies the new subkey. The entire name must be quoted if it contains any white space or special characters, for example:

@REGCREATE["HKLM\Software\My Company\My Product\User"]

REGCREATE will create any intermediate keys necessary. For example, @REGCREATE[HKCU\key1\key2\key3] will create all three keys (if they do not already exist). REGCREATE returns 0 if the subkey was created or the Windows error number if an error occurred.

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name. (Not available in TCC/LE.) For example:

 @regcreate["HKLM_64\Software\Company\Product\User"]

See also: @REGQUERY (read a value), @REGSET (write a value), and @REGSETENV (write and broadcast a value).

@REGDELKEY

@REGDELKEY[HKEY...\key] : Deletes the specified key and all of its subkeys. Returns 1 if the key was deleted, 0 otherwise. The expression must be enclosed in double quotes if it contains any separator characters (space, comma, or tab).

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

Note: use EXTREME caution with this function. It has the potential for causing irreparable damage to your registry and can even prevent Windows from booting!

See @REGCREATE for information on the format of the key name.

	@REGEX	Not in LE

@REGEX[expression,string] : Returns 1 if the expression was found and 0 if it was not. The expression must be enclosed in double quotes if it contains any separator characters (space, comma, or tab). See Regular Expression Syntax for supported expressions.

	@REGEXINDEX	Not in LE

@REGEXINDEX[expression,string] : Returns the offset of the first match. The expression must be enclosed in double quotes if it contains any separator characters (space, comma, or tab). See Regular Expression Syntax for supported expressions. (This function is basically a wildcard-enabled @INDEX.)

@REGEXIST

@REGEXIST[HKEY...\key] : Returns 1 if the specified key exists, 0 otherwise

The expression must be enclosed in double quotes if it contains any separator characters (space, comma, or tab).

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

See @REGCREATE for information on the format of the key name.

	@REGEXSUB	Not in LE

@REGEXSUB[n,expression,string] - returns the "nth" matching group in the string. (If you don't specify a group in expression, @REGEXSUB will return an empty string.) The expression must be enclosed in double quotes if it contains any separator characters (space, comma, or tab). See Regular Expression Syntax for supported expressions.

@REGQUERY

@REGQUERY[HKEY...\subkey\value]: Read a value from the registry. REGQUERY supports keys of type REG_DWORD, REG_QWORD, REG_EXPAND_SZ, REG_SZ, REG_DWORD_LITTLE_ENDIAN , and REG_QWORD_LITTLE_ENDIAN. If the key is of type REG_EXPAND_SZ, the value is returned without further expansion. If the value name does not exist, the function returns -1. If the value name is not supplied, REGQUERY returns the unnamed value for the specified key (the first value with a NULL name). To retrieve an unnamed value, add a trailing \ to the name.

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

Note: Remember to use quotes around any entry containing spaces or commas!

See @REGCREATE (create a subkey) for information on the format of the key name. See also: @REGSET (write a value) and @REGSETENV (write and broadcast a value).

@REGSET

@REGSET[HKEY...\subkey\value,type,data]: Write a value to the registry. REGSET supports keys of type REG_DWORD, REG_SZ, REG_EXPAND_SZ, REG_MULTI_SZ, and REG_DWORD_LITTLE_ENDIAN. Type is the value type (REG_DWORD, REG_EXPAND_SZ, or REG_SZ). Data is the data to set. If this parameter is not supplied, @REGSET will remove the value. REGSET returns 0 if the value was written or the Windows error number if an error occurred.

If you're setting REG_MULTI_SZ values, separate each data argument with a comma.

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

Note: Remember to use quotes around any entry containing spaces or commas!

See @REGCREATE for information on the format of the key name. See also: @REGQUERY (read a value) and @REGSETENV (write and broadcast a value).

@REGSETENV

@REGSETENV[HKEY...\subkey\value,type,data] : The same as @REGSET, but a broadcast message is sent to all applications when the change is made, so that any application monitoring such messages can respond to the change immediately if it is designed to do so. @REGSETENV returns 0 if the value was written or the Windows error number if an error occurred.

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

Note: Remember to use quotes around any entry containing spaces or commas!

See @REGCREATE for information on the format of the key name. See also: @REGQUERY (read a value) and @REGSET (write a value).

@REGTYPE

@REGTYPE[HKEY...\key] : Returns the registry variable type. The possible values are:

0 - REG_NONE (No value type)

1 - REG_SZ (Unicode null terminated string)

2 - REG_EXPAND_SZ (Unicode null terminated string with environment variable references)

3 - REG_BINARY (Free form binary)

4 - REG_DWORD (32-bit number)

5 - REG_DWORD_BIG_ENDIAN (32-bit number)

6 - REG_LINK (Symbolic Link)

7 - REG_MULTI_SZ (Multiple Unicode strings)

8 - REG_RESOURCE_LIST (Resource list in the resource map)

9 - REG_FULL_RESOURCE_DESCRIPTOR (Resource list in the hardware description)

10 - REG_RESOURCE_REQUIREMENTS_LIST

11 - REG_QWORD (64-bit number)

If you are running a 64-bit version of Windows, you can access the 64-bit registry instead of the 32-bit registry by appending "_64" to the HKEY name.

@REMOTE

@REMOTE[d:]: Returns 1 if the specified drive is a remote (network) drive; otherwise returns 0. The drive letter must be followed by a colon.

Examples:

echo %@remote[e:]

1

echo %@remote[%_disk]

0

@REMOVABLE

@REMOVABLE[d:]: Returns 1 if the specified drive is removable (e.g. floppy disk, removable hard disk, USB storage device, etc.), 0 otherwise. The drive letter must be followed by a colon.

Examples:

echo %@removable[e:]

1

echo %@removable[%_disk]

0

@REPEAT

@REPEAT[char,count] : Returns the character char repeated count times (count may not exceed 32,767).

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Examples:

	function

	value

	%@repeat[%@char[95],10]

	7%@repeat[,7]spaces

	7 spaces

	%@repeat[x,10]

	xxxxxxxxxx

@REPLACE

@REPLACE[string1, string2, text]: Replaces all occurrences of string1 in the text string with string2. For example, %@replace[w,ch,warming] returns the string "charming".

The search is case sensitive.

Examples:

echo %@replace[\,/,"ftp:\\server\etc"]

"ftp://server/etc"

echo %@replace[^,,,A better, command processor]

A better command processor

	@REREPLACE	Not in LE

@REREPLACE[source_re,target_re,source] - Regular expression back reference replacement.

source_re - Regular expression to apply to the source

target_re - Regular expression for back reference

source - Source string

Example:

To replace the input string "a1.txt" with "1a.txt":

@REREPLACE[(.)(.)\.txt,\2\1.txt,a1.txt]

@REVERSE

@REVERSE[string] : Reverses the order of the characters in string.

Example:

echo %@reverse[Now is the time for all good men]

nem doog lla rof emit eht si woN

	@REXX	Not in LE

@REXX[[=]expr]: Calls the REXX interpreter to execute the expression. Returns the numeric code or string result from REXX. Console output from the REXX interpreter is suppressed while executing the expression. Note that TCC expands variables and functions before passing expr to REXX.

Examples:

echo %@rexx[= 3 * 4]

set myprog=d:\path\xyz.exe

echo %@rexx[address(%@name[%myprog]); return address()]

Note: This function requires that an ooREXX (Object REXX) interpreter be installed and properly configured. See REXX Support for more information on the REXX language.

@RIGHT

@RIGHT[n,string] : If n is positive, it returns the rightmost n characters of string. If n is greater than the length of string, it returns the entire string. If n is negative, it returns string after dropping its leftmost n characters, unless n is greater than the length of string, in which case it returns an empty string.

Examples:

	function

	value

	%@RIGHT[2,jpsoft]

	ft

	%@RIGHT[22,jpsoft]

	jpsoft

	%@RIGHT[-2,jpsoft]

	soft

	%@RIGHT[-22,jpsoft]

	empty string

@RTRIM

@RTRIM[string1,string2]: - Returns string2 with any characters in string1 removed from the right side of string2. String1 must be enclosed in double quotes if it contains any spaces, tabs, or commas.

Example:

echo "%@rtrim[98XP,Windows XP]"

"Windows "

	@RUBY	Not in LE

@RUBY[expression] : Returns the string result of the Ruby expression. Note that the Ruby environment is persistent within a TCC tab window, so you can do things like:

%@ruby[b = 42]

%@ruby[p b]

 which will print "42". The value returned by @RUBY is the value returned by the RUBY API rb_eval_string.

You can query the type of the value returned by the last @RUBY call with the RUBYTYPE internal variable, and the value returned by the last @RUBY call with the RUBYVALUE internal variable.

	@SCRIPT	Not in LE

@SCRIPT[engine,expression] : Returns the integer result of expression in the specified active scripting engine.

For example:

%@script[PerlScript,print "This message is from Perl!"]

See also the SCRIPT command.

	@SEARCH	Not in LE

@SEARCH[program[,path[,n]]] : Searches for program using the specified path, or, if not specified, the PATH environment variable, appending an extension if one isn't specified. (See Executable Files and File Searches for details on the default extensions used when searching PATH, the order in which the search proceeds, and the search of the \WINDOWS and \WINDOWS\SYSTEM directories.) Returns the fully expanded name of program, including drive, path, base name, and extension, or an empty string if a match is not found. If wildcards are used in the program, @SEARCH will search for the first program file that matches the wildcard specification, and returns the drive and path for that file plus the wildcard filename (e.g., E:\UTIL*.EXE).

Program and each directory specification in path must be in quotes if they contain white space or special characters.

@SEARCH accepts an optional third parameter specifying whether to search the current directory. If n is 0, @SEARCH will not look for the file in the current directory. If n is 1 (the default), @SEARCH will look in the current directory before searching the path.

Examples:

echo %@search[notepad]

C:\Windows\system32\notepad.exe

echo %@search[msv*.dll,"d:\my dir\"]

D:\my dir\test\msvc.dll

@SELECT

@SELECT[filename,top,left,bottom,right,title[,sort[,startline[,keymask]]]]: Pops up a selection window with the lines from the specified file, allowing you to display menus or other selection lists from within a batch file. You can move through the selection window with standard popup window navigation keystrokes, including string matching with wildcards or regular expressions (see Popup Windows for details; to change the navigation keys see Key Mapping directives).

Filename must be in quotes if it contains white space or special characters. The file size is limited only by available memory. To select from lines passed through input redirection or a pipe, use CON: as filename. To select from lines in the Windows clipboard, use CLIP: as filename.

If the specified width is < 150, the top, left, bottom, right parameters are assumed to be rows/columns relative to the TCC window. If the width is >= 150, the parameters are assumed to be screen coordinates (in pixels).

If you set the optional 7th parameter sorted to 1, the list will be sorted alphabetically.

The optional 8th parameter startline specifies the line @SELECT should highlight at startup. (The first line is 1.) If you specify startline, you must also specify the sort parameter.

If you specify the optional 9th argument keymask, the searching is disabled, and TCC will check input keystrokes for a match against the key mask. If a match is found, @SELECT will return the current line and set the _SELECT_KEY environment variable to the input key value. The key mask is in the same format as INKEY /K.

The selected line number will be returned in the SELECT_LINE environment variable (the first line is 1).

Return value:

●the text of the line the scrollbar is on if you press Enter
●an empty string if you press Esc.

Example:

call %@select["d:\path\my menu.txt",50,100,175,400,Select an option]

@SERIAL

@SERIAL[d:]: Returns the serial number of the specified disk drive (in hex, i.e.: ABCD:0123). The drive letter must be followed by a colon.

Examples:

echo %@serial[C:]

1B:EB6D

echo %@serial[%_disk:]

F82B:746

See also: @LABEL.

	@SERIALPORTCLOSE	Not in LE

@SERIALPORTCLOSE[n]: Close the serial port. n is the handle returned by a previous call to @SERIALPORTOPEN.

	@SERIALPORTFLUSH	Not in LE

@SERIALPORTFLUSH[n]: Flush the contents of the serial port buffer. n is the handle returned by a previous call to @SERIALPORTOPEN.

	@SERIALPORTOPEN	Not in LE

@SERIALPORTOPEN[COMn[, baud[, parity[, bits[, flow]]]]] - Open a serial port for read & write. The parameters are:

COMn - The COM port to open (COM1 - COM9)

baud - The baud rate (110 - 256000)

parity - The parity scheme to use. This can be one of the following values:

no

odd

even

mark

space

bits - The number of bits in the bytes to transmit & receive

flow - The type of flow control to use. This can be one of the following values:

no

CtsRts

CtsDtr

DsrRts

DsrDtr

XonXoff

@SERIALPORTOPEN returns a handle to the serial port, which must be passed to the other serial port functions.

See also: @SERIALPORTCLOSE, @SERIALPORTFLUSH, @SERIALPORTREAD, @SERIALPORTWRITE.

	@SERIALPORTREAD	Not in LE

@SERIALPORTREAD[n]: Read the contents of the serial port buffer. n is the handle returned by a previous call to @SERIALPORTOPEN.

	@SERIALPORTWRITE	Not in LE

@SERIALPORTWRITE[n,text]: Writes a string to the serial port. n is the handle returned by a previous call to @SERIALPORTOPEN.

	@SERVER	Not in LE

@SERVER[machinename,info] : Returns information about the specified server machinename, where info is the type of information you want. The types are:

Name - return the server name

Comment - return the server comment

Version - the OS version (major version + minor version).

Users - the number of users who can attempt to log on the server.

Disconnect - the auto-disconnect time, in minutes.

Hidden - returns 1 if the server is hidden, 0 if it is visible

UserPath - the path to user directories

Type - return the type of the server. This is a combination of the following hex flags (you can use the .AND. operator in IF / IFF to test individual flags):

	1	A LAN Manager workstation

	2	A LAN Manager server

	4	Any server running with Microsoft SQL Server

	8	Primary domain controller

	0x10	Backup domain controller

	0x20	Server running the Timesource service

	0x40	Apple File Protocol server

	0x80	Novell server

	0x100	LAN Manager 2.x domain member

	0x200	Server sharing print queue

	0x400	Server running dial-in service

	0x800	Unix/Linux server

	0x1000	Windows Server 2003, Windows XP, Windows 2000, or Windows NT

	0x2000	Server running Windows for Workgroups

	0x4000	Microsoft File and Print for NetWare

	0x8000	Windows server that is not a domain controller

	0x10000	Server that can run the browser service

	0x20000	Server running a browser service as backup

	0x40000	Server running the master browser service

	0x80000	Server running the domain master browser

	0x400000	Windows 95/98/Me

	0x1000000	Server clusters available in the domain

	0x2000000	Terminal Server

	0x4000000	Cluster virtual servers available in the domain

	0x40000000	Servers maintained by the browser

	0x80000000	Primary domain

	@SERVICE	Not in LE

@SERVICE[service,info] : Returns information about the specified service.

service - the service name to query

info - the information you want

	1	The type of service. This will return one or more of the following values:

	1	Device driver

	2	File system driver

	16	The service runs in its own process

	32	The service shares a process with other services

	256	The service can interact with the desktop

	2	The current state of the service. This will return one of the following values:

	1	The service is not running

	2	The service is starting

	3	The service is stopping

	4	The service is running

	5	The service continue is pending

	6	The service pause is pending

	7	The service is paused

	3	Returns the check-point value the service increments to report its progress during a lengthy start, stop, pause, or continue operation. This value will be 0 if there is no pending operation.

	4	The control codes the service accepts and processes in its handler function. This will return a combination of the following values (you can check the return value with the @EVAL OR test):

	1	The service can be stopped

	2	The service can be paused and continued

	4	The service is notified when system shutdown occurs

	8	The service can reread its startup parameters without being stopped and restarted

	16	The service is a network component that can accept changes in its binding without being stopped and restarted

	32	The service is notified when the computer's hardware profile has changed

	64	The service is notified when the computer's power status has changed

	128	The service is notified when the computer's session status has changed

	256	The service can perform pre-shutdown tasks

	5	Returns the estimated time required for a pending start, stop, pause, or continue operation (in milliseconds).

@SFN

@SFN[filename]: Returns the fully expanded short ("8.3") filename for a long filename. The filename may contain any valid filename element including drive letter, path, filename and extension. The entire name including all intermediate paths will be returned in short name format. If filename does not refer to an actual file, the results are unpredictable.

Example:

echo %@sfn[%comspec]

C:\PROGRA~1\JPSoft\TCMD13~1\TCC.EXE

	@SHA1	Not in LE

@SHA1[filename] : Returns the SHA1 checksum of the specified file.

Example:

echo %@sha1[c:\windows\notepad.exe]

7EB0139D2175739B3CCB0D1110067820BE6ABD29

See also @SHA256, @SHA384, @SHA512, @MD5, and @CRC32.

	@SHA256	Not in LE

@SHA256[filename] : Returns the SHA2-256 checksum of the specified file.

Example:

echo %@sha256[c:\windows\notepad.exe]

142E1D688EF0568370C37187FD9F2351D7DDEDA574F8BFA9B0FA4EF42DB85AA2

See also @SHA384, @SHA512, @MD5, and @CRC32.

	@SHA384	Not in LE

@SHA384[filename] : Returns the SHA2-384 checksum of the specified file.

Example:

echo %@sha384[c:\windows\notepad.exe]

04BA669372BD3CBC40CAA9E44DE7C2760DBC27D68A79F7B0DC24048D6FF7A883CC2F0A6AB80AE6F4CD3E45045273873E

See also @SHA256, @SHA512, @MD5, and @CRC32.

	@SHA512	Not in LE

@SHA512[filename] : Returns the SHA2-512 checksum of the specified file.

Example:

echo %@sha512[c:\windows\notepad.exe]

2F37A2E503CFFBD7C05C7D8A125B55368CE11AAD5B62F17AAAC7AAF3391A6886FA6A0FD73223E9F30072419BF5762A8AF7958E805A52D788BA41F61EB084BFE8

See also @SHA256, @SHA384, @MD5, and @CRC32.

	@SHFOLDER	Not in LE

@SHFOLDER[n] : Returns the full pathname for the specified Windows folder (which vary in different versions of Windows and if the user has altered the defaults).

n is a number from 0 to 59 that returns the following values:

	

		0 - Desktop

		2 - Start Menu\Programs

		5 - My Documents

		6 - <user name>\Favorites

		7 - Start Menu\Programs\Startup

		8 - <user name>\Recent

		9 - <user name>\SendTo

		11 - <user name>\Start Menu

		13 - "My Music" folder

		14 - "My Videos" folder

		16 - <user name>\Desktop

		19 - <user name>\nethood

		20 - windows\fonts

		21 - templates

		22 - All Users\Start Menu

		23 - All Users\Start Menu\Programs

		24 - All Users\Startup

		25 - All Users\Desktop

		26 - <user name>\Application Data

		27 - <user name>\PrintHood

		28 - <user name>\Local Settings\Application Data (non roaming)

		29 - non localized startup

		30 - non localized common startup

		31 - common favorites

		32 - Internet cache

		33 - cookies

		34 - history

		35 - All Users\Application Data

		36 - Windows directory

		37 - Windows system directory

		38 - Program Files

		39 - <user name>\My Pictures

		40 - USERPROFILE

		41 - X86 system directory on x64

		42 - x86 c:\Program Files on x64

		43 - c:\Program Files\Common

		44 - x86 Program Files\Common on x64

		45 - All Users\Templates

		46 - All Users\Documents

		47 - All Users\Start Menu\Programs\Administrative Tools

		48 - <user name>\Start Menu\Programs\Administrative Tools

		53 - All Users\My Music

		54 - All Users\My Pictures

		55 - All Users\My Video

		56 - Resource Directory

		59 - USERPROFILE\Local Settings\Application Data\Microsoft\CD Burning

Examples:

echo %@shfolder[42]

C:\Program Files (x86)

echo %@shfolder[22]

C:\ProgramData\Microsoft\Windows\Start Menu

	@SIMILAR	Not in LE

@SIMILAR[string1,string2] : Returns a value (0 - 100) reflecting the similarity between the two strings. 0 means the two strings have nothing in common; 100 means the strings are identical. Using the longer string as the first parameter usually results in lower similarity values and using the shorter results in higher values.

Example:

echo %@similar[now is the time,then was the time]

75

@SMCLOSE

@SMCLOSE[handle] - Close a handle to shared memory.

handle - The handle returned by @SMOPEN

@SMOPEN

@SMOPEN[size, name] - Open and return a handle to shared memory.

size - The size of shared memory (in bytes)

name - The name of the shared memory. The name can have a "Global\" or "Local\" prefix to create the object in the global or session namespace.

@SMPEEK

@SMPEEK[handle,offset,size] : Read a value from a binary buffer.

handle - a handle from @SMOPEN

offset - the byte offset in the buffer (decimal or hex)

size - the size of the value to read (in bytes):

 1 - character

 2 - short

 4 - int

 8 - int64

@SMPOKE

@SMPOKE[handle,offset,size,value] : Write a value to shared memory

handle - a handle from @SMOPEN

offset - the byte offset in the buffer (decimal or hex)

size - the size of the value (in bytes):

1 - character

2 - short

4 - int

8 - int64

value - the value to poke

@SMPOKE returns 0 on success.

@SMREAD

@SMREAD[n,offset,type,length] - Read a string to shared memory

n - The shared memory handle returned by @SMOPEN

offset - The offset (in bytes) from the beginning of the shared memory buffer.

type - Either a to read the string as ASCII or u to read it as Unicode.

length - The length to read (in characters).

@SMWRITE

@SMWRITE[n,offset,type,string] - Write a string to shared memory

n - The shared memory handle returned by @SMOPEN

offset - The offset (in bytes) from the beginning of the shared memory buffer.

type - Either a to write the string as ASCII or u to write it as Unicode.

string - The string to write.

	@SNAPSHOT	Not in LE

@SNAPSHOT[DESKTOP | window[,n]] : Save the desktop or a specific window to the clipboard as a BMP. The window argument can be either DESKTOP or a window title (which can include wildcards).

If the window argument is DESKTOP, the optional second argument specifies either which monitor (1 - n) whose desktop you want to save.

If the window argument is a window title, the optional second argument specifies whether you want the client area (0, the default) or the entire window (1) to be saved.

@SNAPSHOT returns 0 if successful.

@STRIP

@STRIP[chars,string] : Removes the characters in chars from the string and returns the result.

For example:

%@STRIP[AaEe,All Good Men]

returns "ll Good Mn".

The test is case sensitive.

To include a comma in the chars string, enclose the entire first parameter in quotes. @STRIP will remove the quotes before processing the string.

@SUBSTR

@SUBSTR[string,start,length] : An older version of @INSTR. If the length is omitted, it will default to the remainder of string. If string includes commas, it must be quoted with double quotes ["] or back-quotes [`], or each comma must be preceded by an Escape character The quotes count in calculating the position of the substring. @INSTR, which has string as its last parameter, does not have this restriction.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Examples:

echo %@substr[this is useful,8]

useful

echo %@substr[this is useful,8,-2]

is

echo %@substr["commas, they DO matter",9]

they DO matter"

echo %@substr[commas^, they DO matter,9]

they DO matter

See also: @INSTR.

@SUBST

@SUBST[n, string1, string2]: Substitutes string1 starting at position n in string2.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

	@SUMMARY	Not in LE

@SUMMARY[file,property[,value]] : Read or set NTFS SummaryInformation data for the specified file. If it is a compound file, @SUMMARY will retrieve the data from the compound file object; otherwise @SUMMARY will retrieve the data from the SummaryInformation stream attached to the file. The valid SummaryInformation fields are:

Title

Subject

Author

Keywords

Comments

Template

LastAuthor

Revision Number

Edit Time

Last printed

Created

Last Saved

Page Count

Word Count

Char Count

AppName

Note that most files won't have any of these fields; the ones that do will usually only have some, not all.

To set SummaryInformation data, specify the value in the optional third parameter.

For example, to set the Title:

@summary[foo.txt,Title,This is the Foo File]

	@SYMLINK	Not in LE

@SYMLINK[link] : Returns the target referenced by the specified symbolic link.

	@SYSTEMTIME	Not in LE

@SYSTEMTIME[n] : Return the system time as a fileage. n is the time to return:

0 - The time that the system has been idle

1 - The time that the system has spent executing in Kernel mode (all threads in all processes, on all processors)

2 - The time that the system has spent executing in User mode (all threads in all processes, on all processors)

See also: Time Stamps.

Examples:

echo %@systemtime[0]

39709212923676

echo %@systemtime[1]

39709212923676

echo %@systemtime[2]

39709212923676

@TALNUM

@TALNUM[string]: Returns the number of alphabetic (a-z, A-Z) and/or numeric (0 - 9) characters in string.

See also: @TALPHA, @TASCII, @TCNTRL, @TDIGIT, @TLOWER, @TPRINT, @TPUNCT, @TSPACE, @TUPPER, and @TXDIGIT.

Example:

echo %@talnum[123abc]

6

echo %@talnum[123 abc]

6

echo %@talnum[1-2-3]

3

@TALPHA

@TALPHA[string]: Returns the number of alphabetic (a-z, A-Z) characters in string.

See also: @TALNUM, @TASCII, @TCNTRL, @TDIGIT, @TLOWER, @TPRINT, @TPUNCT, @TSPACE, @TUPPER, and @TXDIGIT.

Example:

echo %@talpha[abc123]

3

echo %@talpha[A B C]

3

	@TARCOUNT	Not in LE

@TARCOUNT[tararchive]: Returns the number of files in a .tar archive.

See also TAR and UNTAR.

	@TARCFILE	Not in LE

@TARCFILE[tararchive,n]: Returns the compressed name of file n in a .tar archive.

See also TAR and UNTAR.

	@TARDFILE	Not in LE

@TARDFILE[tararchive,n]: Returns the decompressed name of file n in a .tar archive.

See also TAR and UNTAR.

	@TARFILEDATE	Not in LE

@TARFILEDATE[tararchive,n]: Returns the date and time of file n in a .tar archive.

See also TAR and UNTAR.

	@TARFILESIZE	Not in LE

@TARFILESIZE[tararchive,n]: Returns the size of file n in a .tar archive.

See also TAR and UNTAR.

@TASCII

@TASCII[string]: Returns the number of 7-bit ASCII characters (0x00 - 0x7F) in string.

See also: @TALNUM, @TALPHA, @TCNTRL, @TDIGIT, @TLOWER, @TPRINT, @TPUNCT, @TSPACE, @TUPPER, and @TXDIGIT.

Examples:

echo %@tascii[abc]

3

echo %@tascii[abc 123]

7

echo %@tascii["abc"a]

5

	@TCL	Not in LE

@TCL[expression] : Returns the string result of the Tcl expression. (You cannot run a Tk script in @TCL, because there is no Tk event loop. If you want to run a Tk script, you need to execute it from the command line as you would a Tcl script, or with the @TK function.)

The Tcl interpreter in TCC is persistent, so if you want to reset it pass an empty string to @TCL.

See also @TK.

@TCNTRL

@TCNTRL[string]: Returns the number of ASCII control characters (0x00 - 0x1F or 0x7F) in string.

See also: @TALNUM, @TALPHA, @TASCII, @TDIGIT, @TLOWER, @TPRINT, @TPUNCT, @TSPACE, @TUPPER, and @TXDIGIT.

Examples:

echo %@tcntrl[abc]

0

set var=^r^n

echo %@tcntrl[%var]

2

@TDIGIT

@TDIGIT[string] : Returns the number of digits (0-9) in string.

See also: @TALNUM, @TALPHA, @TASCII, @TCNTRL, @TLOWER, @TPRINT, @TPUNCT, @TSPACE, @TUPPER, and @TXDIGIT.

Example:

echo %@tdigit[0]

1

echo %@tdigit[123.456]

6

echo %@tdigit[-123]

3

	@TIME	Not in LE

@TIME[hh:mm:ss[am|pm]] : Returns the number of seconds since midnight for the specified time. We recommend that you use a 24-hour time format for compatibility with all locales. If "am" or "pm" are specified @TIME will use a 12-hour format. Any non-numeric character, except a right bracket] can be used to separate the hour, minute and second subfields.

Examples:

echo %@time[12:34:56]

45296

echo %@time[%_time]

81579

@TIMER

@TIMER[n[,precision]] : Returns the current split time for a stopwatch started with the TIMER command. The value of n specifies the timer to read and can be 1, 2, or 3.

@TIMER accepts an optional second argument to return the timer split as a floating-point numeric value suitable for arithmetic. The possible values are:

	s	split time in seconds (2 digit decimal precision)

	m	split time in minutes (4 digit decimal precision)

	h	split time in hours (5 digit decimal precision)

	@TK	Not in LE

@TK[expression] : Returns the string result of the Tk expression. For example, this will execute the Tk script test.tcl:

echo %@tk[source test.tcl]

Because of the way the Tk interpreter works, it is not possible for TCC to maintain a persistent interpreter after executing a Tk script. TCC will close the current Tcl/tk interpreter and create a new one the next time @TCL is executed.

See also @TCL.

@TLOWER

@TLOWER[string] - returns the number of lower case letters in string.

See also: @TALNUM, @TALPHA, @TASCII, @TCNTRL, @TDIGIT, @TPRINT, @TPUNCT, @TSPACE, @TUPPER, and @TXDIGIT.

Example:

echo %@tlower[hello]

5

echo %@tlower[Hello]

4

@TPRINT

@TPRINT[string]: Returns the number of printable characters in string.

See also: @TALNUM, @TALPHA, @TASCII, @TCNTRL, @TDIGIT, @TLOWER, @TPUNCT, @TSPACE, @TUPPER, and @TXDIGIT.

Examples:

echo %@tprint[abc]

3

set var=abc^ndef

echo %@tprint[%var]

6

@TPUNCT

@TPUNCT[string]: Returns the number of punctuation characters in string, i.e. printable characters which are not alphanumeric or space.

See also: @TALNUM, @TALPHA, @TASCII, @TCNTRL, @TDIGIT, @TLOWER, @TPRINT, @TSPACE, @TUPPER, and @TXDIGIT.

Examples:

echo %@tpunct[.]

1

echo %@tpunct[+]

1

echo %@tpunct[:-)]

3

echo %@tpunct[.,a]

2

@TRIM

@TRIM[string] : Returns the string with the leading and trailing white space (space and tab characters) removed.

Example:

echo %@trim[this is a test string]

this is a test string

@TRIMALL

@TRIMALL[string] : Returns the string with the leading and trailing white space (space and tab characters), and any extra internal white space removed.

Example:

echo %@trimall[this is a test string]

this is a test string

@TRUENAME

@TRUENAME[filename] : Returns the true, fully-expanded name for a file. @TRUENAME will "see through" junctions, symbolic links, a SUBST or network mapping. Wildcards cannot be used in the filename.

Note: The @TRUENAME function makes no assumption about the existence of a file or directory. Its filename parameter can be any string and the function will attempt to turn it into a fully qualified "volume + path + name" specification, whether that full reference exists or not.

filename must be in quotes if it contains white space or special characters.

	@TRUNCATE	Not in LE

@TRUNCATE[handle] : Truncate the file opened for write access by @FILEOPEN at the current position of the file pointer, where handle is the value returned by @FILEOPEN.

See also the related handle-based functions:

	@FILECLOSE	Close a file handle

	@FILEOPEN	Open a file handle

	@FILEREAD	Read next line from a file handle

	@FILESEEK	Move a file handle pointer

	@FILESEEKL	Move a file handle pointer to a specified line

	@FILEWRITE	Write next line to a file handle

	@FILEWRITEB	Write data to a file handle

@TSPACE

@TSPACE[string]: Returns the number of white space characters (0x09 - 0x0D or 0x20) in string.

See also: @TALNUM, @TALPHA, @TASCII, @TCNTRL, @TDIGIT, @TLOWER, @TPRINT, @TPUNCT, @TUPPER, and @TXDIGIT.

Example:

echo %@tspace[]

3

echo %@tspace[hello world]

1

@TUPPER

@TUPPER[string] - returns the number of upper case letters in string.

See also: @TALNUM, @TALPHA, @TASCII, @TCNTRL, @TDIGIT, @TLOWER, @TPRINT, @TPUNCT, @TSPACE, and @TXDIGIT.

Example:

echo %@tupper[hello]

0

echo %@tupper[Hello]

1

@TXDIGIT

@TXDIGIT[string]: Returns the number of characters in string that are hexadecimal digits (0-9 and A-F or a-f).

See also: @TALNUM, @TALPHA, @TASCII, @TCNTRL, @TDIGIT, @TLOWER, @TPRINT, @TPUNCT, @TSPACE, and @TUPPER.

Example:

echo %@txdigit[123abc]

6

echo %@txdigit[123 ttt]

3

	@UNC	Not in LE

@UNC[filename] : Returns the UNC name for the specified file (or an error if the file has no UNC, e.g., a local file).

@UNICODE

@UNICODE[string] : Returns the space separated list of the Unicode values of the characters in string. You can use the Escape character before a special character (i.e., a quote or greater than (>) sign) in string.

See also: @ASCII.

Examples:

	function

	value

	%@unicode[a]

	97

	%@unicode[A]

	65

	%@unicode[^`]

	96

	%@unicode[abc]

	97 98 99

@UNIQUE

@UNIQUE[path[,prefix]] : Creates a zero-length file with a unique name in the specified directory, and returns its the full name and path. If no path is specified, the file will be created in the current directory. The file name will be FAT-compatible regardless of the type of drive on which the file is created. This function allows you to create a temporary file without overwriting an existing file.

The path must be in quotes if it contains white space or special characters.

If prefix is specified, @UNIQUE will use the first three characters as the first three characters of the unique filename.

Because the file is created, if the Protect Redirected Output File configuration option is set, you must use the style >! redirection to avoid errors.

Rapid, repeated, consecutive invocations of @UNIQUE may occasionally return a non-unique file name (the same name twice, for example), due to a long-standing timing bug in Windows. If you experience this problem you may need to use DELAY, DELAY /M, or BEEP (with a frequency less than 20 Hz) to provide a short delay between invocations. You may also be able to work around the problem by performing some disk I/O activity between invocations, as this can force physical creation of the file on the disk before @UNIQUE is invoked again.

@UNQUOTE

@UNQUOTE[string] : Returns the argument with all double quotes removed.

Example:

echo %@unquote["This is a """heavily" quoted" string"]

This is a heavily quoted string

@UNQUOTES

@UNQUOTES[string] : Returns the argument with leading and trailing double quotes removed.

Example:

echo %@unquotes["This is a """heavily" quoted" string"]

This is a ""heavily" quoted" string

@UPPER

@UPPER[string] : Returns string converted to upper case.

Example:

echo %@upper[this is a string]

THIS IS A STRING

	@URLDECODE	Not in LE

@URLDECODE[string] : Decode an URL encoded string, replacing %xx with the original characters.

	@URLENCODE	Not in LE

@URLENCODE[string] : Encode a string for Internet transmission, replacing non-alphanumeric characters with their %xx hex representation.

	@UTF8DECODE	Not in LE

@UTF8DECODE[s,string] : Create a text string (using the current code page) from a UTF8 input string. Returns the text string.

@UTF8DECODE[inputfile,outputfile] : Decode a UTF8 encoded file. Returns 0 if the output file was successfully written.

	@UTF8ENCODE	Not in LE

@UTF8ENCODE[inputfile,outputfile] : Encode a file from the current code page to UTF8. Returns 0 if the output file was successfully written.

	@UUDECODE	Not in LE

@UUDECODE[inputfile,outputfile] : Decode a UU encoded file. Returns 0 if the output file was successfully written.

	@UUENCODE	Not in LE

@UUENCODE[inputfile,outputfile] : Encode a UU encoded file. (3 bytes are encoded into 4 readable characters.) Returns 0 if the output file was successfully written.

	@VERINFO	Not in LE

@VERINFO[filename[,info[,language]]]: Returns the version information for the specified file. The optional second parameter specifies the desired information and defaults to FileVersion. The optional third parameter specifies the language/codepage pair (in hex). If that parameter is omitted, the code page for the default user language is assumed. If the requested information field is not provided in the specified file, returns a null string.

For example, TCMD.EXE returns values for:

CompanyName

FileDescription

FileVersion

InternalName

LegalCopyright

LegalTrademarks

OriginalFilename

ProductName

ProductVersion

Build

To return CompanyName :

echo %@verinfo[tcmd.exe,companyname,040904E4]

Note: Most, but not all, executables under Windows contain a FileVersion field. The number, names and contents of the specific information fields and language/codepage pairs provided within a given application can potentially be anything the programmer decided to use.

@WATTRIB

@WATTRIB[filename[,-attributes[,p]]]: If you do not specify any attributes, @WATTRIB returns the attributes of the specified file in the format RHSADECIJNOPTV, rather than 0 or 1. If two or more parameters are specified, @WATTRIB returns a 1 if the specified file has the matching attribute(s); otherwise it returns a 0. If the optional third argument ,p is included (partial match), then @WATTRIB will return 1 if any of the attributes match

This function is similar to @ATTRIB, but supports file selection based on the following extended attributes available on NTFS volumes.

	E	Encrypted

	N	Normal

	T	Temporary

	P	Sparse file

	J	Junction or symbolic links

	L	Junction or symbolic links

	C	Compressed

	O	Offline

	I	Not content-indexed

	V	Virtualized

Attributes which are not set will be replaced with an underscore. For example, if SECURE.DAT has the read-only, hidden, and archive attributes set, %@WATTRIB[SECURE.DAT] would return RH_A_______. If the file does not exist, @WATTRIB returns an empty string.

The attributes (other than N) can be combined (for example %@ATTRIB[MYFILE,HS]). For example, %@WATTRIB[MYFILE,HS,p] will return 1 if MYFILE has the hidden, system, or both attributes. Without ,p the function will return 1 only if MYFILE has both attributes (and no extended attributes).

Filename must be in quotes if it contains white space or special characters.

See also: Attributes Switches and the ATTRIB command.

@WILD

@WILD[string1,string2] : Compares two strings and returns 1 if they match or 0 if they don't match. This function determines whether or not string1 matches the pattern specified in string2, which may contain wildcards or extended wildcards. No wildcards are permitted in string1. The test is not case sensitive.

Examples

The examples below assume that the PATH variable contains:

c:\windows;c:\windows\system32;"c:\program files\util";d:\jpsoft

	string1

	string2

	match condition

	result

	%path

	\UTIL

	string \util anywhere

	1

	%path

	*c

	string ending with c

	0

	%path

	*t

	string ending with t

	1

	%path

	c*

	string starting with c

	1

	%path

	t*

	string starting with t

	0

	%path

	c

	string containing c

	1

	%path

	t

	string containing t

	1

	%path

	b

	string containing b

	0

	xyz

	?

	one character long string

	0

	x

	?

	one character long string

	1

	%path

	c?*

	leading c, followed by any one character, followed by 0 or more characters

	1

	%path

	c*?

	leading c, followed by zero or more characters, followed by any one character

	1

	@WINAPI	Not in LE

@WINAPI[module,function[,integer | PINT=n | PLONG=n | PDWORD=n | NULL | BUFFER | "string"] : Returns the result of calling a Windows API function. The arguments are:

module - name of the DLL containing the function

function - function name (case sensitive)

integer - an integer value to pass to the function

PINT - a pointer to the integer n

PLONG - a pointer to the long integer n

PDWORD - a pointer to the DWORD n

NULL - a null pointer (0)

BUFFER - @WINAPI will pass an address for an internal buffer for the API to return a Unicode string value.

aBUFFER - @WINAPI will pass an address for an internal buffer for the API to return an ASCII string value.

"string" - text argument (this must be enclosed in double quotes). If the argument is preceded by an 'a' (i.e., a"Argument") then it is converted from Unicode to ASCII before calling the API. (Some Windows APIs only accept ASCII arguments.)

@WINAPI supports a maximum of 8 arguments. The return value is either a string value returned by the API (if BUFFER or aBUFFER is specified), or the integer value returned by the API. The function must be defined as WINAPI (__stdcall). If @WINAPI can't find the specified function, it will append a "W" (for the Unicode version) to the function name and try again.

See also @CAPI.

	@WINCLASS	Not in LE

@WINCLASS[classname] : Returns the window title of the first window with the specified class name, or an empty string if no windows match.

	@WINCLIENTSIZE	Not in LE

@WINCLIENTSIZE[title] : Returns the client window size in the format height,width

	@WINEXENAME	Not in LE

@WINEXENAME[title]: Returns the executable name for the first window matching title (which can include wildcards), or an empty string if none.

@WININFO

@WININFO[n]: Returns information about the current system. n is a number specifying what information to return:

	n

	Information returned

	1

	Processor architecture

0 INTEL

6 IA64

9 x64 (AMD or Intel)

	2

	Processor bit mask (set of configured processors)

	3

	Number of processors

	4

	Type of processor

586 Pentium:

2200 Intel IA64

8664 AMD or Intel x64

	5

	Processor level

	6

	Processor revision

	7

	page size, bytes

	8

	virtual memory allocation granularity, bytes

@WINMEMORY

@WINMEMORY[n] : Returns the requested Windows memory information. All values except memory load are returned in bytes. n is a number specifying what to return:

	n

	Information returned

	0

	Memory load, %

	1

	Total physical RAM

	2

	Available physical RAM

	3

	Total that can be stored in the page file

	4

	Available page file

	5

	Total virtual memory for process

	6

	Total free virtual memory for process

	@WINMETRICS	Not in LE

@WINMETRICS[n] : Returns the requested Windows system metric. All screen dimension metrics are returned in pixels. n is a number determining which metric to return.

Note: This function provides direct access to the GetSystemMetrics API. Not all available parameters are listed here and your Windows configuration may support additional parameters. See your Windows technical documentation for details.

	n

	Information returned

	0

	Width of screen on primary display monitor

	1

	Height of screen on primary display monitor

	2

	Width of the vertical scroll bar

	3

	Height of the horizontal scroll bar

	4

	Height of title bar

	5

	Width of window border

	6

	Height of window border

	7

	Width of dialog box border

	8

	Height of dialog box border

	9

	Height of thumb box on vertical scroll bar

	10

	Width of thumb box on horizontal scroll bar

	11

	Width of icon

	12

	Height of icon

	13

	Width of cursor

	14

	Height of cursor

	15

	Height of single line menu bar

	16

	Width of client area for full-screen window on primary display monitor

	17

	Height of client area for full-screen window on primary display monitor

	18

	Height of Kanji window

	19

	Mouse present flag

0 no

1 yes

	20

	Height of arrow bitmap on vertical scroll bar

	21

	Width of arrow bitmap on horizontal scroll bar

	22

	Debug version of Windows

0 no

1 yes

	23

	Left and right mouse buttons swapped

0 no

1 yes

	28

	Minimum width of a window

	29

	Minimum height of a window

	30

	Width of bitmaps in title bar

	31

	Height of bitmaps in title bar

	32

	Width of window frame that can be sized

	33

	Height of window frame that can be sized

	34

	Minimum tracking width of window

	35

	Minimum tracking height of window

	41

	Is Pen Windows installed?

0 no

1 yes

	42

	Is DBCS version of USER.EXE installed?

0 no

1 yes

	43

	Number of buttons on mouse

	70

	Windows will display visual info in place of audible info

0 no

1 yes

	73

	Computer has a slow processor

0 no

1 yes

	74

	Is Windows set up for Arabic/Hebrew?

0 no

1 yes

	75

	Mouse has a wheel

0 no

1 yes

	76

	Coordinate of left side of virtual screen

	77

	Coordinate of top of virtual screen

	78

	Width in pixels of virtual screen

	79

	Height in pixels of virtual screen

	80

	Number of monitors on desktop

	@WINPID	Not in LE

@WINPID[title] : Returns the process ID for the window with the specified title, or -1 if no match is found.

Example:

echo %@winpid[TCC Prompt]

438636

	@WINPOS	Not in LE

@WINPOS[title]: Returns the screen coordinates of the window with the specified title, in the format "top,left,bottom,right".

Example:

echo %@winpos[TCC Prompt]

25,25,367,702

	@WINSIZE	Not in LE

@WINSIZE[title] : Returns the window size in the format height,width

Example:

echo %@winsize[TCC Prompt]

342,677

	@WINSTATE	Not in LE

@WINSTATE[title] : Returns the window state of the first window matching title (which can include wildcards). The return values are:

	Value

	Window state

	0

	Hidden

	1

	Normal

	2

	Minimized

	3

	Maximized

	@WINSYSTEM	Not in LE

@WINSYSTEM[n[,v]]: Sets or returns the value of the requested Windows system-wide parameters.

To retrieve a parameter, the format is %@winsystem[n] where n is the appropriate GET number from the table below.

To set a parameter, the format is %@winsystem[n,v] where n is the appropriate SET number from the table below and v is the desired new value for that parameter.

Where the selection is a state, the legal values are 0 for off/disabled, and 1 for on/enabled.

Where the selection is a width or height, the values are in pixels.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits).

Note: This function provides direct access to the SystemParametersInfo API. Not all available parameters are listed here. See your Windows technical documentation for details, and use with caution.

	GET

	SET

	Parameter to GET or SET

	1

	2

	Beep state

	5

	6

	Border width

	10

	11

	Keyboard repeat speed (0 to 31)

	13

	13

	Width of an icon cell

	14

	15

	Screen saver time-out (seconds)

	16

	17

	Screen saver state

	22

	23

	Keyboard repeat delay setting (0-3).

	24

	24

	Height of an icon cell

	25

	26

	Icon title wrapping state

	27

	28

	Pop-up menu alignment

	37

	38

	Full-window dragging state

	56

	57

	Show Sounds accessibility flag

	68

	69

	Keyboard preference state (0=mouse, 1=keyboard)

	70

	71

	Screen reviewer utility state

	74

	75

	Font smoothing feature state

	79

	81

	Time-out for the low-power phase of screen saving (seconds)

	80

	82

	Time-out value for the power-off phase of screen saving (seconds)

	83

	85

	Low-power phase of screen saving state

	84

	86

	Power-off phase of screen saving state

	89

	90

	Locale identifier for the system default input language.

	93

	94

	Mouse Trails feature state. (0 or 1= disabled, >1= number of cursors in the trail)

	95

	95

	Snap-to-default-button feature state

	98

	99

	Width of the mouse pointer WM_MOUSEHOVER message trigger rectangle

	100

	101

	Height of the mouse pointer WM_MOUSEHOVER message trigger rectangle

	102

	103

	Time in the hover rectangle for the mouse pointer to trigger a WM_MOUSEHOVER message (milliseconds)

	104

	105

	Number of lines to scroll when the mouse wheel is rotated

	106

	107

	Time that the system waits before displaying a shortcut menu when the mouse cursor is over a submenu item (milliseconds)

	110

	111

	IME status window state - per user (0=invisible, 1=visible)

	112

	113

	Current mouse speed (1 to 20).

	4096

	4097

	Active window tracking state

	4098

	4099

	Menu animation feature state.

	4100

	4101

	Combo box animation state.

	4102

	4103

	List box smooth-scrolling effect state.

	4104

	4105

	Gradient effect for window title bars.

	4106

	4107

	Menu access keys underline state.

	4108

	4109

	Active window tracking Z-order state.

	4110

	4111

	Hot-tracking state.

	4114

	4115

	Menu fade animation state.

	4116

	4117

	Selection fade effect state.

	4118

	4119

	ToolTip animation state.

	4120

	4121

	Type of ToolTip animation (1 for fade, 0 for slide)

	4122

	4123

	Cursor shadow state.

	4124

	4125

	State of the Mouse Sonar feature

	4126

	4127

	Mouse clicklock state

	4128

	4129

	Mouse vanish feature state

	4130

	4131

	Whether native User menus have flat menu appearance.

	4132

	4133

	Drop shadow effect state.

	4158

	4159

	State of all UI effects.

	8192

	8193

	Time following user input during which the system will not allow applications to force themselves into the foreground (milliseconds)

	8194

	8195

	Active window tracking delay (milliseconds)

	8196

	8197

	The number of times SetForegroundWindow will flash the taskbar button when rejecting a foreground switch request.

	8198

	8199

	Caret width in edit controls

	8200

	8201

	Time delay before the primary mouse button is locked.

	8202

	8203

	Type of font smoothing (32769=standard anti-aliasing, 32770=ClearType).

	8204

	8205

	Contrast value used in ClearType smoothing (1000-2200)

	8206

	8207

	Width of the left and right edges of the focus rectangle

	8208

	8209

	Height of the top and bottom edges of the focus rectangle

.

	GET

	SET

	 Parameter to GET or SET

	@WMI	Not in LE

@WMI[namespace,"wql search"[,enum]]: Returns the result of the WMI query.

The optional enum parameter specifies the property instance to return for classes that return multiple properties. You can omit the enum parameter if you're querying a single property and instance.

For details on what information is available, see the WMI and WQL documentation on MSDN (msdn.microsoft.com).

See also WMIQUERY.

Examples:

%@wmi[root\cimv2,"SELECT name FROM Win32_Processor"]

%@wmi[root\cimv2,"SELECT name, state FROM Win32_service",4]

@WORD

@WORD[["sep_list",]n,string] : Returns the nth word in string. The first (leftmost) word is numbered 0. If n is negative, words are counted backwards from the end of string, and the absolute value of n is used. You can specify the rightmost word by setting n to -0.

You can specify a range of words to return with the syntax:

@WORD[["sep_list",]start[-end | +range],string]

Specify an inclusive range with a -. For example:

%@word[2-4,A B C D E F G] will return "C D E". (Note that you cannot use inclusive ranges when starting from the end.)

You can specify a relative range with a +. For example:

%@word[2+1,A B C D E F G] will return "C D".

The default list of separators for @FIELD, @FIELDS, @WORD and @WORDS consists of space, tab, and comma. You can use the optional first parameter, sep_list, to specify the separators that you wish to use. If you want to use a quote mark as a separator, prefix it with an Escape character. Alphabetic characters in sep_list are case sensitive.

@FIELD and @FIELDS differ from @WORD and @WORDS in how multiple consecutive separators are counted. @WORD and @WORDS consider a sequence as a single separator, and ignore separators at either end of string. In contrast, @FIELD and @FIELDS count each occurrence of a separator individually, including those at either end of string.

Numeric input may be entered in either decimal format (a sequence of 0-9 digits) or in hexadecimal format ("0x" followed by a sequence of 0-F hex digits). To use hexadecimal form for a negative n, remember to use 32-bit 2's complement arithmetic, e.g., 0xFFFFFFFF for -1.

See also: @WORDS, @FIELD, @FIELDS.

Examples:

	function

	value

	%@WORD[2,NOW, , , IS THE TIME]

	THE

	%@WORD[-0,NOW IS THE TIME]

	TIME

	%@WORD[-2,NOW IS THE TIME]

	IS

	%@WORD["=",1,2 + 2=4]

	4

@WORDS

@WORDS[["sep_list",]string]: Returns the number of words in string.

The default list of separators for @FIELD, @FIELDS, @WORD and @WORDS consists of space, tab, and comma. You can use the optional first parameter, sep_list, to specify the separators that you wish to use. If you want to use a quote mark as a separator, prefix it with an Escape character. Alphabetic characters in sep_list are case sensitive.

@FIELD and @FIELDS differ from @WORD and @WORDS in how multiple consecutive separators are counted. @WORD and @WORDS consider a sequence as a single separator, and ignore separators at either end of string. In contrast, @FIELD and @FIELDS count each occurrence of a separator individually, including those at either end of string.

If string is double quoted, you must specify sep_list.

See also: @WORD, @FIELD, @FIELDS.

	@WORKGROUP	Not in LE

@WORKGROUP[name]: Returns the workgroup of the computer specified by the DNS or NetBios name. If name is not specified, @WORKGROUP returns the workgroup of the local computer. (To query a remote computer, you must be an authenticated user on that computer.)

	@XMLCLOSE	Not in LE

@XMLCLOSE[] : Close an XML file previously opened by @XMLOPEN.

For more details on XML support, see XML in Take Command.

	@XMLNODES	Not in LE

@XMLNODES[["filename"],path] : Return the number of nodes (children) for the specified path in an XML file . The arguments are:

filename - name of XML file

path - one or more element accessors separated by a /.

If you don't specify a filename (which *must* be in double quotes), @XMLXPATH will use the XML file previously opened by @XMLOPEN.

For more details on XML support, see XML in Take Command.

	@XMLOPEN	Not in LE

@XMLOPEN[filename] - open an XML file for use by @XMLXPATH and/or @XMLNODES.

For more details on XML support, see XML in Take Command.

	@XMLXPATH	Not in LE

@XMLXPATH[["filename"],path] : XML XPath query. (See the XML XPath docs for details on XPath syntax.) The arguments are:

filename - name of XML file

path - one or more element accessors separated by a /.

If you don't specify a filename (which *must* be in double quotes), @XMLXPATH will use the XML file previously opened by @XMLOPEN.

To return an attribute, preface the attribute name with an @.

For more details on XML support, see XML in Take Command.

@YEAR

@YEAR[date[,format]]: Returns the year for the specified date. See date formats for valid formats.

@YEAR accepts an optional second parameter specifying the date format:

	0 	default

	1 	USA (mm/dd/yy)

	2 	Europe (dd/mm/yy)

	3 	Japan (yy/mm/dd)

	4 	ISO (yyyy-mm-dd)

	5	ISO 8601 yyyy-Www-d

	6	ISO 8601 yyyy-ddd

Example:

echo %@year[5-5-2012,1]

2012

	@YDECODE	Not in LE

@YDECODE[s,string] : Create a text string from a hexadecimal input string. Returns the text string.

@YDECODE[inputfile,outputfile] : Decode a hex encoded file. Returns 0 if the output file was successfully written.

Y Encoding is similar to Base64, but uses 8-bit encoding to reduce the amount of data being sent and received.

	@YENCODE	Not in LE

@YENCODE[s,string] : Create a text string from a hexadecimal input string. Returns the text string.

@YENCODE[inputfile,outputfile] : Encode a file. Returns 0 if the output file was successfully written.

Y Encoding is similar to Base64, but uses 8-bit encoding to reduce the amount of data being sent and received.

Example:

echo %@yencode[data.file,data.file.yenc]

	@ZIPCFILE	Not in LE

@ZIPCFILE[ziparchive,n]: Returns the compressed name of file n in a .zip archive.

See also ZIP and UNZIP.

	@ZIPCFILESIZE	Not in LE

@ZIPCFILESIZE[ziparchive,n]: Returns the compressed size of file n in a .zip archive.

See also ZIP and UNZIP.

	@ZIPCOMMENT	Not in LE

@ZIPCOMMENT[ziparchive]: Returns the comment (if any) for a .zip archive.

See also ZIP and UNZIP.

	@ZIPCOUNT	Not in LE

@ZIPCOUNT[ziparchive]: Returns the number of files in a .zip archive.

See also ZIP and UNZIP.

	@ZIPDFILE	Not in LE

@ZIPDFILE[ziparchive,n]: Returns the decompressed name of file n in a .zip archive.

See also ZIP and UNZIP.

	@ZIPFILECRC	Not in LE

@ZIPDFILESIZE[ziparchive,n]: Returns the CRC of file n in a .zip archive.

See also ZIP and UNZIP.

	@ZIPDFILESIZE	Not in LE

@ZIPDFILESIZE[ziparchive,n]: Returns the decompressed size of file n in a .zip archive.

See also ZIP and UNZIP.

	@ZIPFILECOMMENT	Not in LE

@ZIPFILECOMMENT[ziparchive,n]: Returns the comment (description) of file n in a .zip archive.

See also ZIP and UNZIP.

	@ZIPFILEDATE	Not in LE

@ZIPFILEDATE[ziparchive,n]: Returns the date and time of file n in a .zip archive.

See also ZIP and UNZIP.

Command Line

A TCC window displays a prompt when it is waiting for you to enter a command. The actual text depends on the current drive and directory as well as your PROMPT settings. (The default will look something like [c:\]). This is called the command line and the prompt is asking you to enter a command.

This section explains the features that will help you while you are entering commands, how keystrokes are interpreted when you enter them at the command line, and how to transfer text between TCC and other applications.

The keystrokes discussed here are the ones normally used by TCC. If you prefer using different keystrokes to perform these functions, you can assign new ones with key mapping directives.

Some of the command line features documented in this section are:

[image: Onestep] Command Line Editing

[image: Onestep] Command History and Recall

[image: Onestep] Command History Window

[image: Onestep] Local and Global History Lists

[image: Onestep] Command Names and Parameters

[image: Onestep] Conditional Expressions

[image: Onestep] Filename Completion

[image: Onestep] Customizing Filename Completion

[image: Onestep] Directory History Window

[image: Onestep] Filename Completion Window

[image: Onestep] Variable Completion

[image: Onestep] Automatic Directory Changes

[image: Onestep] Directory History Window

[image: Onestep] Multiple Commands

[image: Onestep] Expanding and Disabling Aliases

[image: Onestep] Command Line Length Limits

[image: Onestep] Command Grouping

[image: Onestep] Starting Applications

[image: Onestep] Command Parsing

[image: Onestep] Date Formats

Additional command line features are documented under File Selection and under Directory Navigation.

Command Line Editing

The command line works like a single-line word processor, allowing you to edit any part of the command at any time before you press Enter to execute it (or Esc to erase it).

The command line as typed can contain up to a maximum of 65,535 characters, and it can expand to a maximum of 131,071 characters after variable, function and alias substitution. See Command Line Length Limits.

You can use the following editing keys (among others) when you are typing a command (the words Ctrl and Shift mean to press the Ctrl or Shift key together with the other key named). The keystrokes listed here are the default values, but most editing keys can be redefined via Command Line Editing Keys or General Input Keys directives.

Cursor Movement Keys:

	Left

	Move the cursor left one character

	Right

	Move the cursor right one character

	Ctrl-Left

	Move the cursor left one word

	Ctrl-Right

	Move the cursor right one word

	Home

	Move the cursor to the beginning of the command

	End

	Move the cursor to the end of the command

		

Insert and Delete Keys:

	Ins

	Toggle between insert and overstrike mode (cursor shape indicates mode)

	Del

	Delete the character under (or to the right of) the cursor, or the highlighted text

	Bksp

	Delete the character to the left of the cursor, or the highlighted text

	Ctrl-L

	Delete the word or partial word to the left of the cursor

	Ctrl-R or Ctrl-Bksp

	Delete the word or partial word to the right of the cursor

	Ctrl-Home

	Delete from the beginning of the line to the cursor

	Ctrl-End

	Delete from the cursor to the end of the line

	Esc

	Delete the entire line

	Ctrl-V

	Paste the first line of text from the clipboard at the current cursor position

	Ctrl-B

	Paste the last argument from the previous command line

	Ctrl-0 to Ctrl-9

	Paste the corresponding argument from the previous command line

	Redo

	Redo the previous undo

	Undo

	Undo the last edit

Highlighting:

	Shift-Right

	Highlight character right of cursor and move cursor

	Shift-Left

	Highlight character left of cursor and move cursor

	Shift-Home

	Highlight from cursor to beginning-of-line and move cursor

	Shift-End

	Highlight from cursor to end-of-line and move cursor

	Ctrl-Shift-Right

	Highlight word right of cursor and move cursor

	Ctrl-Shift-Left

	Highlight word left of cursor and move cursor

	Ctrl-Y

	Copy highlighted text to the clipboard

Execution:

	Ctrl-K

	Save the current command line in the history list without executing it, and then clear the command line

	Ctrl-C or Ctrl-Break

	Cancel the command line without saving in the history list

	Enter

	Execute the command line

Miscellaneous:

	F1

	Get help for the command (first argument on the line)

	Ctrl-F1

	Get help for the current word

	Alt-F1

	Call the command dialog for the command (only argument on the line)

	Ctrl-F

	Expand a command or directory alias

	Ctrl-X

	Expand an environment variable

	Ctrl-A

	Toggle between LFN and SFN

	Alt-PgUp, Alt-PgDn, Alt-Home, Alt-End, Alt-Up, Alt-Down

	Scroll the window within the console buffer. (Use the cursor pad keys, not the numeric keypad keys.)

To highlight text on the command line use the mouse or hold down the Shift key and use any of the cursor movement keys listed above. You can select a complete word by placing the cursor anywhere in the word and double-clicking with the mouse. Once you have selected or highlighted text on the command line, any new text you type will replace the highlighted text. If you press Bksp or Del while there is text highlighted on the command line, the highlighted text will be deleted.

While you are working at the prompt you can use the clipboard to copy text between TCC and other applications (see Highlighting and Copying Text for additional details). You can also use Drag and Drop to paste a filename from another application onto the command line.

Most of the command line editing capabilities are also available when you are prompted for a line of input. For example, you can use the command line editing keys when DESCRIBE prompts for a file description, when INPUT prompts for input from an alias or batch file, or when LIST prompts you for a search string.

If you want your input at the command line to be in a different color, you can use the Windows tab of the configuration dialogs.

TCC will prompt for additional command line text when you include the escape character as the very last character of a typed command line. (The default escape character is the caret "^", but you can also use the %= variable). For example:

echo The quick brown fox jumped over the lazy ^

More? sleeping dog. > alphabet

Sometimes you may want to enter one of the command line editing keystrokes on the command line instead of performing the key's usual action. For example, suppose you have a program that requires a Ctrl-R character on its command line. Normally you couldn't type this keystroke at the prompt, because it would be interpreted as a "Delete word right" command. To get around this problem, use the special keystroke Alt-255. You enter Alt-255 by holding down the Alt key while you type 0255 on the numeric keypad, then releasing the Alt key. This forces TCC to interpret the next keystroke literally and place it on the command line, ignoring any special meaning it would normally have as a command line editing or history keystroke. You can use Alt-255 to suppress the normal meaning of command line editing keystrokes even if they have been reassigned with key mapping directives, and Alt-255 itself can be reassigned with the CommandEscape configuration option.

Alternative Keyboard Input Method:

The method mentioned above for Alt-255 can be used to generate other characters. You must use the number keys on the numeric keypad, not the row of keys at the top of your keyboard. When this Alt + keypad approach is used in a Unicode environment, TCC will assume that a 3-digit decimal value means an ASCII character, while a 4-digit decimal value mean a Unicode glyph. Make sure that your hardware, character set, code page and font all support the desired combination. Use caution with this method if you plan on manipulating the generated character in other Windows components. See the section on ASCII, Key Codes and ANSI X3.64 Commands for some additional information.

Command History and Recall

Each time you execute a command, the entire command line is saved in a command history list. You can display the saved commands, search the list, modify commands, and rerun commands. The command history is available at the command prompt and in a special command history window. You can choose to use either a local or global command history.

Command History Keys:

	Up

	Recall the previous (or most recent) command, or the most recent command that matches a partial command line.

	Down

	Recall the next (or oldest) command, or the oldest command that matches a partial command line.

	PgUp

	Display a popup window of the command history (or all entries matching a partial command line).

	F3

	Fill in the rest of the command line from the previous command, beginning at the current cursor position.

	Ctrl-D

	Delete the currently displayed history list entry, erase the command line, and display the previous (matching) history list entry.

	Ctrl-E

	Display the last entry in the history list.

	Ctrl-K

	Save the current command line in the history list without executing it, and then clear the command line.

	Ctrl-Enter

	Copy the current command line to the end of the history list even if it has not been altered, then execute it.

	@

	As the first character in a line: Do not save the current line in the history list when it is executed, nor store it in the CMDLINE environment variable.

Note: The keystrokes shown above are the default values. See Key Mapping Directives for details on how to assign different keystrokes.

The simplest use of the command history list is to repeat a command exactly. For example, you might enter the command

dir a:*.wks;*.doc

to see some of the files on drive A. You might move some new files to drive A and then want to repeat the DIR command. Just press Up repeatedly to scan back through the history list. When the DIR command appears, press Enter to execute it again. You can also view the command history in a window.

After you have found a command, you can edit it before pressing Enter. You will appreciate this feature when you have to execute a series of commands that differ only slightly from each other. You can also view and manage the command history list with the HISTORY command.

The history list is normally "circular". If you move to the latest command in the list and then press Up once more, you'll see the oldest command in the list. Similarly, if you move to the first command in the list and then press Up once more, you'll see the last command in the list. You can disable this feature and make command history recall stop at the beginning or end of the list by turning off History Wrap on the "History" tab of the configuration dialog.

You can search the command history list to find a previous command quickly using command completion. Just enter the first few characters of the command you want to find and press Up. You only need to enter enough characters to identify the command that you want to find. For example, to find a DIR command, enter DI and then press Up. If you press Up a second time, you will see the previous command that matches. The system will beep if there are no matching commands. The search process stops as soon as you type one of the editing keys, whether or not the line is changed. At that point, the line you're viewing becomes the new line to match if you press Up again.

You can specify the size of the command history list on the Command Line tab of the configuration dialog. When the list is full, the oldest commands are discarded to make room for new ones. You can also use the Minimum Length option to enable or disable history saves and to specify the shortest command line that will be saved.

You can prevent any command line from being saved in the history by beginning it with an at sign (@) or by including it in the contents of the HistoryExclude variable.

When you execute a command from the history, that command remains in the history list in its original position. The command is not copied to the end of the list (unless you modify it). If you want each command to be copied or moved to the end of the list when it is reexecuted, select Copy to End or Move to End on the "History" tab of the configuration dialogs. If you select either of these options, the list entry identified as "current" (the entry from which commands are retrieved when you press Ctrl-Up) is also adjusted to refer to the end of the history list after each recalled command is executed.

Use F3 when your new command is different from your previous one by just a character or two at the beginning. For example, suppose you want to execute a DIR on several file names then use DEL to delete those same files. After the DIR is complete type DEL and press F3; the rest of the command line will be completed for you. Check that it's correct, and then press Enter to delete the files. F3 also retrieves the entire previous command (like Up) if nothing has been typed on the line.

Use Ctrl-E to "get your bearings" by returning to the end of the list if you've scrolled around so much that you aren't sure where you are any more.

Use Ctrl-K to save some work when you've typed a long command and then realize that you weren't quite ready. For example, if you forget to change directories and notice it after a command is typed or mostly typed, but before you press Enter, just press Ctrl-K to save the command without executing it. Use the CD or CDD command to change to the right directory, press Up twice to retrieve the command you saved, make any final changes to it, and press Enter to execute it.

Use Ctrl-Enter to organize the history list for repetitive tasks. Instead of searching through the command history for the next command in a sequence, you can place all of the necessary commands next to each other and make them easier to repeat.

Command History Window

[image: cmdhistory]

You can view the command history in a scrollable popup window, and select the command to re-execute or modify from those displayed in the window. The directory history window includes a toolbar with buttons for editing, deleting, and moving lines.

To activate the command history window press PgUp or PgDn at the command line. A popup window will appear, with the command you most recently executed marked with a highlight. (If you just finished re-executing a command from the history, then the next command in sequence will be highlighted.)

You can view a "filtered" history window by typing some characters on the command line, then pressing PgUp or PgDn. Only those commands matching the typed characters will be displayed in the window.

You can search for a specific command by entering a string (including wildcards or regular expressions) in the edit window on the title bar. TCC will remove non-matching lines from the window. See Popup Windows for details.

Command History Window Keys:

	Up	Scroll the display up one line.

	Down	Scroll the display down one line.

	Left	Scroll the display left 4 columns.

	Right	Scroll the display right 4 columns.

	PgUp	Scroll the display up one page.

	PgDn	Scroll the display down one page.

	Home	Go to the beginning of the list.

	End	Go to the end of the list.

	Ctrl-Enter	Move the selected line to the command line for editing

	Enter	Execute the selected line

	Ctrl-C	Copy the selected line to the clipboard

	Ctrl-D or Del	Delete the selected line from the list

	Ctrl-E	Edit the selected line in the history window

	Ctrl-Up	Move the selected line up one row

	Ctrl-Down	Move the selected line down one row

	Esc	Close the window without making a selection.

Note: The keystrokes shown above are the default values. See Key Mapping Directives for details on how to assign different keystrokes.

Once you have selected a command in the history window, press Enter or double-click with the mouse to execute it immediately. Press Ctrl-Enter or hold down the Ctrl key while you double-click with the mouse to move the line to the prompt for editing.

You can move and/or resize the history window. TCC will save the changes and use the new position the next time the command history window is invoked. (Not supported in TCC/LE.) You can also change the keys used in the window with key mapping directives.

Local and Global History Lists

The command history and directory history can be stored in either local or global lists.

With a local list, any changes made to the history will only affect the current TCC tab window. They will not be visible in other tabs or other copies of TCC.

With a global list, all TCC windows will share the same history, and any changes made to the history in one copy (e.g., by executing commands from the prompt) will affect all other copies. Global lists are the default.

You can control the type of history list with the Local History and Local Directory History options, and with the /L, /LD and /LH options of either the START command or TCC.

If you select a global history list for TCC, you can share the history among all TCC sessions running concurrently. When you close all of the TCC sessions, the memory for the global history list is released, and a new, empty history list is created the next time you start TCC.

If you want the histories to be retained in memory even when no TCC session is running, see the SHRALIAS command, which retains the global alias, user-defined function, command history, and directory history lists. SHRALIAS retains the lists in memory, but cannot preserve it when Windows itself is shut down or the user logs out. To save your histories for the next restart of Windows, you must store them in a file and reload them after the system restarts. For details on how to do so, see the HISTORY and DIRHISTORY commands.

Command Names and Parameters

When you enter a command you type its name at the prompt, followed by a space and any parameters for the command. For example, all of these could be valid commands:

dir

copy file1 file2 d:\

f:\util\mapmem /v

"c:\program files\JPSoft\tcmd13\tcc.exe" /LF

The last three commands above include both a command name, and one or more parameters. There are no spaces within the command name (except in quoted file names), but there is a space between the command name and any options or parameters, and there are spaces between the options and parameters.

Some commands may work when options or parameters are entered directly after the command (without an intervening space, e.g. dir/p), or when several options or parameters are entered without spaces between them (e.g. dir /2/p). A very few older programs may even require this approach. However, leaving out spaces this way is usually technically incorrect, and is not recommended as a general practice, as it may not work for all commands.

If the command name includes a path, the elements must be separated with backslashes (e.g. F:\UTIL\MAPMEM). If you are accustomed to Linux syntax where forward slashes are used in command paths, and want TCC to recognize this approach, you can set the Unix/Linux-style Paths option.

For more information on command entry see Multiple Commands and Command Line Length Limits. For details on how TCC handles the various elements it finds on the command line see Command Parsing..

Conditional Expressions

The commands DO (when used with the UNTIL or WHILE keyword), IF, IFF/ELSEIFF, and the variable function @IF evaluate a conditional expression, and perform a different action based on whether or not the expression is TRUE. The SWITCH command tests pairs of values for equality. Most of the examples below use the IF command, but conditional expressions could be used in the other cases above as well.

A conditional expression can be one of the following, as described below:

	[image: Onestep]	relational expression

	[image: Onestep]	status test

	[image: Onestep]	logical expression

Relational Expression

A relational expression compares two character strings, using one of the relational operators in the table below. Each of these two character strings can contain literal text, environment and internal variables, and variable functions, including user defined ones, in any combination. Note that double quotes are significant.

Numeric and String Comparison

When comparing the two character strings, either a numeric or a string comparison will be used. A numeric comparison treats the strings as numeric values and tests them arithmetically. A string comparison treats the strings as text. The parser uses the rules described for the @NUMERIC function to determine whether or not the strings are numeric, and only if both are numeric is a numeric comparison performed. If either value is non-numeric, a string comparison is used. To force a string comparison when both values may be numeric, use double quotes around the values you are testing, as shown below. Because the quote mark is not a numeric character, string comparison is performed. Numeric comparison cannot be forced. To compare hexadecimal numbers numerically, you must convert them to decimal numbers using @CONVERT. This is not necessary if both are the same length - string comparison and numeric comparison yield the same result.

The example below demonstrates the difference between numeric and string comparisons, as shown in the table below. Numerically, 2 is smaller, but as a string it is "larger" because its first digit is larger than the first digit of 19. So the first of these conditions will be true, and the second will be false:

	expression

	value

	comparison type

	2 lt 19

	true

	numeric

	"2" lt "19"

	false

	string

Relational Expression Formats

The format of a relational expression is one of

num1 relational operator num2

string1 relational operator string2

Note: The correct syntax requires a space both before and after operator to separate it from its operands. Commonly seen constructs such as %a==b may or may not work depending on the specific parameters, but they are never recommended.

Relational Operators

	operator

	numeric comparison: expression is true if

	string comparison: expression is true if, when ignoring character case:

	EQ or ==

	num1 equals num2

	string1 equals string2

	NE or !=

	num1 does not equal num2

	string1 does not equal string2

	LT

	num1 is less than num2

	string1 alphabetically precedes string2

	LE

	num1 is less than or is equal to num2

	string1 alphabetically precedes or is equal to string2

	GE

	num1 is greater than or is equal to num2

	string1 alphabetically succeeds or is equal to string2

	GT

	num1 is greater than num2

	string1 alphabetically succeeds string2

	EQC

	tested as strings è

	string1 is identical to string2, including character case

	=~

	regular expression test

	string1 matches the regular expression in string2

	!~

	regular expression test

	string1 doesn't match the regular expression in string2

Case differences are ignored in string comparisons (except by EQC). If two strings begin with the same text but one is shorter, the shorter string is considered to precede (be less than) the longer one. For example, "a" is less than "abc", and "hello_there" is greater than "hello".

When you compare text strings, you may need to enclose the parameters in double quotes in order to avoid syntax errors which can occur if one of the parameter values is empty (e.g., due to an environment variable which has never been assigned a value). This technique will not work for numeric comparisons, as the quotes will force a string comparison, so with numeric tests you must be sure that all variables are assigned values before the test is done.

In order to maintain compatibility with CMD, TCC recognizes the following additional names for conditions:

	CMD

	TCC

	EQL or EQU

	EQ

	NEQ

	NE

	LSS

	LT

	LEQ

	LE

	GTR

	GT

	GEQ

	GE

Internal variables and variable functions are very powerful when combined with string and numeric comparisons. They allow you to test the state of your system, the characteristics of a file, date and time information, or the result of a calculation. You may want to review the variables and variable functions when determining the best way to set up a condition test.

Status Test

These conditions test operating system, file system or TCC status. In addition to the tests below, there are many internal variables and variable functions which allow you to test the status of many other parts of the system.

In the descriptions below of the various status tests, the status tests are true if and only if the specified condition is true.

	DEFINED variable

	If variable exists in the environment, the expression is true. This is equivalent to testing whether or not variable is nonempty.

	

	

	

	Note: GOSUB variables and internal variables always fail the DEFINED test.

	

	

	ERRORLEVEL [relational operator] n

	This test retrieves the exit code of the preceding external program. By convention, programs return an exit code of 0 when they are successful and a non-zero number to indicate an error. The relational operator may be any of those listed above (e.g., EQ, GT). If no operator is specified, the default is GE. The comparison is done numerically.

	

	

	

	Not all programs return an explicit exit code. For programs which do not, the behavior of ERRORLEVEL is undefined.

	

	

	EXIST filename

	If filename matches a file which exists, the expression is true. You can use wildcards in filename, in which case the expression is true if any file matching the wildcard name exists. filename may include an absolute or relative path.

	

	

	

	WARNING: In Windows the expression will be true if there is either a file or a directory named filename. Use ISFILE or ISDIR instead.

	

	

	

	The special filename NUL is commonly used in CMD batch files to test the existence of a directory. The expression exist xxx\NUL is true only if xxx is a directory.

	

	

	ISALIAS aliasname

	If aliasname is defined as an alias, the expression is true.

	

	

	ISAPP appname

	If appname matches the name of an application which is currently running, the expression is true. To match a specific application, you must enter the full pathname of the application. Partial names and wildcards will yield undependable results. Both the short and long filename forms of the name will be checked (see LFN File Searches for details on the correspondence between short and long filenames).

	

	This test may require DEBUG privilege.

	

	

	ISDIR path

DIREXIST path

	If the directory specified by path exists, the expression is true. Path may be either absolute or relative. DIREXIST may be used as a synonym for ISDIR.

	

	

	ISFILE filename

	If filename matches a file which exists, the expression is true. You can use wildcards in the filename, in which case the expression is true if any file matching the wildcard name exists. ISFILE matches only files, not directories.

	

	

	ISFUNCTION name

	If the user-defined function name is loaded, the expression is true.

	

	

	ISINTERNAL command

	If command is an active internal command, the expression is true. Commands can be activated and deactivated with the SETDOS /I command.

	

	

	ISLABEL label

	If label exists in the current batch file, the expression is true. Labels may be one or more words long. Note that this test has nothing to do with disk partition labels.

	

	

	ISPLUGIN name

	If name is a plugin variable, function, or command, the expression is true.

	

	

	ISWINDOW "title"

	If a window which matches the title exists, the expression is true. double quotes must be used around the title, which may contain wildcards and extended wildcards.

	ISHUNG "title"

	If the specified window is not responding, the expression is true.

	PLUGIN module

	If the plugin module is loaded, the expression is true. Do not include an extension (i.e., ".dll"), for the module name.

Logical Expressions

A logical expression is one of the following:

[image: Onestep] a relational expression

[image: Onestep] a status test

[image: Onestep] the unary logical operator NOT (or !) followed by a logical expression

[image: Onestep] two logical expressions connected by a binary logical operator

Logical operators

	operator

	type

	usage

	value is TRUE if

	NOT

	unary

	NOT cond

	cond is FALSE.

	.AND.

	binary

	cond1 .AND. cond2

	both cond1 and cond2 are TRUE.

	.OR.

	binary

	cond1 .OR. cond2

	at least one of cond1 and cond2 is TRUE.

	.XOR.

	binary

	cond1 .XOR. cond2

	one of cond1 and cond2 is TRUE, and the other one is FALSE.

This example runs a program called DATALOAD if today is Monday or Tuesday (enter this on one line):

if "%_dow" == "Mon" .or. "%_dow" == "Tue" dataload

Test conditions are always scanned from left to right -- there is no implied order of precedence, as there is in some programming languages. You can, however, force a specific order of testing by grouping conditions with parentheses, for example (enter this on one line):

if (%a == 1 .or. (%b == 2 .and. %c == 3)) echo something

Combining logical expressions

Parentheses can be used only when the portion of the expression inside the parentheses contains at least one of the binary logical operators .and., .or., or .xor.. Parentheses on a simple expression which does not combine two or more tests will be taken as part of the string to be tested, and will probably make the test fail. For example, the first of these tests is FALSE, the second is TRUE:

(a == a)

(a == a .and. b == b)

Parentheses may be nested.

Examples

This batch file fragment runs a program called WEEKLY if today is Monday:

if "%_dow" == "mon" weekly

This batch file fragment tests for a string value:

input "Enter your selection : " %%cmd

if "%cmd" == "WP" goto wordproc

if "%cmd" NE "GRAPHICS" goto badentry

This example calls GO.BTM if the first two characters in the file MYFILE are GO:

if "%@left[2,%@line[myfile,0]]" == "GO" call go.btm

The first batch file fragment below tests for the existence of A:\JAN.DOC before copying it to drive C (this avoids an error message if the file does not exist):

if isfile a:\jan.doc copy a:\jan.doc c:\

This example tests the exit code of the previous program and stops all batch file processing if an error occurred:

if errorlevel == 0 goto success

echo "External Error; Batch File Ends!"

cancel

Filename Completion

Filename completion can help you by filling in a complete file name on the command line when you only remember or want to type part of it. Filename completion can be used at the command line, which is explained here, and in a filename completion window.

Filename Completion Keys:

	F8 or Shift-Tab	Get the previous matching filename.

	F9 or Tab	Get the next matching filename.

	F10	Keep the current matching filename and display the next matching name immediately after the current one.

	F12	Repeat the filename just returned from an F9 / Tab match.

	Alt-F9	Restore the original filename mask after a previous F9 or Tab. (This will only work provided you haven't terminated the completion loop; i.e. by pressing anything other than Tab, Shift-Tab, F8, F9, F10, or F12.)

	Ctrl-A	Toggle between long and short filename.

Note: The keystrokes shown above are the default values. See Key Mapping Directives for details on how to assign different keystrokes.

For example, if you know the name of a file begins AU but you can't remember the rest of the name, type:

copy au

and then press the Tab key or F9 key. TCC will search the current directory for filenames that begin with AU and insert the first one onto the command line in place of the AU that you typed.

If this is the file that you want, simply complete the command. If TCC didn't find the file that you were looking for, press Tab or F9 again to substitute the next filename that matches your pattern (in the above example, begins with AU). When there are no more filenames that match your pattern, the system will beep each time you press Tab or F9.

If you go past the filename that you want, press Shift-Tab or F8 to back up and return to the previous matching filename. After you back up to the first filename, the system will beep each time you press Shift-Tab or F8.

If you want to enter more than one matching filename on the same command line, press F10 when each desired name appears. This will keep that name and place the next matching filename after it on the command line. You can then use Tab (or F9) and Shift-Tab (or F8) to move through the remaining matching files.

The pattern you use for matching may contain any valid filename characters, as well as wildcard characters and extended wildcards. For example, you can copy the first matching .TXT file by typing

copy *.txt

and then pressing Tab.

If you don't specify part of a filename before pressing Tab, TCC will match all files. For example, if you enter the above command as "COPY ", without the *.TXT, and then press Tab, the first filename in the current directory is displayed. Each time you press Tab or F9 after that, another name from the current directory is displayed, until all filenames have been displayed. Note: you must terminate the command (e.g., by space) before file completion becomes available.

If you type a filename without an extension, TCC will append * to the name on LFN drives, and *.* on drives which only support short file names. It will also place a * after a partial extension. If you are typing a group of file names in an include list, the part of the include list at the cursor will be used as the pattern to match.

When filename completion is used at the start of the command line, it will only match directories, executable files, and files with executable extensions, since these are the only file names that it makes sense to use at the start of a command. If a directory is found, a \ will be appended to it to enable an automatic directory change. If you need to complete the name of any other file at the start of the command line, press Space before starting to type the name. Filename completion will then match any name, not just directory and executable names. Note that you can also "execute" files whose extension has an association in the Windows Registry, but such files are not considered executable by TCC, and only the method above using a space will work.

Filename completion occurs in the physical order in which matching filenames are stored in the directory, the same order in which DIR /O:U would list them. That order is determined by the underlying file system.

TCC also supports network server and sharename completion. If the filename begins with \\, the completion routines will enumerate the network resources for matching server and/or share names. You can control the way server name completion functions with the Server Completion configuration option.

Filename completion will search the PATH for an executable filename if you have set theSearch Path option in the Command Line configuration tab, and you are :

	(1)	at the beginning of the command line, and

	(2)	there are no matching entries in the current directory, and

	(3)	the name you are attempting to match doesn't contain a full or partial path specification.

If all three conditions are met, filename completion will return the first matching executable found in the PATH.

If you are on an NTFS drive, you can also complete stream names. For example:

copy test:t

and then pressing Tab will search the file test for streams beginning with "t". Note that you cannot complete a filename and a stream name simultaneously (i.e., t*:t*).

Several topics are related to filename completion. See:

[image: Onestep] Converting Between Long and Short Filenames

[image: Onestep] Appending Backslashes to Directory Names

[image: Onestep] Customizing Filename Completion

[image: Onestep] Filename Completion Window

[image: Onestep] Variable Name Completion

Customizing Filename Completion

You can customize filename completion for any internal or external command or alias. This allows TCC to display filenames intelligently based on the command you are entering. For example, you might want to see only .TXT files when you use filename completion in the EDIT command.

To customize filename completion you can use the Filename Completion configuration options. You can also use the FILECOMPLETION environment variable. If you use both, the environment variable will override the configuration option. You may find it useful to use the environment variable for experimenting, then create permanent settings with the configuration dialog .

The format for both the environment variable and the directive is:

cmd1 [cmd2 ...]:ext1 ext2 ...; cmd2: ...

where

cmd1 etc. are command names

ext1 etc. are file extensions (which may include wildcards) or one of the following file types:

	DIRS	Directories

	RDONLY	Read-only files

	HIDDEN	Hidden files

	SYSTEM	System files

	ARCHIVE	Files modified since the last backup

	FILES	Everything that's not a directory

Note that if a file uses one of the reserved file type names shown above as its extension (e.g. xyz.hidden) , that file will be treated as if it were of that type.

The command name is the internal command, alias, or executable file name (without a path). For example, to have file completion return only directories for the CD, CDD, and RD commands and only .C and .ASM files for a Windows editor called WinEdit, you would use this setting for filename completion in the configuration dialog:

cd cdd rd:dirs; winedit:c asm

To set the same results using the FILECOMPLETION environment variable:

set filecompletion=cd cdd rd:dirs; winedit:c asm

With this setting in effect, if you type "CD " and then pressed Tab, TCC returns only directories, not files. If you type WINEDIT and press Tab, you will see only names of .C and .ASM files.

When testing for a customized filename match, TCC checks the actual command line you type (but without expanding any aliases). For example, if you use the definition above and have "W" aliased to "WINEDIT" and then enter a "W" command, filename completion -- which refers only to "WINEDIT" -- will be ignored. To use customized filename completion for aliases you must enter the alias name:

FileCompletion=cd cdd rd:dirs; winedit:c asm; w:c asm

Filename Completion Window

You can view matching filenames in a filename completion window. To activate the window, press F7 or Ctrl-Tab at the command line. You will see a popup window, with a sorted list of files that match any partial filename you have entered on the command line. If you haven't yet entered a file name, the window will contain the name of all executable files (or files with an association; see ASSOC) in the current directory. You can search for a name by entering a string (including wildcards or regular expressions) in the edit window on the title bar. TCC will remove non-matching lines from the window. See Popup Windows for details.

Filename Completion Window Keys:

	F7 or Ctrl-Tab	(from the command line) Open the window.

	Up	Scroll the display up one line.

	Down	Scroll the display down one line.

	Left	Scroll the display left 4 columns.

	Right	Scroll the display right 4 columns.

	PgUp	Scroll the display up one page.

	PgDn	Scroll the display down one page.

	Home	Go to the beginning of the list.

	End	Go to the end of the list.

	Enter or Double Click	Insert the selected filename into the command line.

Note: The keystrokes shown above are the default values. See Key Mapping Directives for details on how to assign different keystrokes.

See also: Filename Completion

Converting Between Long and Short Filenames

On LFN drives, TCC will search for and display long filenames during filename completion. If you want to search for 8.3 short filenames (SFNs), press Ctrl-A before you start using filename completion. This allows you to use filename completion on LFN drives with applications that do not support long filenames. The LFNToggle directive can be used to change the keystroke assigned to this feature.

You can press Ctrl-A at any time prior to beginning filename completion. The switch to SFN format remains in effect for the remainder of the current command line. When TCC begins a new command line it returns to long filename format until you press Ctrl-A again.

You can also press Ctrl-A just after a filename is displayed, and the name will be converted to short filename format. However, this feature only affects the most recently entered file or directory name (the part between the cursor and the last backslash [\] on the command line), and any subsequent entries. It will not automatically convert all the parts of a previously entered path.

Ctrl-A toggles the filename completion mode, so you can switch back and forth between long and short filename displays by pressing Ctrl-A each time you want to change modes.

Appending Backslashes to Directory Names

If you set the Add \ to Directories option in the Command Line tab of the configuration dialogs, TCC will add a trailing backslash \ to directory names. The character appended is a slash / for directory names in FTP URLs or (if you have set the UNIX/Linux-style Paths option in the Startup tab) to all directory names.

This feature can be especially handy if you use filename completion to specify files that are not in the current directory. A succession of Tab or F9 and F10 keystrokes can build a complete path to the file you want to work with.

The following example shows the use of this technique to edit the file C:\DATA\FINANCE\MAPS.DAT. The lines which include "<F9>" show where F9 (or Tab) is pressed; the other lines show how the command line appears after the previous F9 or Tab (the example is displayed on several lines here, but all appears at a single command prompt when you actually perform the steps):

	1	edit \da <F9>

	2	edit \data\

	3	edit \data\f <F9>

	4	edit \data\frank.doc <F9>

	5	edit \data\finance\

	6	edit \data\finance\map <F9>

	7	edit \data\finance\maps.dat

		

Note that F9 was pressed twice in succession on lines 3 and 4, because the file name displayed on line 3 was not what was needed. We were looking for the FINANCE directory, which came up the second time F9 was pressed.

Extended Parent Directory Names

TCC has an extended syntax for referencing parent directories, by adding additional . characters. Each additional . represents an additional directory level above the current directory. For example, .\FILE.DAT refers to a file in the current directory, ..\FILE.DAT refers to a file one level up, i.e., in the parent directory, and ...\FILE.DAT refers to a file two levels up, i.e., in the parent of the parent directory. If your default directory is C:\DATA\FINANCE\JANUARY, you can copy the file LETTERS.DAT from directory C:\DATA to drive A: with the command

[C:\DATA\FINANCE\JANUARY] copy ...\LETTERS.DAT A:

Note: This extended notation may not be understood by external programs. Consider using the @FULL function to expand file and directory references when necessary:

[C:\DATA\FINANCE\JANUARY] myprog %@full[...\LETTERS.DAT]

Directory History Window

[image: dirhistory]

[The directory history window is part of a set of comprehensive directory navigation features built into TCC. For a summary of these features, and more information on enhanced directory navigation features, see Directory Navigation.]

The directory history window includes a toolbar with buttons for editing, deleting, and moving lines.

You can search for a specific directory by entering a string (including wildcards or regular expressions) in the edit window on the title bar. TCC will remove non-matching lines from the window. See Popup Windows for details.

Directory History Window Keys:

	F6 or Ctrl-PgUp	Open the window from the command line

	Up	Scroll the display up one line.

	Down	Scroll the display down one line.

	Left	Scroll the display left 4 columns.

	Right	Scroll the display right 4 columns.

	PgUp	Scroll the display up one page.

	PgDn	Scroll the display down one page.

	Home	Go to the beginning of the list.

	End	Go to the end of the list.

	Ctrl-Enter	Move the selected line to the command line for editing

	Enter	Change to the selected drive/directory

	Ctrl-C	Copy the selected line to the clipboard

	Ctrl-D or Del	Delete the selected line from the list

	Ctrl-E	Edit the selected line in the directory history window

	Ctrl-Up	Move the selected line up one row

	Ctrl-Down	Move the selected line down one row

	Esc	Close the window without making a selection.

Note: The keystrokes shown above are the default values. See Key Mapping Directives for details on how to assign different keystrokes.

The current directory is recorded automatically in the directory history list just before each change to a new directory or drive.

You can view the directory history from the scrollable directory history window and change to any drive and directory on the list. To activate the directory history window, press F6 at the command line. You can then select a new directory with the Enter key or by double-clicking with the mouse.

If the directory history list becomes full, old entries are deleted to make room for new ones. You can set the size of the list with the Command History Buffer Size configuration option. You can change the keys used in the window with key mapping directives.

In order to conserve space, each directory name is recorded just once in the directory history, even if you move into and out of that directory several times. The directory history can be stored in either a local or global list; see below for details.

When you switch directories, the original directory is saved in the directory history list, regardless of whether you change directories at the command line, from within a batch file, or from within an alias. However, directory changes made by external directory navigation utilities or other external programs are not recorded by TCC.

You can also view and manage the directory history list with the DIRHISTORY command.

Local and Global Directory History

The directory history can be stored in either a local or global list. With a local directory history list, any changes made to the list will only be known only to the current copy of TCC. They will not be visible in other sessions. Whenever you start another shell which uses a local history list, it inherits a copy of the directory history from the previous shell. However, any changes to the history made in the second shell will affect only that shell.

All copies of TCC using global directory history list will share a single copy of directory history. Any directory changes made in any of these copies of TCC will be recorded in that shared list, and be accessible by all of them. However, any additional copies of TCC which use local directory history will see their own local lists. Global lists are the default for TCC.

You can control the type of history list with the Local Directory History configuration option, with the /L and /LD command line options, and with the /L and /LD options of the START command.

When you close all TCC sessions, the memory for the global directory history list is released, and a new, empty directory history list is created the next time you start TCC. If you want the directory history list to be retained in memory even when no copy of TCC is running, you need to execute the SHRALIAS command, which performs this service for the global command history, directory history, user-defined functions, and aliases.

There is no fixed rule for deciding whether to use a local or global directory history list. Depending on your work style, you may find it most convenient to use one type, or a mixture of types in different sessions or shells. We recommend that you start with a global directory history, then modify it if you find a situation where the default is not convenient.

Variable Name Completion

Variable name completion works like filename completion. If the parameter begins with a %, the completion routines will scan the environment, internal variables, and variable functions for matching variable names. For example, if the PROMPT and PATH variables are in the environment, in that order, and no other variables start with p, the sequence below may be used to display the value of PATH:

echo %p<Tab>

echo %PROMPT<Tab>

echo %PATH<Enter>

Expanding and Disabling Aliases

A few command line options are specifically related to aliases, and are documented briefly here for completeness. If you are not familiar with aliases, see Aliases and the ALIAS command for complete details.

You can expand an alias on the command line and view or edit the results by pressing Ctrl-F before the command is executed. This is useful when you are developing and debugging a complex alias or if you want to make sure that an alias that you may have forgotten won't change the intent of your command.

At times, you may want to temporarily disable an alias that you have defined. To do so, precede the command with an asterisk (*). For example, if you have an alias for DIR which changes the display format, you can use the following command to bypass the alias and display the directory in the standard format:

*dir

Note: The leading asterisk is crucial in aliases that redefine existing commands, such as:

DIR=*dir /w

Without the asterisk, you would trigger an alias loop error whenever you try to use that alias, since it will endlessly try to redefine itself.

Multiple Commands

You will often know the next two or three commands that you want to execute. Instead of waiting for each one to finish before you type the next, you can type them all on the same command line, separated by the command separator (by default, an ampersand &) or the %+ pseudovariable. For example, if you know you want to copy all of your .TXT files to D:\TEXT and then delete all of them beginning with 'A', you could enter the following command:

copy *.txt d:\text\ & del a*.txt

You may put as many commands on the command line as you wish, as long as the total length of the command line does not exceed 65,535 characters before alias and variable expansion, and 131,071 characters after expansion.

You can use multiple commands in alias definitions and batch files as well as from the command line.

If you don't like using the default command separator, you can pick another character using the SETDOS command's /C option, or the Separator character configuration option.

Conditional Commands

When an internal command or external program finishes, it returns a result called the exit code. Conditional commands allow you to perform tasks based upon the previous command's exit code. Many programs return 0 if they are successful and a non-zero value if they encounter an error.

AND operator &&

If you separate two commands by && (AND), the second command will be executed only if the first command's exit code is 0. For example, the following command will only erase files if the BACKUP operation succeeds:

backup c:\ a: && del c:*.bak;*.lst

OR operator ||

If you separate two commands by || (OR), the second command will be executed only if the first command's exit code is non-zero. For example, if the following BACKUP operation fails, then ECHO will display a message:

backup c:\ a: || echo Error in the backup!

All internal commands return an exit code, but not all external programs do. Conditional commands will behave unpredictably if you use them with external programs which do not return an explicit exit code. To determine whether a particular external program returns a meaningful exit code use an ECHO %? command immediately after the program is finished. If the program's documentation does not discuss exit code, you may need to experiment with a variety of conditions to see how the exit code changes.

Command Grouping

Command grouping allows you to group a set of commands together logically by enclosing them in parentheses.

There are two primary uses for command grouping. One is to execute multiple commands in a place where normally only a single command is allowed. For example, suppose you wanted to execute two different REN commands in all subdirectories of your hard disk. You could do it like this:

global ren *.wx1 *.wxo

global ren *.tx1 *.txo

But with command grouping you can do the same thing in one command:

global (ren *.wx1 *.wxo & ren *.tx1 *.txo)

The two REN commands enclosed in the parentheses appear to GLOBAL as if they were a single command, so both commands are executed for every directory, but the directories are only scanned once, not twice, typically saving time.

This kind of command grouping is most useful with the EXCEPT, FOR, GLOBAL, and IF commands. When you use this approach in a batch file, you must either place all of the commands in the group on one line, or place the opening parenthesis at the end of a line and place the commands on subsequent lines. Examples 1 and 2 below will work properly, but Example 3 will not:

Example 1 (correct):

for %f in (1 2 3) (echo hello %f & echo goodbye %f)

Example 2 (correct):

for %f in (1 2 3) (

 echo hello %f

 echo goodbye %f

)

Example 3 (incorrect):

for %f in (1 2 3) (echo hello %f

 echo goodbye %f)

If the above examples are typed at the command line, TCC will issue a More? prompt in response to each line until the command group is closed (i.e. the final parenthesis is recognized) as discussed below.

The second common use of command grouping is to redirect input or output for several commands without repeatedly using the redirection symbols. For example, consider the following batch file fragment which places some header lines (including today's date) and directory displays in an output file using redirection. The first ECHO command creates the file using >, and the other commands append to the file using >>:

echo Data files %_date > filelist

dir *.dat >> filelist

echo. >> filelist

echo Text files %_date >> filelist

dir *.txt >> filelist

Using command grouping, these commands can be written much more simply. Enter this example on one line:

(echo Data files %_date & dir *.dat %+ echo `` & echo Text files %_date & dir *.txt) > filelist

The redirection, which appears outside the parentheses, applies to all the commands within the parentheses. Because the redirection is performed only once, the commands will run slightly faster than if each command was entered separately. The same approach can be used for input redirection and piping.

You can also use command grouping in a batch file or at the prompt to split commands over several lines. This last example is like the redirection example above, but is entered at the prompt. Note the More? prompt after each incomplete line. None of the commands are executed until the command group is completed with the closing parenthesis. This example does not have to be entered on one line:

[c:\] (echo Data files %_date

More? dir *.dat

More? echo.

More? echo Text files %_date

More? dir *.txt) > filelist

[c:\]

Limitations

A group of commands in parentheses is like a long command line. The total length of the group may not exceed 65,535 characters before alias and variable expansion, and 131,071 characters after expansion, whether the commands are entered from the prompt, an alias, or a batch file.

You cannot use TEXT / ENDTEXT, or GOTO or GOSUB labels in a command group.

Each line you type at the normal prompt or the More? prompt, and each individual command within the line, must be within the usual command line length limit.

Starting Applications

TCC offers several ways to start applications.

First, you can simply type the name of any application at the prompt. As long as the application's executable file is in one of the standard search directories (see below), TCC will find it and start it. If you type the full path name of the executable file at the prompt the application will be started even if it is not in one of the standard search directories.

TCC offers two methods to simplify and speed up access to your applications. One is to create an alias, for example:

alias myapp d:\apps\myapp.exe

In Take Command you can also use the Tool Bar to start frequently used applications. For example, a tool bar button named MyApp which invokes the command d:\apps\myapp.exe would accomplish the same thing as the alias shown above. You can use these methods together. For example, if you define the alias shown above you can set up a tool bar button called MyApp and simply use the command myapp for the button, which would then invoke the previously-defined alias.

You can also start an application by typing the name of a data file associated with the application. TCC will examine the file's extension and run the appropriate application, based on executable extensions or Windows file associations.

For additional flexibility, you can also start applications with the START command. START provides a number of switches to customize the way an application is started.

Searching for Applications

When you start an application without specifying a path, TCC searches for the application in the current directory, and then all directories on the PATH. TCC also searches the Windows and Windows system directories; see the PATH command for details. (If you do enter an explicit path, TCC will only look in the directory you specified.)

If you enter a file name with no extension, TCC will search each directory for a matching .EXE, .BTM, .BAT, or .CMD file (and .REX and/or .REXX if a REXX interpreter is loaded), then for a file matching a Windows file association or executable extension. That search order may be altered via the PathExt configuration option. If no such file is found, Take Command will move on to the next directory in the search sequence.

Take Command Application Windows

Take Command runs console (character mode) applications either in a tab window within Take Command or in their own console window. Take Command usually starts GUI applications in their own window, but you can also run simple GUI apps in a tab window (provided the application does not have multiple parent windows) with the Run dialog or the START /TAB option.

Waiting for Applications to Finish

When you start a Windows GUI application from the prompt, TCC does not normally wait for the application to finish before returning to the prompt . This allows you to continue your work at the prompt while the application is running. You can force TCCto wait for applications to finish before continuing by selecting the Wait for External Apps configuration option, or with the START command's /WAIT switch (START can also control many other aspects of how your applications are started).

TCC always waits for applications that are run from transient shells (with a /C), or from batch files before continuing with subsequent commands in the batch file. To start an application from a transient shell or a batch file and continue without waiting for the application to finish, use the START command (without the /WAIT switch).

Due to the way Windows handles URLs, you cannot wait for the browser to finish when you enter an HTTP: URL at the prompt. In this situation, TCC always displays the next prompt immediately.

Escape Character

TCC recognizes a user-definable escape character. This character gives the character that follows a special meaning; it has a different purpose than the ASCII ESC that is often used in ANSI X3.64 and printer control sequences.

The default escape character is a caret (^, ASCII: 94). If you don't like the default escape character, you can pick another character using the SETDOS /E command, or the Escape character configuration option. If you plan to share aliases or batch files on other TCC configurations, use the %= pseudovariable, which is accepted in all of them, regardless of the actual value assigned to the escape character. See the section on Special Character Compatibility for details about choosing compatible escape characters. Note that if you change the default, your batch files will not work under CMD and you won't be able to run third-party batch files.

Ten special characters are recognized when they are preceded by the escape character. The combination of the escape character and one of these characters is translated to a single character, as shown below. The special characters which can follow the escape character are:

Codes for Escape Characters

	b	backspace

	c	comma ,

	e	the ASCII ESC character (code 27)

	f	form feed

	k	back quote `

	n	line feed

	q	double quote "

	r	carriage return

	s	space

	t	horizontal tab character

If you follow the escape character with any other character, the escape character is removed and the second character is copied directly into the command line. This allows you to suppress the normal meaning of special characters (such as ? * / \ | " ` > < and &). For example, to display a message containing a > symbol, which normally indicates redirection:

echo 2 is ^> 4

The escape character has an additional use when it is the last character on any line of a batch file. TCC recognizes this use of the escape character to signal line continuation: it removes the escape character and appends the next line to the current line before executing it.

WARNING: Escape characters are considered to be normal characters on the right side of a pipe.

Note: The term escape character has two additional usages not related to the above description, as detailed in the description of the PROMPT command and in ASCII, Key Codes and Key Names.

Command Parsing

Whenever you type something at the command line and press the Enter key, or include a command in a batch file, you pass a command to TCC, which must determine how to execute it. If you understand the general process that is used, you will be able to make the best use of the commands. Understanding these steps can be especially helpful when working with complex aliases or batch file commands.

TCC goes through several steps when parsing a command line. Before it starts, it writes the entire command line (which may contain multiple commands) to the history log file if history logging has been enabled (with the LOG /H command) and the command did not come from a batch file. The first command is then isolated for processing. The following steps outline the basic processing required for each command. During that processing, additional parsing tasks may be triggered as noted and some steps may be repeated multiple times.

	1.	Separating the command from its tail

TCC begins by dividing the command into a command name and a command tail. The command name is the first word in the command, and the tail is everything that follows the command name. For example, in the command line

dir *.txt /2/p/v

The command name is dir, and the command tail is "*.txt /2/p/v". In some instances, the parser will be able to understand incorrect syntax such as dir/w, but there should always be at least one space between the command name and its parameters.

	2.	Expanding aliases

Next, TCC tries to match the command name against its list of aliases. If it finds a match between the command name and one of the aliases you've defined, it replaces the command name with the contents of the alias. This substitution is done internally and is not normally visible to you; however, you can view a command line with aliases expanded by pressing Ctrl-F after entering the command at the prompt.

If the alias included parameters (%1, %2, etc.), the parameter values are filled in from the text on the command line, and any parameters used in this process are removed from the command line. The process of replacing a command name that refers to an alias with the contents of the alias, and filling in the alias parameters, is called alias expansion.

This expansion of an alias creates a new command name: the first word of the alias. This new command name is again tested against the list of aliases, and if a match is found the contents of the new alias is expanded just like the first alias. This process, called nested alias expansion, continues until the command name no longer refers to an alias.

	3.	Expanding variables

The next step is to locate any batch file parameters, environment variables, internal variables, or variable functions in the command, and replace each one with its value (see "Environment: Variables and Functions"). This process is called variable expansion, and is not normally visible. However, you can view an expanded command line by pressing Ctrl-X after entering the command at the prompt.

The variable expansion process is modified for certain internal commands, such as EXCEPT, IF, and GLOBAL. These commands are always followed by another command, so variable expansion takes place separately for the original command and the command that follows it.

	4.	Identifying a plugin or internal command

Once it has finished variable expansion, TCC next tries to match the resulting command name with its list of plugin commands or internal commands. If it is unsuccessful, it knows that it will have to search for a batch file or external program to execute your command.

	5.	Displaying the command

When all of the aliases and environment variables have been expanded, TCC will echo the complete command to the screen (if command line echo has been enabled) and write it to the log file (if command logging has been turned on).

	6.	Processing redirection and piping

Before it can actually execute your command, TCC must scan the command tail to see if it includes redirection or piping. If so, the proper internal switches are set to send output to an alternate device or to a file instead of to the screen. A second process is started at this point, if necessary, to receive any piped output.

	7.	Processing escape characters

At this stage, any remaining Escape Characters are processed. However, this might also already have taken place inside some of the variable functions (such as @IF) that are likely to pass escaped strings in their parameters. If you are referencing one of those in an ECHO or similar command, you need to escape twice ("^^") or use SETDOS /X to avoid premature evaluation. Carefully test those situations to make sure the results are as you intended.

	8.	Executing the command

Finally, it is time to execute the command. TCC will first look for a matching plugin command name; if it doesn't exist then it tries to match an internal command. Otherwise, TCC searches for an executable (.EXE) file, a batch file, or a file with an executable extension that matches the command name (see the detailed description of this search in Executable Files and File Searches).

	9.	Cleaning up

Once the internal command or external program has terminated, TCC saves the result or exit code that the command generated, cleans up any redirection that you specified, and then returns to the original command line to retrieve the next command. When all of the commands in a command line are finished, the next line is read from the current batch file, or if no batch file is active, the prompt is displayed.

Note: You can disable and reenable several parts of command parsing (for example alias expansion, variable expansion, and redirection) with the SETDOS /X command.

Command Line Length Limits

When you first enter a command at the command prompt, in an alias or function definition, or in a batch file, it can be up to 65,535 characters long.

As TCC scans the command line and substitutes the contents of aliases user defined functions, and environment variables for their names, the line usually gets longer. This expanded line is limited to 131,071 characters. If your use of aliases, user defined functions, or environment variables causes the command line to exceed the applicable one of these limits as it is expanded, you will see a Command line too long error and the remainder of the line will not be executed.

Special Character Compatibility

If you want to share aliases, user defined functions, and batch files with other users, you need to be aware of possible differences in three important characters: the Command Separator (see Multiple Commands), the Escape Character (see Escape Character), and the Parameter Character (see Batch File Parameters).

The default values of each of these characters is shown in the following chart.

	Product

	Separator

	Escape

	Parameter

	4DOS (obsolete)

	^

	Ctrl-X

	&

	TCC (and CMD)

	&

	^

	$

	pseudovariable

	%+

	%=

	

In your batch files and aliases, and even at the command line, you can smooth over these differences in three ways:

	1.	Use internal pseudovariables that contain the current special character, rather than using the character itself (see %+ and %=). For example, this command:

	

		if "%1" == "" (echo Parameter missing! & quit)

	

		will only work if the command separator is an ampersand. However, this version works regardless of the current command separator:

	

		if "%1" == "" (echo Parameter missing! %+ quit)

	2.	Select a consistent set of characters from the Advanced tab of the configuration dialogs.

	3.	In a batch file, use the SETLOCAL command to save the command separator, escape character, and parameter character when the batch file starts. Then use SETDOS as described below to select the characters you want to use within the batch file. Use an ENDLOCAL command at the end of the batch file to restore the previous settings.

You can also use the SETDOS command to change special characters on the command line.

Date Input Formats

Date Input Formats

Commands and functions which accept a date as a parameter expect the same field order displayed by the DIR command and functions returning a date without a format code specifier. The year can be entered as a 4-digit or 2-digit value. Two-digit years from 80 to 99 are interpreted as 1980...1999; values from 0 to 79 are interpreted as 2000...2079. Month and day may be entered without a leading zero. Most non-numeric printing characters are accepted as field separators. All three fields must be specified, except for the ISO day format (yyyy-ddd) which requires two fields.

Case Sensitivity

With the following exceptions, TCC treats upper case and lower case letters identically:

The relational operator EQC (in IF, IFF, DO, etc.)

The character manipulation functions @ascii, @unicode, @repeat, @replace, @similar, @strip and @wild.

The codes used to specify units of storage size (kKmMgGtT) in:

●size ranges
●disk space and file size reporting functions

Directory Navigation

TCC remembers both a current or default drive for your system as a whole, and a current or default directory for every drive in your system. The current directory on the current drive is sometimes called the current working directory.

With traditional command processors, you change the current drive by typing the new drive letter plus a colon at the prompt. You change the current working directory with the CD command. TCC supports these standard features, and offer a number of enhancements to make directory navigation much simpler and faster.

This section begins with a summary of all the TCC directory navigation features. It also provides detailed documentation on the enhanced directory search features: Extended Directory Searches and CDPATH.

The TCC directory navigation features are in three groups: features which help TCC find the directory you want, methods for initiating a directory change with a minimal amount of typing, and methods for returning easily to directories you've recently used. Each group is summarized below.

Finding Directories

Traditional command processors require you to explicitly type the name of the directory you want to change to. TCC supports this method, and also offers two significant enhancements:

	[image: Onestep]	The CDPATH variable allows you to enter a specific list of directories to be searched, rather than searching a database. Use CDPATH instead of Extended Directory Searches if you find the extended searches too broad, or your hard drive has too many directories for an efficient search.

	[image: Onestep]	Extended Directory Searches allows TCC to search a database of all the directories on your system to find the one you want.

Changing Directories

TCC supports the traditional methods of changing directories, and also offers several more flexible approaches:

	[image: Onestep]	Automatic directory changes allow you to type a directory name at the prompt and switch to it automatically, without typing an explicit CD or similar command.

	[image: Onestep]	The CD command can change directories on a single drive, and can return to the most recently used directory.

	[image: Onestep]	The CDD command changes drive and directory at the same time, and can return to the most recently used drive and directory.

	[image: Onestep]	The PUSHD command changes the drive and directory like CDD, and records the previous directory in a directory "stack." You can view the stack with the DIRS command or the @DIRSTACK function, and return to the directory on the top of the stack with POPD.

CDD, PUSHD, and automatic directory changes can also change to network drives and directories mapped to drive letters and to ones specified with UNC names (see File Systems for details).

Returning to a Previous Directory

CMD does not remember previously-used directories, and can only "return" to a directory by changing back to it with a standard drive change or CD command. TCC supports three additional, simpler methods for returning to a previous directory:

	[image: Onestep]	The CD - and CDD - commands can be used to return to the previous working directory (the one you used immediately before the current directory). Use these commands if you are working in two directories and alternating between them.

	[image: Onestep]	The directory history window allows you to select one of several recently-used directories from a popup list and return to it immediately. The window displays the contents of the directory history list.

	[image: Onestep]	The POPD command returns to the last directory saved by PUSHD. The directory stack holds 2048 characters, enough for 40 to 80 typical drive and directory entries.

CDPATH

When you change directories with an automatic directory change or the CD, CDD, or PUSHD command, TCC must find the directory you want to change to. If it cannot find an exact match of the directory path and name, TCC tries to find the directory you requested via the CDPATH, then via an Extended Directory Search.

Enabling both CDPATH and Extended Directory Searches can yield confusing results. If you prefer to explicitly specify where TCC should look for directories, use CDPATH. If you prefer to have TCC look at all of the directory names on your disk, use Extended Directory Searches.

CDPATH is an environment variable, and is similar to the PATH variable used to search for executable files: it contains an explicit list of directories to search when attempting to find a new directory. TCC appends the specified directory name to each directory in CDPATH and attempts to change to that drive and directory. It stops when it finds a match or when it reaches the end of the CDPATH list.

CDPATH is ignored if a complete directory name (one beginning with a backslash \) is specified, or if a drive letter is included in the name. It is only used when a name is given with neither drive letter nor leading backslash.

CDPATH provides a quick way to find commonly used subdirectories in an explicit list of locations. You can create CDPATH with the SET command. The format of CDPATH is similar to that of PATH: a list of directories separated by semicolons. For example, if you want the directory change commands to search the C:\DATA directory, the D:\SOFTWARE directory, and the root directory of drive E: for the subdirectories that you name, you should create CDPATH with this command:

set cdpath=c:\data;d:\software;e:\

Suppose you are currently in the directory C:\WP\LETTERS\JANUARY, and you'd like to change to D:\SOFTWARE\UTIL. You could change directories explicitly with the command:

[c:\wp\letters\january] cdd d:\software\util

However, because the D:\SOFTWARE directory is listed in your CDPATH variable as shown in the previous example (we'll assume it is the first directory in the list with a UTIL subdirectory), you can simply enter the command

[c:\wp\letters\january] cdd util

or, using an automatic directory change:

[c:\wp\letters\january] util\

to change to D:\SOFTWARE\UTIL.

TCC looks first in the current directory, and attempts to find the C:\WP\LETTERS\JANUARY\UTIL subdirectory. Then it looks at CDPATH, and appends UTIL to each entry in the CDPATH variable. In other words, it tries to change to C:\DATA\UTIL, then to D:\SOFTWARE\UTIL. Because this change succeeds, the search stops and the directory change is complete.

If you often switch between "sibling" directories, i.e., between subdirectories of a common parent directory. you can enter .. as a search entry in your CDPATH. You can use ... to find "uncles", i.e., a directory one level up (a sibling of the parent directory), thus a subdirectory of the directory 2 levels up.

Extended Directory Searches

When you change directories with an automatic directory change, CD, CDD, or PUSHD command, TCC must find the directory you want to change to. To do so, it first checks to see whether you have specified either the name of an existing subdirectory below the current directory, or the name of an existing directory with a relative or full path or a drive letter. If you have, TCC changes to that directory, and does no further searching.

This search method requires that you navigate manually through the directory tree, and type the entire name of each directory you want to change to. Extended Directory Searches speed up the navigation process dramatically by allowing TCC to find the directory you want, even if you only enter a small part of its name.

When the first search method fails, TCC tries to find the directory you requested via the CDPATH variable, then via an Extended Directory Search. This section covers only Extended Directory Searches, which are more flexible and more commonly used than CDPATH.

Extended Directory Searches use a database of directory names to facilitate changing to the correct directory. The database is used only if Extended Directory Searches are enabled, and if the explicit directory search and CDPATH search fail to find the directory you requested.

An extended directory search automatically finds the correct path to the requested directory and changes to it if that directory exists in your directory database. If more than one directory in the database matches the name you have typed, a popup window appears and you can choose the directory you want.

If the TCMD.INI directive EverythingSearch is set, TCC will use Everything Search (free at http://www.voidtools.com) instead of its own database for fuzzy directory searches. Everything Search is slightly faster, but will only work on local NTFS drives. Setting EverythingSearch is the equivalent of setting FuzzyCD=3 (*name*). You must download and install Everything Search yourself; it is not included in the Take Command distribution.

You can move and/or resize the directory search window. TCC will use the new position and size the next time the directory search window is invoked. You can also change the keys used in the popup window with key mapping directives.

To use extended directory searches, you must explicitly enable them (see below) and also create the directory database.

The Extended Search Database

To create or update the database of directory names, use the CDD /S command. When you create the database with CDD /S, you can specify which drives should be included. If you enable Extended Directory Searches and do not create the database, it will be created automatically the first time it is required, and will include all local hard drives.

The database is stored in the file JPSTREE.IDX. By default, the file is placed in the root directory of drive C:. Because of security restrictions in Windows Vista and later, the the default directory is defined as the value of the environment variable LOCALAPPDATA (predefined by Windows). If you are running Vista, Windows 7 or Windows 8 and don't have LOCALAPPDATA in your environment, the default directory will be the directory where TCC is installed. You can specify a different location for this file on the Command Line tab of the configuration dialogs.

If you use an internal command to create or delete a directory, the directory database is automatically updated to reflect the change to your directory structure.

The TREEEXCLUDE variable can be used to specify which drives/directories should be excluded from inclusion in the directory database.

The internal commands which can modify the directory structure and cause automatic updates of the file are MD, RD, COPY /S, DEL /X, MOVE /S, and REN. The MD /N command can be used to create a directory without updating the directory database. This is useful when creating a temporary directory which you do not want to appear in the database.

Enabling Extended Searches

To enable extended directory searches and control their operation, you must set the Search Level on the Command Line tab of the configuration dialogs.

●If Search Level = 0, extended searches are disabled, the JPSTREE.IDX database is ignored, and CD, CDD, PUSHD and automatic directory changes search for directories using only explicit names and CDPATH. This is the default.

●If Search Level = 1 and an extended search is required, TCC will search the JPSTREE.IDX database for directory names which exactly match the name you specified.

●If Search Level = 2 and an extended search is required, TCC will search the database for exact matches first, just as when Search Level = 1. If the requested directory is not found, it will search the database a second time looking for directory names that begin with the name you specified.

●If Search Level = 3 and an extended search is required, TCC will search the database for exact matches first, just as when Search Level = 1. If the requested directory is not found, it will search the database a second time looking for directory names that contain the name you specified anywhere within them.

For example, suppose that you have a directory called C:\DATA\MYDIR, CDPATH is not set, and C:\DATA is not the current directory on drive C:. The following chart shows what CDD command you might use to change to this directory.

	Search Level

	Type of extended search

	Typical CDD Command

	0

	CDPATH only (default)

	cdd c:\data\mydir

	1

	CDPATH or exact match

	cdd mydir

	2

	CDPATH or leading match

	cdd myd

	3

	CDPATH or any match

	cdd yd

An extended directory search is not used if you specify a full directory path (one beginning with a backslash \, or a drive letter and a backslash). If you use a name which begins with a drive letter (e.g. C:MYDIR), the extended search will examine only directories on that drive.

Forcing an Extended Search with Wildcards

Normally you type a specific directory name for TCC to locate, and the search proceeds as described in the preceding sections. However, you can also force TCC to perform an extended directory search by using wildcard characters in the directory name. If you use a wildcard, an extended search will occur whether or not extended searches have been enabled.

When TCC is changing directories and it finds wildcards in the directory name, it skips the explicit search and CDPATH steps and goes directly to the extended search.

If a single match is found, the change is made immediately. If more than one match is found, a popup window is displayed with all matching directories.

Wildcards can only be used in the final directory name in the path (after the last backslash in the path name). For example you can find COMM*A* (all directories whose parent directory is COMM and which have an A somewhere in their names), but you cannot find CO?M*A* because it uses a wildcard before the last backslash.

If you use wildcards in the directory name as described here, and the extended directory search database does not exist, it will be built automatically the first time a wildcard is used. You can update the database at any time with CDD /S.

Internally, extended directory searches use wildcards to scan the directory database. If Search Level is set to 2, an extended search looks for the name you typed followed by an asterisk (i.e. DIRNAME*). If Search Level is set to 3, it looks for the name preceded and followed by an asterisk (i.e. *DIRNAME*).

These internal wildcards will be used in addition to any wildcards you use in the name. For example if you search for ABC?DEF (ABC followed by any character followed by DEF) and Search Level is set to 3, TCCwill search the directory database for *ABC?DEF*.

Disabling Extended Searches in Batch Files

When writing batch files you may want to use the CD or CDD command to switch directories without triggering an extended search. For example, you may need the search to fail (rather than search the extended search database) if a directory does not exist, or you may want to ensure that the extended search popup window does not appear in a batch file designed to run in unattended mode.

To disable extended searches, use the /N option of CD or CDD. When this option is used and a directory does not exist below the current directory or on the CDPATH, the command will fail with an error message, and will not search the extended search database. For example this command might trigger an extended search:

cdd testdir

but this one will not:

cdd /n testdir

Note that this option is not available for PUSHD. To perform the same function when using PUSHD, save the current directory with PUSHD (without parameters) and then use CDD /N to change directories, for example:

pushd

cdd /n testdir

Automatic Directory Changes

Automatic directory changes are part of the comprehensive directory navigation features built into TCC. For a summary of these features, and more information on Extended Directory Searches and CDPATH, see Directory Navigation.

Automatic directory changes let you change directories quickly from the command prompt, without entering an explicit CD or CDD command. Simply type the name of the directory you want to change to at the prompt, with a terminating backslash (\) (either entered manually, or automatically via the Add \ to Directories configuration option). For example:

[c:\] tcmd\

[c:\tcmd]

This can make directory changes very simple when it's combined with Extended Directory Searches or CDPATH. If you have enabled either of those features, TCC will use them in searching for a directory with an automatic directory change.

For example, suppose Extended Directory Searches are enabled, and the directory WIN exists on drive E:. You can change to this directory with a single word on the command line:

[c:\tcmd] win\

[e:\win]

This depends on the way Extended Directory Changes are configured, and the number of subdirectories on your disk whose names contain the string WIN, when you execute such a command you may see an immediate change as shown above, or a popup window which contains a list of subdirectories matching WIN to choose from.

The text before the backslash can include a drive letter, a full path, a partial path, or a UNC name (see File Systems for details on UNC names). Commands like "....\" can be used to move up the directory tree quickly (see Extended Parent Directory Names).

If you enter a directory name without the trailing backslash, the parser will change to that directory if no internal or external command of that name is found (and before the UNKNOWN_CMD alias is executed.)

All directory changes, including automatic ones, save the current directory so it can be recalled with a CDD - or CD - command.

For example, any of the following are valid automatic directory change entries:

[c:\] d:\data\finance\

[c:\] archives\

[c:\] ...\util\scanner\

[c:\] \\server\vol1\george\

The first and last examples change to the named directory. The second changes to the ARCHIVES subdirectory of the current directory, and the third changes to the UTIL\SCANNER subdirectory of the directory which is two levels up from the current directory in the tree.

Directory Aliases

Directory Aliases are a shorthand way of specifying pathnames. For example, if you define an alias:

alias pf:=c:\program files

You can then reference the files in c:\program files\jpsoft by entering pf:\jpsoft. Directory aliases work in places that accept filenames and directory names (internal command arguments or the first argument in a command line), including filename completion. You cannot use them in arguments to external applications, as TCC has no way of knowing what is a valid argument for external applications.

Directory alias names can be either two or more alphanumeric characters followed by a colon, or a single digit followed by a colon.

Directory aliases support environment variable expansion.

Aliases and Batch Files

Whenever you have a command (internal or external) that you need to execute often, one that's too complex to be dependably typed manually at the Command Line, one that needs to be part of an exact sequence of other commands, one that you want to be able to easily repeat from another location or share with others, or you repeat very often and therefore want to have a very short name, you can store that command as part of a convenient ALIAS and/or batch file.

[image: Onestep] Aliases

[image: Onestep] Batch Files

[image: Onestep] Special Character Compatibility

Aliases

Much of the power of TCC comes together in aliases, which give you the ability to create your own commands. An alias is a name that you select for a command or group of commands. Simple aliases substitute a new name for an existing command. More complex aliases can redefine the default settings of internal or external commands, operate as very fast in-memory batch files, and perform commands based on the results of other commands. TCC also supports Directory Aliases, a shorthand way of specifying pathnames. TCC supports either a local alias list that is only visible to the current TCC session, or a global alias list that is shared among all TCC sessions.

This section shows you some examples of the power of aliases. See the ALIAS command for complete details about writing your own aliases.

The simplest type of alias gives a new name to an existing command. For example, you could create a command called R (for Root directory) to switch to the root directory this way:

alias r=cd \

After the alias has been defined this way, every time you type the command R, you will actually execute the command CD \.

Aliases can also create customized versions of commands. For example, the DIR command can sort a directory in various ways. You can create an alias called DE that means "sort the directory by filename extension, and pause after each page while displaying it" like this:

alias de=dir /oe /p

Aliases can be used to execute sequences of commands as well. The following command creates an alias called MUSIC which saves the current drive and directory, changes to the SOUNDS directory on drive C, runs the program E:\MUSIC\PLAYER.EXE, and, when the program terminates, returns to the original drive and directory (enter this on one line):

alias music=`pushd c:\sounds & e:\music\player.exe & popd`

This alias is enclosed in back-quotes because it contains multiple commands. You must use the back-quotes whenever an alias contains multiple commands, environment variables, parameters (see below), redirection, or piping. See the ALIAS command for full details.

When an alias contains multiple commands, the commands are executed one after the other. However, if any of the commands runs an external Windows application (such as the fictitious PLAYER.EXE shown above), you must be sure the alias will wait for the application to finish before continuing with the other commands. See Waiting for Applications to Finish for additional details.

Aliases can be nested; that is, one alias can invoke another. For example, the alias above could also be written as:

alias play=e:\music\player.exe

alias music=`pushd c:\sounds & play & popd`

If you enter MUSIC as a command, TCC executes the PUSHD command, detects that the next command (PLAY) is another alias and executes the program E:\MUSIC\PLAYER.EXE, and, when that program exits, returns to the first alias, executes the POPD command, and returns to the prompt.

You can use aliases to change the default options for both internal commands and external commands. Suppose that you always want the DEL command to prompt before it erases a file:

alias del=*del /p

An asterisk * is used in front of the second DEL to tell TCC to use the original internal command, not an alias. See Temporarily Disabling Aliases for more information about this use of the asterisk.

You may have a program on your system that has the same name as an internal command. Normally, if you type the command name, you will start the internal command rather than the program you desire, unless you explicitly add the program's full path on the command line. For example, if you have a program named DESCRIBE.EXE in the C:\WUTIL directory, you could run it with the command C:\WUTIL\DESCRIBE.EXE. However, if you simply type DESCRIBE, the internal DESCRIBE command will be executed instead. Aliases give you two simple ways to get around this problem.

First, you could define an alias that runs the program in question, but using a different name:

alias desc=c:\winutil\describe.exe

Another approach is to use an alias to rename the internal command and use its original name for the external program. The following example creates the alias FILEDESC for the DESCRIBE command, and then uses a second alias to run DESCRIBE.EXE whenever you type DESCRIBE:

alias filedesc=*describe

alias describe=c:\winutil\describe.exe

You can also assign an alias to a key, so that every time you press the key, the command will be invoked. You do so by naming the alias with an at sign [@] followed by a key name. After you enter this next example, you will see a 2-column directory with paging whenever you press Shift-F5 followed by Enter:

alias @Shift-F5=*dir /2/p

This alias will put the DIR command on the command line when you press Shift-F5, then wait for you to enter file names or additional switches. You must press Enter when you are ready to execute the command. To execute the command immediately, neither displaying it on the command line, nor waiting for you to press Enter, use two @ signs at the start of the alias name:

alias @@Shift-F5=*dir /2/p

The next example clears the window whenever you press Ctrl-F2:

alias @@Ctrl-F2=cls

Aliases have many other capabilities as well. The next example creates a simple command line calculator. Once you have entered the example, you can type CALC 4*19, for example, and you will see the answer:

alias calc=`echo The answer is: %@eval[%$]`

Our last example in this section creates an alias called IN. It temporarily changes directories, runs an internal or external command, and then returns to the current directory when that command is finished:

alias in=`pushd %1 & %2$ & popd`

Now if you type:

in c:\sounds play furelise.wav

you will change to the C:\SOUNDS subdirectory, execute the command PLAY FURELISE.WAV, and then return to the current directory.

Alias Parameters

The above example uses two parameters: %1 means the first parameter on the command line, and %2$ means the second and all subsequent parameters.

Aliases can use command line parameters or parameters like those in batch files. The command line parameters are numbered from %0 to %511. (%0 contains the alias name.) You can use double quotes to pass spaces, tabs, commas, and other special characters in an alias parameter; see Parameter Quoting for details. Alias examples in this section assume the TCCdefault of ParameterChar=$.

Parameters that are referred to in an alias, but which are missing on the command line, appear as empty strings inside the alias. For example, if you only put two parameters on the command line, any reference in the alias to %3 or any higher-numbered parameter will be interpreted as an empty string.

The parameter %n$ has a special meaning. TCC interprets it to mean "the entire command line, from parameter n to the end." If n is not specified, it has a default value of 1, so %$ means "the entire command line after the alias name."

The parameter %-n$ means "the command line from parameter 1 to n - 1".

The special parameter %# contains the number of command line parameters.

Aliases cannot use indirect access to command parameters, e.g., %[%n] (where n is a parameter number) does not return the selected parameter.

See the ALIAS and UNALIAS commands for more information and examples.

Batch Files

A batch file is a file that contains a list of commands to execute. TCC reads and interprets each line as if it had been typed at the keyboard. Like aliases, batch files are handy for automating computing tasks. Unlike aliases, batch files can be as long as you wish. Batch files take up separate disk space for each file, and can't usually execute quite as quickly as aliases, since they must be read from the disk.

Some of the topics included in this section are:

[image: Onestep] .BAT, .CMD, and .BTM

[image: Onestep] Echoing in Batch Files

[image: Onestep] Batch File Line Continuation

[image: Onestep] Batch File Parameters

[image: Onestep] Using Environment Variables

[image: Onestep] Batch File Commands

[image: Onestep] Interrupting a Batch File

[image: Onestep] Automatic Batch Files

[image: Onestep] Detecting TCC and Take Command

[image: Onestep] Using Aliases in Batch Files

[image: Onestep] Debugging Batch Files

[image: Onestep] String Processing

[image: Onestep] Batch File

[image: Onestep] Perl Support

[image: Onestep] Python Support

[image: Onestep] REXX Support

[image: Onestep] Ruby Support

[image: Onestep] Tcl/tk Support

[image: Onestep] EXTPROC / Shebang Support

.BAT, .CMD and .BTM Files

A batch file can run in two different modes. In the first, traditional mode, each line of the batch file is read and executed individually, and the file is opened and closed to read each line. In the second mode the batch file is opened once, the entire file is read into memory, and the file is closed. Only the first mode can be used for self-modifying batch files (which are rare).

The batch file's extension determines its initial mode. Files with a .BAT or .CMD extension are run in the first mode. Files with a .BTM extension are run in the more efficient second mode. You can change the execution mode inside a batch file with the LOADBTM command.

Echoing in Batch Files

By default, each line in a batch file is displayed or "echoed" as it is executed. You can change this behavior, if you want, in several different ways:

	[image: Onestep]	Any batch file line that begins with an @ symbol will not be displayed.

	[image: Onestep]	The display can be turned off and on within a batch file with the ECHO OFF and ECHO ON commands.

	[image: Onestep]	The default setting can be changed with the SETDOS /V command, or the Default Batch Echo configuration option.

For example, the following line turns off echoing inside a batch file. The @ symbol keeps the batch file from displaying the ECHO OFF command itself:

@echo off

TCC also has a command line echo that is unrelated to the batch file echo setting. See ECHO for details about both settings.

Special syntax for CMD compatibility

For compatibility with CMD, TCC supports additional syntax to qualify references to parameters of batch files and the control variable of the FOR command when referenced by the command it executes. However, this syntax can usually be replaced by more flexible Variable Functions.

	CMD syntax

	Expands to

	Suggested replacement

	%*

	All parameters

	%$

	%~n

	unquoted (")

	%@replace[^",,%n]

	%~fn

	Fully qualified name of %n

	%@full[%n]

	%~dn

	Drive letter portion of %n

	%@left[2,%@full[%n]]

	%~pn

	Full path (no drive letter) of %n

	%@right[-2,%@path[%@full[%n]]]

	%~nn

	Root name (no extension) of %n

	%@name[%n]

	%~xn

	File extension of %n

	.%@ext[%n]

	%~sn

	Fully qualified short name of %n

	%@sfn[%n]

	%~an

	File attributes of %n

	%@attrib[%n]

	%~tn

	File date and time of %n

	%@filedate[%n] %@filetime[%n]

	%~zn

	File size of %n, bytes

	%@filesize[%n]

	%~$PATH:n

	Full name of the first match for %n in %PATH

	%@search[%n]

Notes

In the special case where the parameter to a %~ variable is 0, e.g., %~f0, the returned file name will always include the extension, as it does under CMD.

%~$PATH:n returns an empty string if the file %n is not found in the path.

References qualified by the tilde ~ trigger an error message when used improperly, e.g. if attempting to display the size of a string parameter which is not the name of a file.

Batch File Line Continuation

TCC will combine multiple lines in the batch file into a single line for processing when the Escape Character (the actual token or the symbolic "%=" reference) is the last character of each line to be combined (except the last). For example:

c:\> echo The quick brown fox jumped over the ^

sleeping ^

dog. > alphabet

You cannot use this technique to extend a batch file line beyond the normal command line length limit.

Batch File Parameters

Like aliases, user-defined functions and application programs, batch files can examine the command line that is used to invoke them. The command tail (everything on the command line after the batch file or alias name) is separated into individual positional parameters (also called parameters or batch variables) by scanning for the spaces, tabs, and commas that separate them. For aliases and functions, a forward slash (/) triggers the beginning of a new parameter, e.g. the string xyz/abc is separated into parameters foo and /abc.

These parameters are numbered from %1 to %4095. %1 refers to the first parameter on the command line, %2 to the second, and so on. It is up to the batch file to determine the meaning of each parameter. You can use double quotes to pass spaces, tabs, commas, and other special characters in a batch file parameter; see Parameter Quoting for details.

Parameters that are referred to in a batch file, but which are missing on the command line, appear as empty strings inside the batch file. For example, if you start a batch file and put two parameters on the command line, any reference in the batch file to %3, or any higher-numbered parameter, will be interpreted as an empty string.

A batch file can use the special parameters shown in the table below:

	parameter

	value

	%0

	the name of the batch file as entered on the command line

	%#

	the number of command line parameters, modified by SHIFT

	%n$

	the command tail starting with parameter number n, modified by SHIFT

	%-n$

	the command tail from parameter 1 to n - 1

	%$

	the complete command tail, modified by SHIFT

	%*

	the complete command tail, unmodified by SHIFT

For example, %3$ means the third and all subsequent parameters. The values of %#, %n$, %-n$, and %$ will change if you use the SHIFT command. To emulate CMD, SHIFT does not affect the value of %*.

For example, if your batch file interprets the first parameter as a subdirectory name then the following line would move to the specified directory:

cd %1

A friendlier batch file would check to make sure the directory exists and take some special action if it doesn't:

iff isdir %1 then

 cd %1

else

 echo Subdirectory %1 does not exist!

 quit

endiff

(See the IF and IFF commands.)

Batch files can also use environment variables, internal variables, and variable functions.

Batch file parameters may also use the special CMD compatibility syntax.

Parameter Quoting

As TCC parses the command line, it looks for the command separator, conditional commands (|| and &&), white space (spaces, tabs, and commas), percent signs % which indicate variables or batch file parameters to be expanded, and redirection and piping characters >, <, and |.

Normally, these special characters cannot be passed to a command as part of a parameter. However, you can include any of the special characters in a parameter by enclosing the entire parameter in single back quotes [`] or double quotes ["]. Although both back quotes and double quotes will let you build parameters that include special characters, they do not work the same way.

No alias or variable expansion is performed on a parameter enclosed in back quotes. Redirection symbols inside the back quotes are ignored. The back quotes are removed from the command line before the command is executed.

No alias expansion is performed when an expression is enclosed in double quotes. Redirection symbols inside double quotes are ignored. However, variable expansion is performed in expressions inside double quotes. The double quotes themselves will be passed to the command as part of the parameter.

For example, suppose you have a batch file CHKNAME.BTM which expects a name as its first parameter (%1). Normally the name is a single word. If you need to pass a two-word name with a space in it to this batch file you could use the command:

chkname `MY NAME`

Inside the batch file, %1 will have the value MY NAME, including the space. The back quotes caused TCC to pass the string to the batch file as a single parameter. The quotes keep characters together and reduce the number of parameters in the line.

For a more complex example, suppose the batch file QUOTES.BAT contains the following commands:

@echo off

echo Arg1 = %1

echo Arg2 = %2

echo Arg3 = %3

and that the environment variable FORVAR has been defined with this command:

set FORVAR=for

Now, if you enter the command

quotes `Now is the time %forvar` all good

The output from QUOTES.BAT will look like this:

Arg1 = Now is the time %forvar

Arg2 = all

Arg3 = good

But if you enter the command:

quotes "Now is the time %forvar" all good

The output from QUOTES.BAT will look like this:

Arg1 = "Now is the time for"

Arg2 = all

Arg3 = good

Notice that in both cases, the quotes keep characters together and reduce the number of parameters in the line.

The following example has 7 command line parameters, while the examples above only have 3:

quotes Now is the time %%forvar all good

(The double percent signs are needed in each case because the parameter is parsed twice, once when passed to the batch file and again in the ECHO command.)

When an alias is defined in a batch file or from the command line, its parameter can be enclosed in back quotes to prevent the expansion of replaceable parameters, variables, and multiple commands until the alias is invoked. See ALIAS for details.

You can disable and reenable back quotes and double quotes with the SETDOS /X command.

Using Environment Variables

Batch files can use environment variables, internal variables, variable functions, or user-defined functions. You can use these variables and functions to determine system status (e.g., the CPU type), resource levels (e.g., the amount of free disk space), file information (e.g., the date and time a file was last modified), and other information (e.g., the current date and time). You can also perform arithmetic operations (including date and time arithmetic), manipulate strings and substrings, extract parts of a filename, and read and write files.

To create temporary variables for use inside a batch file, just use the SET command to store the information you want in an environment variable. Pick a variable name that isn't likely to be in use by some other program (for example, PATH would be a bad choice), and use the UNSET command to remove these variables from the environment at the end of your batch file. You can use SETLOCAL and ENDLOCAL to create a "local" environment so that the original environment will be restored when your batch file is finished.

Environment variables used in a batch file may contain either numbers or text. It is up to you to keep track of what's in each variable and use it appropriately; if you don't (for example, if you use %@EVAL to add a number to a text string), you'll get an error message or a meaningless return value.

Batch File Commands

Some commands are particularly suited to batch file processing. Each command is explained in detail in the Command Reference. Here is a list of some of the commands you might find most useful:

	ACTIVATE

	activates another window

	BEEP

	produces a sound of any pitch and duration through the computer's speaker

	BREAKPOINT

	set a breakpoint in the batch debugger

	CALL

	executes one batch file from within another

	CANCEL

	terminates all batch file processing

	CLS

	clears the TCC window

	COLOR

	sets the TCC display colors

	DEBUGSTRING

	send text to the debugger

	DEFER

	defers a command until the batch file ends

	DO

	starts a loop. The loop can be based on a counter, or on a conditional expression, strings, or files. ENDDO terminates the loop

	DRAWBOX

	draws a box on the screen

	DRAWHLINE

	draws horizontal lines on the screen

	DRAWVLINE

	draws vertical lines on the screen

	ECHO

	sends text to the standard output device

	ECHOS

	sends text to the standard output device

	ECHOERR

	sends text to the standard error device

	ECHOSERR

	sends text to the standard error device

	ENDLOCAL

	restores the settings that were saved and allows specific variables to be exported (see SETLOCAL)

	ENDTEXT

	ends the block of text started with TEXT

	EVENTLOG

	writes a string to the Windows application event log

	FOR

	executes commands for each file that matches a set of wildcards, or each entry in a list

	GOSUB

	executes a subroutine inside a batch file (see RETURN).

	GOTO

	branches to a different location in the batch file

	IF

IFF

	execute commands based on a conditional expression

	INKEY

	collects keyboard input and store it in environment variables

	INPUT

	collects keyboard input and store it in environment variables

	JABBER

	send an instant message (IM)

	KEYSTACK

	sends keystrokes to applications

	LOADBTM

	changes the batch file operating mode

	MSGBOX

	displays a dialog box with standard buttons like Yes, No, OK, and Cancel, and returns the user's selection

	ON

	initializes error handling for Ctrl-C / Ctrl-Break, or for program and command errors

	OSD

	Display floating text on the desktop

	PAUSE

	displays a message and waits for the user to press a key

	PDIR

	creates a customized DIR-like display of directory contents

	PLAYAVI

	plays Windows .AVI files

	PLAYSOUND

	plays Windows sound files

	POSTMSG

	send a message to a window

	QUERYBOX

	displays a dialog box for text input

	QUIT

	ends the current batch file and optionally returns an exit code

	REM

	places a remark in a batch file

	RETURN

	terminates a subroutine (see GOSUB)

	SCREEN

	positions the cursor on the screen and optionally prints a message at the new location

	SCRPUT

	displays a message in color

	SENDMAIL

	sends an email message

	SETLOCAL

	saves the current disk drive, default directory, environment, alias list, and special character settings (see ENDLOCAL).

	SHIFT

	changes the numbering of the batch file parameters

	SMPP

	sends messages using the SMPP protocol

	SNPP

	sends a message to an alphanumeric pager

	START

	starts another session or window

	SWITCH

	selects a group of statements to execute based on the value of a variable

	TCTOOLBAR

	changes the TC tool bar buttons

	TEXT

	displays a block of text (see ENDTEXT)

	TIMER

	starts or reads a stopwatch

	TITLE

	changes the window title

	VSCRPUT

	displays a vertical message in color

	WMIQUERY

	Query the Windows Management Instrumentation interface

These commands, along with the internal variables and variable functions, make the enhanced batch file language extremely powerful.

Interrupting a Batch File

You can usually interrupt a batch file by pressing Ctrl-C or Ctrl-Break. Whether and when these keystrokes are recognized will depend on whether TCC or an application program is running, how the application, if any, was written, whether BREAK is ON or OFF, and whether the ON BREAK command is in use.

If TCC detects a Ctrl-C or Ctrl-Break when ON BREAK is not in use, it displays a prompt, for example:

Cancel batch job C:\CHARGE.BTM ? (Y/N/A) :

Enter N to continue, Y to terminate the current batch file and continue with any batch file which called it, or A to end all batch file processing regardless of the batch file nesting level. Answering Y is similar to the QUIT command; answering A is similar to the CANCEL command.

Detecting TCC and Take Command

From a batch file, you can determine if TCC is loaded by doing a numeric comparison:

if 01 == 1 echo Take Command is loaded!

In TCC, this is a numeric comparison and true; in CMD it is a string comparison and false. Once you have established that the batch file is running in TCC, you can use internal variables like _CMDPROC, _4VER, _DOS, _DOSVER, and _WIN to further determine the operating environment.

You can determine if TCC is running in a Take Command tab window with the internal variable _TCTAB:

if %_tctab == 1 echo TCC is running in a Take Command tab window!

You can prevent your batch file from running in CMD by giving it the .BTM extension. CMD doesn't recognize .BTM files as batch files.

Using Aliases in Batch Files

One way to simplify batch file programming is to use aliases to hide unnecessary detail inside a batch file. For example, suppose you want a batch file to check for certain errors, and display a message and exit if one is encountered. This example shows one way to do so:

setlocal

unalias *

setdos /e%=^ /c%=& /p%=$

alias error `echo. & echo ERROR: %$ & goto dispmenu`

alias fatalerror `echo. & echo FATAL ERROR: %$ & quit`

alias in `pushd %1 & %2$ & popd`

if not exist setup.btm fatalerror Missing setup file!

call setup.btm

cls

:dispmenu

text

 1. Word Processing

 2. Solitaire

 3. Internet

 4. Exit

endtext

echo.

inkey Enter your choice: %%userchoice

switch %userchoice

case 1

 input Enter the file name: %%fname

 if not exist fname error File does not exist

 in d:\letters c:\windows\wordpad.exe

case 2

 in d:\finance c:\windows\sol.exe

case 3

 in d:\comm c:\windows\iexplore.exe

case 4

 goto done

default

 error Invalid choice, try again

endswitch

goto dispmenu

:done

endlocal

The first alias, ERROR, simply displays an error message and jumps to the label DISPMENU to redisplay the menu. The %$ in the second ECHO command displays all the text passed to ERROR as the content of the message. The similar FATALERROR alias displays the message, then exits the batch file.

The last alias, IN, expects 2 or more command line parameters. It uses the first as a new working directory and changes to that directory with a PUSHD command. The rest of the command line is interpreted as another command plus possible command line parameters, which the alias executes. This alias is used here to switch to a directory, run an application, and switch back. It could also be used from the command line.

The following 9 lines print a menu on the screen and then get a keystroke from the user and store the keystroke in an environment variable called userchoice. Then the SWITCH command is used to test the user's keystroke and to decide what action to take.

There's another side to aliases in batch files. If you're going to distribute your batch files to others, you need to remember that they may have aliases defined for the commands you're going to use. For example, if the user has aliased CD to CDD and you aren't expecting this, your file may not work as you intended. There are two ways to address this problem.

The simplest method is to use SETLOCAL, ENDLOCAL, and UNALIAS to clear out aliases before your batch file starts, and SETDOS to select the special characters you depend on, and restore them at the end, as we did in the previous example. Remember that SETLOCAL and ENDLOCAL will save and restore not only the aliases but also the environment, the current drive and directory, and various special characters.

If this method isn't appropriate or necessary for the batch file you're working on, you can also use an asterisk * before the name of any command. The asterisk means the command that follows it should not be interpreted as an alias. For example the following command redirects a list of file names to the file FILELIST:

dir /b > filelist

However, if the user has redefined DIR with an alias this command may not do what you want. To get around this just use:

*dir /b > filelist

The same can be done for any command in your batch file. If you use the asterisk, it will disable alias processing, and the rest of the command will be processed normally as an internal command, external command, or batch file. Using an asterisk before a command will work whether or not there is actually an alias defined with the same name as the command. If there is no alias with that name, the asterisk will be ignored and the command will be processed as if the asterisk wasn't there.

You can use the pseudovariables %= and %+ to represent the command escape and command separator characters, respectively, There is no pseudovariable for the parameter character.

	Debugging Batch Files	Not in LE

Take Command includes a built-in full-featured batch file debugger invoked with the BDEBUGGER command. The debugger gives you a detailed, step-by-step view of batch file execution, and will help solve particularly difficult batch file problems.

String Processing

As you gain experience with batch files, you're likely to find that you need to manipulate text strings. You may need to prompt a user for a name or password, process a list of files, or find a name in a phone list. All of these are examples of string processing -- the manipulation of readable text.

TCC includes several features that make string processing easier. For example, you can use the INPUT, MSGBOX, and QUERYBOX commands for user input; the ECHO and ECHOERR, ECHOS and ECHOSERR, SCREEN, SCRPUT, and VSCRPUT commands for output; and the FOR command or the @FILEREAD function to scan through the lines of a file. In addition, variable functions offer a wide range of strings and character handling capabilities.

For example, suppose you need a batch file that will prompt a user for a name, break the name into a first name and a last name, and then run a hypothetical LOGIN program. LOGIN expects the syntax /F:first /L:last with both the first and last names in upper case and neither name longer than 8 characters. Here is one way to write such a batch file:

@echo off

setlocal

unalias *

input Enter your name (no initials): %%name

set first=%@word[0,%name]

set flen=%@len[%first]

set last=%@word[1,%name]

set llen=%@len[%last]

iff %flen gt 8 .or. %llen gt 8 then

 echo First or last name too long

 quit

endiff

login /F:%@upper[%first] /L:%@upper[%last]

endlocal

The SETLOCAL command at the beginning of this batch file saves the environment and aliases. Then the UNALIAS * command removes any existing aliases so they won't interfere with the behavior of the commands in the remainder of the batch file. The first block of lines ends with a INPUT command which asks the user to enter a name. The user's input is stored in the environment variable NAME.

The second block of lines extracts the user's first and last names from the NAME variable and calculates the length of each. It stores the first and last name, along with the length of each, in additional environment variables. Note that the @WORD function numbers the first word as 0, not as 1.

The IFF command in the third block of lines tests the length of both the first and last names. If either is longer than 8 characters, the batch file displays an error message and ends. (QUERYBOX can limit the length of input text more simply with its /L switch. We used a slightly more cumbersome method above in order to demonstrate the use of string functions in batch files.)

Finally, in the last block, the batch file executes the LOGIN program with the appropriate parameters, then uses the ENDLOCAL command to restore the original environment and alias list. At the same time, ENDLOCAL discards the temporary variables that the batch file used (NAME, FIRST, FLEN, etc.).

When you're processing strings, you also need to avoid some common traps. The biggest one is handling special characters.

Suppose you have a batch file with these two commands, which simply accept a string and display it:

input Enter a string: %%str

echo %str

Those lines look safe, but what happens if the user enters the string "some > none" (without the quotes). After the string is placed in the variable STR, the second line becomes

echo some > none

The ">" is a redirection symbol, so the line echoes the string "some" and redirects it to a file called NONE -- probably not what you expected. You could try using double quotes to avoid this kind of problem, but that won't quite work. If you use back-quotes (ECHO `%STR`), the command will echo the four-character string %STR. Environment variable names are not expanded when they are inside back-quotes.

If you use double quotes (ECHO "%STR"), the string entered by the user will be displayed properly, and so will the double quotes. With double quotes, the output would look like this:

"some > none"

As you can imagine, this kind of problem becomes much more difficult if you try to process text from a file. Special characters in the text can cause all kinds of confusion in your batch files. Text containing back-quotes, double quotes, or redirection symbols can be virtually impossible to handle correctly.

One way to overcome these potential problems is to use the SETDOS /X command to temporarily disable redirection symbols and other special characters. The two-line batch file above would be a lot more likely to produce the expected results if it were rewritten this way:

setdos /x-15678

input Enter a string: %%str

echo %str

setdos /x0

The first line turns off alias processing and disables several special symbols, including the command separator and all redirection symbols. Once the string has been processed, the last line re-enables the features that were turned off in the first line.

If you need advanced string processing capabilities beyond those provided by TCC, you may want to consider using the Perl, Python, REXX, or Ruby languages. Our products can execute Perl, Python, REXX, and Ruby programs internally, and also support evaluating individual Perl, Python, REXX, and Ruby expressions internally.

Batch File Compression

You can compress your .BTM files with BATCOMP. That command reduces the size of large batch files by at least a half and makes them unreadable with the LIST command and similar utilities. Compressed batch files run at approximately the same speed as uncompressed .BTM files.

You may want to consider compressing batch files if you need to distribute them to others and keep your original code secret or prevent your users from altering them. You may also want to consider compressing batch files to save some disk space on the systems where compressed files are used.

The full syntax for the batch compression command is

BATCOMP [/Q][/O] InputFile OutputFile

You must specify the full name of the input file and output files, including their extensions, on the BATCOMP command line. For example, to compress MYBATCH.CMD and save the result as MYBATCH.BTM, you use this command:

batcomp mybatch.cmd mybatch.btm

If the output file (MYBATCH.BTM in the examples above) already exists, BATCOMP will prompt you before overwriting the file. You can disable the prompt by including /O on the BATCOMP command line immediately before the input file name. Even if you use the /O option, BATCOMP will not compress a file into itself.

The /Q ("quiet") option suppresses informational messages from BATCOMP.

JP Software does not provide a utility to decompress batch files. If you use BATCOMP, make sure that you also keep a copy of the original batch file for future inspection or modification.

If you plan to distribute batch files to users of different platforms, see Special Character Compatibility for important information on the command separator, escape character, and parameter character used in each product.

Perl support Not in LE

Perl is a powerful file and text processing language available on many platforms. Perl is an ideal extension to the TCC batch language, especially if you need advanced string processing capabilities.

The Perl language is not built into TCC, and must be obtained separately. The version supported by TCC is PerlScript (the WSH COM interface), which is included in Active State Perl (free from www.activestate.com).

You must enable Perl support in the OPTION / Startup page. If it is enabled, TCC will automatically load Perl on your system. If a suitable library is found, TCC checks to see if you are running a .PL file. If so, TCC passes the file to your Perl interpreter for processing.

See also: the @PERL, @PYTHON, @REXX and @RUBY functions.

	Python support	Not in LE

Python is a powerful file and text processing language available on many platforms. Python is an ideal extension to the TCC batch language, especially if you need advanced string processing capabilities.

The Python language is not built into TCC, and must be obtained separately. The version supported by TCC is ActivePython (free from www.activestate.com). TCC supports version 3.1, 2.6, and 2.5. (TCC will search for the Python dll's in that order.)

You must enable Python support in the OPTION / Startup page. If it is enabled, TCC will automatically load a Python interpreter when it starts. If a suitable library is found, TCC checks to see if you are running a .PY file. If so, TCC passes the file to your Python interpreter for processing.

See also: the @PYTHON, @PERL, @REXX and @RUBY functions.

	REXX Support	Not in LE

REXX is a powerful file and text processing language developed by IBM, and available on many platforms. REXX is an ideal extension to the TCC batch language, especially if you need advanced string processing capabilities.

The REXX language is not built into TCC, and must be obtained separately by downloading the free ooREXX (Open Object REXX) from http://www.oorexx.org/.

You must enable REXX support in the OPTION / Startup page. If it is enabled, when TCC loads it asks Windows to locate specific REXX libraries associated with Open Object REXX. If ooREXX is found, TCC checks to see if you are running a .REX or .REXX file, or if the first two characters on the first line of a .CMD file are [/*], the beginning of a REXX comment. If either of these tests succeeds, TCC passes the file to your REXX interpreter for processing.

When you send a command from a REXX program back to TCC to be executed (for example, if you execute a DIR command within a REXX script), the REXX software must use the correct address for TCC. TCC uses the address CMD for compatibility with scripts written for CMD.

For details on communication between REXX and TCC, or for more information on any aspect of REXX, see your ooREXX documentation.

See also: the @REXX, @PERL, @PYTHON, and @RUBY functions.

	Ruby support	Not in LE

Ruby is a powerful object-oriented file and text processing language available on many platforms. Ruby is an ideal extension to the TCC batch language, especially if you need advanced string processing capabilities.

The Ruby language is not built into TCC, and must be obtained separately. The versions supported by TCC are Ruby 1.8 and 1.9 (free from www.ruby-lang.org).

You must enable Ruby support in the OPTION / Startup page. If it is enabled, TCC will automatically load the Ruby library at startup. If a suitable library is found, TCC checks to see if you are running a .rb file. If so, TCC passes the file to your Ruby interpreter for processing.

See also: the @RUBY, @PYTHON, @REXX and @PERL functions.

	Tcl/tk Support	Not in LE

The Tcl/tk language is not built into TCC, and must be obtained separately. The version supported by TCC is ActiveTcl 8.5.7 (free from www.activestate.com).

You must enable Tcl support in the OPTION / Startup page. If it is enabled, TCC will automatically load a Tcl interpreter when it starts. If a suitable library is found, TCC checks to see if you are running a .TCL file. If so, TCC passes the file to your Tcl interpreter for processing.

It's not possible for TCC to determine in advance whether you're running a Tcl or a Tk script. After executing the script, TCC checks if a Tk window is running. If so, it enters a Tk event loop and waits for the window to be closed. If not, TCC assumes it was a Tcl script and TCC returns immediately.

Because of the way the Tk interpreter works, it is not possible for TCC to maintain a persistent interpreter after executing a Tk script. TCC will close the current Tcl/tk interpreter and create a new one the next time a Tcl / tk script is executed.

See also @TCL and @TK.

EXTPROC / SHEBANG Support

TCC offers an external processor option for batch files that lets you define an external program to process a particular .CMD file. To identify a .CMD file to be used with an external processor, place the string EXTPROC as the first word on the first line of the file, followed by the name of the external program that should be called. TCC will start the program and pass it the name of the .CMD file and any command line parameters that were entered.

For example, suppose GETDATA.CMD contains the following lines:

EXTPROC D:\DATAACQ\DATALOAD.EXE

OPEN PORT1

READ 4000

DISKWRITE D:\DATAACQ\PORT1\RAW

Then if you entered the command:

[d:\dataacq] getdata /p17

TCC would read the GETDATA.CMD file, determine that it began with an EXTPROC command, read the name of the processor program, and then execute the command:

D:\DATAACQ\DATALOAD.EXE D:\DATAACQ\GETDATA.CMD /p17

The hypothetical DATALOAD.EXE program would then be responsible for reopening the GETDATA.CMD file, ignoring the EXTPROC line at the start, and interpreting the other instructions in the file. It would also have to respond appropriately to the command line parameter entered (/p17).

Do not try to use TCC as the external processor named on the EXTPROC line in the .CMD file. It will interpret the EXTPROC line as a command to reopen itself. The result will be an infinite loop that will continue until the computer runs out of resources and locks up.

TCC also provides SHEBANG support. It works identically to EXTPROC, but the first line begins with a #! .

Note that EXTPROC and SHEBANG only work with files with a .CMD extension, not .BTM or .BAT.

File Selection

Most internal commands (like COPY, DIR, etc.) work on a file or a group of files. You can use several shorthand forms for naming or selecting files and the applications associated with them, or for accessing files on remote systems.

Most of the features explained in this section apply to TCC commands only, and generally cannot be used to pass file names to external programs (unless those programs were specifically written to support these features).

The features discussed in this section are:

[image: Onestep] Wildcards

[image: Onestep] Executable Extensions

[image: Onestep] Using Internet URLs

[image: Onestep] Using FTP and HTTP Servers

[image: Onestep] OpenAFS

[image: Onestep] Ranges

[image: Onestep] Attribute Switches

[image: Onestep] Multiple Filenames

[image: Onestep] Include Lists

[image: Onestep] Delayed Variable Expansion

[image: Onestep] Extended Parent Directory Names

[image: Onestep] LFN File Searches

[image: Onestep] @File Lists

[image: Onestep] Command Switches for File Selection

Wildcards and Regular Expressions

Wildcards let you specify a file or group of files by typing a partial filename. The appropriate directory is scanned to find all of the files that match the partial name. You can also specify files with regular expressions.

Wildcards are usually used to specify which files should be processed by a command. If you need to specify which files should not be processed, see File Exclusion Ranges (for internal commands), or EXCEPT (for external commands).

Most internal commands accept filenames with wildcards anywhere that a full filename can be used. There are two wildcard characters, the asterisk * and the question mark ?. Additionally, you can specify a set of characters. Note the issues about matching short file names.

WARNING: When you use a wildcard search for files to process in a command like FOR or DO, and you create new filenames (whether by renaming existing files or by creating new files), the new filenames may match your selection wildcard, and cause you to process them again.

TCC (but not TCC/LE) also supports wildcards in the directory names (but not in the drive name). You can control the subdirectory recursion by specifying * or ** in the path. A * will match a single subdirectory level; a ** will match any all subdirectory levels for that pathname. Directory wildcards also support regular expressions. Directory wildcards cannot be used with the /O:... option (which sorts entries before executing the command). And think very carefully before using directory wildcards with a /S (recurse subdirectories) option, as this will almost certainly return unexpected results! There are a few commands which do not support directory wildcards, as they would be meaningless or destructive (for example, TREE, @FILEOPEN, @FILEDATE, etc.).

For example:

del c:\test\test2*\foobar Delete the file foobar in any subdirectory of c:\test\test2 (but not in any of their subdirectories).

del c:\test***foo*\foobar Delete the file foobar in any subdirectory under c:\test (and all of their subdirectories) that has "foo" anywhere in the name.

del c:\test\t*2\foobar Delete the file foobar in any subdirectory of c:\test that begins with a t and ends with a 2.

Asterisk * wildcard

An asterisk * in a file specification means "a set of any characters or no character in this position". For example, this command will display a list of all files (including directories, but excluding those files and directories with at least one of the attributes hidden and system) in the current directory:

dir *

If you want to see all of the files with a .TXT extension:

dir *.txt

If you know that the file you are looking for has a base name that begins with ST and an extension that begins with .D, you can find it this way. Filenames such as STATE.DAT, STEVEN.DOC, and ST.D will all be displayed:

dir st*.d*

TCC also lets you also use the asterisk to match filenames with specific letters somewhere inside the name. The following example will display any file with a .TXT extension that has the letters AM together anywhere inside its base name. It will, for example, display AMPLE.TXT, STAMP.TXT, CLAM.TXT, and AM.TXT, but it will ignore CLAIM.TXT:

dir *am*.txt

Question mark ? wildcard

A question mark ? matches any single filename character. You can put the question mark anywhere in a filename and use as many question marks as you need. The following example will display files with names like LETTER.DOC, LATTER.DAT, and LITTER.DU:

dir l?tter.d??

The use of an asterisk wildcard before other characters, and of the character ranges discussed below, are enhancements to the standard Microsoft wildcard syntax, and are not likely to work properly with software other than TCC.

"Extra" question marks in your wildcard specification are ignored if the file name is shorter than the wildcard specification. For example, if you have files called LETTER.DOC, LETTER1.DOC, and LETTERA.DOC, this command will display all three names:

dir letter?.doc

The file LETTER.DOC is included in the display because the "extra" question mark at the end of LETTER? is ignored when matching the shorter name LETTER.

Specific character set

In some cases, the ? wildcard may be too general. TCC also allows you to specify the exact set of what characters you want to accept (or exclude) in a particular position in the filename by using square brackets []. Inside the brackets, you can put the individual acceptable characters or ranges of characters. For example, if you wanted to match LETTER0.DOC through LETTER9.DOC, you could use this command:

dir letter[0-9].doc

You could find all files that have a vowel as the second letter in their name this way. This example also demonstrates how to mix the wildcard characters:

dir ?[aeiouy]*

You can exclude a group of characters or a range of characters by using an exclamation mark [!] as the first character inside the brackets. This example displays all filenames that are at least 2 characters long except those which have a vowel as the second letter in their names:

dir ?[!aeiouy]*

The next example, which selects files such as AIP, BIP, and TIP but not NIP, demonstrates how you can use multiple ranges inside the brackets. It will accept a file that begins with an A, B, C, D, T, U, or V:

dir [a-dt-v]ip

You may use a question mark character inside the brackets, but its meaning is slightly different than a normal (unbracketed) question mark wildcard. A normal question mark wildcard matches any character, but will be ignored when matching a name shorter than the wildcard specification, as described above. A question mark inside brackets will match any character, but will not be discarded when matching shorter filenames. For example:

dir letter[?].doc

will display LETTER1.DOC and LETTERA.DOC, but not LETTER.DOC.

You can repeat any of the wildcard characters in any combination you desire within a single file name. For example, the following command lists all files which have an A, B, or C as the third character, followed by zero or more additional characters, followed by a D, E, or F, followed optionally by some additional characters, and with an extension beginning with P or Q. You probably won't need to do anything this complex, but we've included it to show you the flexibility of extended wildcards:

dir ??[abc]*[def]*.[pq]*

You can also use the square bracket wildcard syntax to work around a conflict between long filenames containing semicolons [;], and the use of a semicolon to indicate an include list. For example, if you have a file on an LFN drive named C:\DATA\LETTER1;V2 and you enter this command:

del \data\letter1;v2

you will not get the results you expect. Instead of deleting the named file, TCC will attempt to delete LETTER1 and then V2, because the semicolon indicates an include list. However if you use square brackets around the semicolon it will be interpreted as a filename character, and not as an include list separator. For example, this command would delete the file named above:

del \data\letter1[;]v2

Matching short file names

If the Search for SFNs configuration option is set, wildcard searches accept a match on either the LFN or the SFN to match the behavior of CMD. This may cause some files to be found because of SFN match only. In most situations this is not actually desirable, and can be avoided by disabling the option (the default).

Note: The wildcard expansion process will attempt to allow both CMD-style "extension" matching (only one extension, at the end of the word) and the advanced TCC filename matching (allowing things like *.*.abc) when an asterisk is encountered in the destination of a COPY, MOVE or REN/RENAME command.

Regular Expressions

You can also use regular expressions for file name tests. (The type of regular expressions to use is specified by the Regular Expressions Syntax option.)

The syntax is:

 ::regex

For example:

 dir ::ca[td]

Note that using regular expressions will slow your directory searches -- since Windows doesn't support them, the parser has to convert the filename to *, retrieve all filenames, and then match them to the expression.

If you have any special characters (whitespace, redirection characters, escape characters, etc.) in your regular expression, you will need to enclose it in double quotes. For example:

dir "::^\w{1,8}\.btm$"

For more information on the syntax, see Regular Expression Syntax.

Executable Extensions

Normally, when you type a filename (as opposed to an alias or internal command name) as the first word on the command line, TCC looks for a file with that name to execute.

The file's extension may be .EXE to indicate that it contains a program; .LNK to indicate that it contains information on how to execute a program under Windows; or .BTM, .BAT, or .CMD to indicate a batch file.

You can add to the default list of extensions, and have TCC take the action you want with files that are not executable programs or batch files. The action taken is always based on the file's extension. For example, you could start your text editor whenever you type the name of a .DOC file, or start your database manager whenever you type the name of a .DAT file.

Windows also includes the ability to associate file extensions with specific applications. See Windows File Associations for details on this feature and its relationship to executable extensions. See also: Executable Files and File Searches.

You use environment variables to define the internal command, external program, batch file, or alias to run for each defined file extension. To create an executable extension for use only in TCC, use the SET command to create a new environment variable. An environment variable is recognized as an executable extension if its name begins with a period.

The syntax for creating an executable extension is:

set .ext[;.ext[;...]]=command [options]

where .EXT is the executable file extension; command is the name of the internal command, alias, external program, or batch file to run; and [options] are any command line startup options you want to specify for the program, batch file, or alias. You can specify multiple extensions for a single command by separating them with semicolons.

For example, if you want to run a word processor called EDITOR whenever you type the name of a file that has an extension of .EDT, you could use this command:

set .edt=c:\edit\editor.exe

If the command specified in an executable extension is a batch file or external program, TCC will search the PATH for it if necessary. However, you can make sure that the correct program or batch file is used, and speed up the executable extension, by specifying the full name including drive, path, filename, and extension. You can utilize other environment variables in the specification.

Once an executable extension is defined, any time you name a file with that extension as a command, it is equivalent to having typed the value of the extension variable, followed by the name of the file.

The next example defines WORDPAD.EXE (a Windows editor) as the processor for .TXT files:

set .txt="c:\program files\accessories\wordpad.exe"

Now, if you have a file called HELLO.TXT and enter the command

hello

TCC will execute the command:

"c:\program files\accessories\wordpad.exe" c:\source\hello.txt

Notice that the full pathname of HELLO.TXT is automatically included. If you enter parameters on the command line, they are appended to the end of the command. For example, if you changed the above entry to:

[c:\source] hello -w

TCC would execute the command:

"c:\program files\accessories\wordpad.exe" c:\source\hello.txt -w

In order for executable extensions to work, the command, program, batch file, or alias must be able to interpret the command line properly. For example, if a program you want to run doesn't accept a file name on its command line as shown in these examples, then executable extensions won't work with that program.

Executable extensions may include wildcards, so you could, for example, run your text editor for any file with an extension beginning with T by defining an executable extension called .T*. Extended wildcards (e.g., DO[CT] for .DOC and .DOT files) may also be used.

To remove an executable extension, use UNSET to remove the corresponding variable.

Using Internet URLs

If you type an Internet URL (Uniform Resource Locator) which begins with http: or https: at the prompt, TCC will pass the URL to Windows. Normally Windows will start your web browser, and request that the browser retrieve the page pointed to by the URL. This feature will only work if Windows can find the proper association between the http: or https: prefix and the browser software. While this association is standard for most browser installations, it may not be present on all systems.

The ability to "start" URLs in this way is restricted to those beginning with http: or https:. Other standard prefixes such as ftp:, mail:, and news: cannot be started directly from the prompt; you must enter these URLs directly into your browser.

HTTP and HTTPS addresses in Take Command and TCC will have any embedded spaces converted to "%20" before sending the URL to the server.

See Waiting for Applications to Finish for information on problems with waiting for the browser to finish after starting a URL.

	Using FTP and HTTP Servers	Not in LE

TCC allows direct access to remote servers from internal commands such as COPY, DEL, DIR, MOVE, MD, RD, REN, and SELECT via several protocols:

	[image: Onestep]	FTP (basic FTP)

	[image: Onestep]	TFTP (Trivial FTP)

	[image: Onestep]	FTPS (SSL FTP)

	[image: Onestep]	SFTP (SSH FTP)

	[image: Onestep]	HTTP (basic Web access)

	[image: Onestep]	HTTPS (SSL HTTP)

Note: Not all protocols are supported in every internal command. For example, DIR will not work with HTTP or HTTPS (because of limitations in the HTTP / HTTPS protocol).

●FTP support:

The basic filename syntax for anonymous connections is:

ftp://ftp.abc.com/...

For example, to get a directory of the Microsoft FTP site, you could use this command:

dir ftp://ftp.microsoft.com/*

If you don't specify a username and password, TCC will look for your FTP user names and passwords in the file FTP.CFG (which defaults to the Take Command directory). You can specify another directory with the FTP.CFG configuration option. You must add entries to the FTP.CFG file manually. The format for each line is:

 url [(alias)] username password [directory template]

For example:

 jpsoft.com fred secret

 microsoft.com anyone mypassword

You can have multiple users for a single FTP site (for example, an admin user and and a normal user). You need to add an alias (enclosed in parentheses) following the name of the ftp site. For example:

jpsoft.com (jpadmin) Bob AdminPassword

jpsoft.com (jppublic) anonymous Bob@ftp.jpsoft.com

You can then access the server as ftp://jpadmin or ftp://jppublic.

We recommend you encrypt this file if you're using NTFS. If FTP.CFG doesn't exist the first time TCC looks for it, it will be created as an encrypted file (NTFS only). Note: If you are using FAT / VFAT, the file will not be encrypted and your user names and passwords will be unprotected in plain text.

You can also specify an explicit username and password on the command line:

ftp://[username:password@]ftp.abc.com/...

If you specify a password of *, you will be prompted to enter the password (which will appear on the screen as asterisks). Depending on the type of operation you're doing, you may need to enter the password multiple times as TCC repeatedly connects and disconnects from the server. To avoid this, use IFTP (which will also be much faster).

If you have FTP permission on server ftp.abc.com and a subdirectory of the root directory on that server is called mydir, you can display the files with this command (enter this on one line):

dir ftp://username:password@ftp.abc.com/mydir/*

You can also use the internal IFTP command to start an FTP session with a server and then use a simplified syntax to manipulate files on the server.

TCC also supports symbolic hostnames (defined in \windows\system32\drivers\etc\hosts).

TCC normally connects to the FTP server on the default FTP port 21. If the FTP server you are connecting to uses a non-standard port, enter the port number (with a preceding colon) just after the server name, for example:

dir ftp://username:password@ftp.abc.com:8765/mydir/*

To log on to a server which supports "anonymous" logins, enter the required user name (usually "anonymous") and password (usually your email address) using the syntax shown above, for example:

dir ftp://anonymous:email@domain.com@ftp.microsoft.com/

TCC will distinguish between the @ in the email address and the @ before the server name in order to separate the parts of the URL properly.

If you use a partial file or path reference, such as

 dir ftp:myfile.txt

TCC will attempt to build a fully qualified directory name in which to find the requested file or path, based on what the server reports as the current working directory. If an ftp file or path specification begins with a ~ (tilde, typically indicative of a path relative to the user's home directory), TCC will instead pass the exact string directly to the remote server.

TCC uses standard FTP commands to retrieve information about files and directories and manipulate those files and directories on FTP servers, and relies on the server's compliance with Internet FTP standards. If your server is not fully compliant, or does not operate in the manner that TCC expects, the results may not be what you intend. For example, if the FTP server you are connecting to is case-sensitive, you may have to use the stored case of file and directory names when you use FTP commands. (If you include wildcards in the filename, TCC will match filenames regardless of case.) We urge you to test each server you use with nondestructive commands like DIR before you try to copy or delete files, create or remove directories, etc.

Time-related operations (e.g. switches like COPY /C or /U) may not always work reliably on FTP and HTTP servers, due to differences in time zone and in the file time representations between your local system and the server. Be sure to experiment with the particular server in question before depending on commands which compare file times to yield the results you want.

Note: If you use a partial reference such as ftp:mydir outside the scope of an IFTP command, TCC will attempt to re-establish the last connection, if any. That new connection may or may not be logged to the last used directory on that sever. We recommend you always use a full reference (including server name) unless you are specifically taking advantage of an active IFTP connection. You can determine if there is an active IFTP connection with the _iftp and _iftps variables.

Before you can use the built-in FTP support or the IFTP command, you must establish the necessary connection to the Internet. For example, if you use Windows Dial-Up Networking to connect to the Internet, you must start your dial up connection first. If you connect through a proxy server, you must set the Proxy configuration options.

Non-standard FTP servers:

TCC supports directory formats for the following:

EPLF

WFTP

VMS (single-line filenames only)

NetPresenz (Macintosh)

Netware

All known UNIX and Linux formats

Windows FTP Server

If you have a non-standard FTP server that creates an unusual directory format, you can create an entry in your FTP.CFG file to allow TCC to parse the FTP server output. The format is described in the FTP.CFG following the host name, username, and password. The format characters are:

	I"text"	Do a wildcard comparison of "text" and the directory line; if it matches, discard the entire line. (This is to allow you to skip header & footer lines that would otherwise return garbage.)

	"text"	Compare (and skip) a literal string (does NOT support wildcard searches)

	<space>	Skip whitespace (spaces, tabs)

	!	Skip non-whitespace

	-	Ignore a single character

	F	Filename. If the F is followed by a . (i.e., "F."), the extension is the next non-whitespace string. The extension will be appended (preceded by a '.') to the filename.

	S	Subdirectory flag. If the S is followed by a =, the next character is the character in a "raw" directory listing that denotes a directory. If you don't specify a =, 'D' is assumed.

	T	Month as a string (i.e., "Jan", "Feb", etc.)

	U	Linux-style year (2004) or time (18:30) in the same field.

	Y	Year

	M	Month

	D	Day

	h	Hour

	m	Minute

	H	a or p (for am/pm)

	Z	File size. If the Z is followed by a =, the number following that is the block size.

		(Note that upper/lower case is significant for the format characters.)

For example, the FTP.CFG entry for JPSOFT.COM can be described as:

jpsoft.com anonymous JPUser@ S ! ! ! Z T D U F

●TFTP ("trivial FTP") support:

See the FTP section above for general notes and requirements.

TFTP is only available with COPY (and with MOVE when the source is a local file). The syntax is:

 tftp://server[:port]/filename

For example:

 copy update tftp://190.189.188.0/update

●HTTP ("basic Web") support:

See the FTP section above for general notes and requirements.

The HTTP syntax is:

 http://[user:password@]server[:port]/filename

For example:

copy http://jpsoft.com/

●FTPS ("SSL FTP") support:

See the FTP section above for general notes and requirements.

The FTPS syntax is:

ftps://[user:password@]server[:port]/filename

For example:

copy ftps://bob:pass@ftp.myserver.com/tcmd/tcmd.exe

●SFTP ("SSH FTP") support:

See the FTP section above for general notes and requirements.

The SFTP syntax is:

sftp://[user:password@]server[:port]/filename

For example:

copy sftp://bob:pass@ftp.myserver.com/tcmd/tcmd.exe

●HTTPS ("SSL HTTP") support:

See the FTP section above for general syntax and requirements.

The HTTPS syntax is:

https://[user:password@]server/filename

For example:

copy https://jpsoft.com/downloads/v15/tcmd.exe

	OpenAFS	Not in LE

TCC has built-in support for OpenAFS. The parser will recognize Linux-style AFS names (i.e., /afs/athena/user) and convert them to Windows-compatible names (i.e., \\afs\athena\user). (It will also check for custom AFS mount points, and use that name instead of afs.)

See http://www.openafs.org for more information on OpenAFS.

Ranges

General Rules Size Ranges Date Ranges Time Ranges Exclusion Ranges Description Ranges

Most internal commands which accept wild cards also allow size, date, time, exclusion, and description ranges to further define the files that you wish to work with. TCC will examine each file's properties to determine whether or not the file meets the range criteria that you have specified.

A size, date, time, or exclusion range specification begins with the switch character /, followed by a left square bracket [and a character that specifies the range type: s for size range, d for date range, t for time range, or ! for exclusion range. The s, d, or t is followed by a start value, and an optional comma and end value. The range ends with a right square bracket]. For example, to select files between 100 and 200 bytes long you could use the range /[s100,200].

A description range begins with /I. See Description Ranges for the full syntax.

If you use the syntax /[=], TCC will display a dialog that allows you to select the ranges you want. (Not included in TCC/LE.) For example:

copy /[=] file1 file2

[image: clip0025]

General Rules

You can reverse the range test by preceding the range argument with the ! character. For example, to select files that are less than 100 bytes or more than 1000 bytes:

/![s100,1000]

If you combine different types of ranges, a file must satisfy all range specifications to be included. For example,

/[d2010-2-8,2011-2-9] /[s1024,2048]

means files last modified between February 8, 2010 and February 9, 2011, which are also between 1,024 and 2,048 bytes long.

You may not repeat the same range type in a command.

When you use range specifications in a command, they should immediately follow the command name, so that any additional switches for the command are after any range(s) used. If the range is placed later in the command it may be ignored, or cause an error. Unlike some command switches which apply to only part of the command line, the range usually applies to all file names specified for the command. Any exceptions are noted in the descriptions of individual commands.

For example, to get a directory of all the *.C files dated October 1, 2010, you could use this command:

dir /[d2010-10-1,+0] *.c

To delete all of the 0-byte files on your disk, you could use this command:

del /[s0,0] * /s

And to copy all of the non-zero byte files that you changed yesterday or today to your floppy disk, you can use this command:

copy /[d-1] /[s1] * a:

It can be tedious to type all of the elements of a range, especially when it involves multiple dates and times. In this case you may find it easier to use aliases for common operations. For example, if you often wish to select from .DAT files modified over the last three days and copy the selected files to another drive, you might define an alias like this:

alias workback=`select /[d-2] copy (*.dat) e:\datfiles\`

For more complex requirements, you may want to use internal variables (e.g. _DATE or _TIME) and built-in variable functions (e.g. @DATE, @TIME, @MAKEDATE, @MAKETIME, @FILEDATE, @FILETIME, or @EVAL). These variables and functions allow you to perform arithmetic and date / time calculations. You may also define your own variable functions, to perform more complex manipulations repetitively.

See the individual types for details on specifying ranges:

[image: Onestep] Size Ranges

[image: Onestep] Date Ranges

[image: Onestep] Time Ranges

[image: Onestep] Exclusion Ranges

[image: Onestep] Description Ranges

Ranges can be used with many commands, including ATTRIB, COPY, DEL, DESCRIBE, DIR, DO, EXCEPT, FFIND, FOR, HEAD, LIST, MOVE, PDIR, RD, REN, SELECT, TAIL, and TYPE

Ranges cannot be used with filename completion or in filename parameters for variable functions, except as described under the individual functions.

Do not use ranges with @file lists. See @file lists for details.

Date, Time, and Size Ranges

All ranges are inclusive. For example, a size range which selects files from 10,000 to 20,000 bytes long will match files that are exactly 10,000 bytes or 20,000 bytes long, as well as all sizes in between; a date range that selects files last modified between 2010-10-27 and 2010-10-30 will include files modified on each of those dates, and on the two days in between.

If you reverse range start and end values TCC will recognize the reversal, and will use the second (lower) value as the start point of the range and the first (higher) value as its end point. For example, to select files between 100 and 200 bytes long could also be entered as /[s200,100].

Size Ranges

Size ranges select files whose size is between the inclusive limits specified. The second parameter of a size range is optional. If you use a single parameter, you will select all files of the specified size or larger. You can also precede the second parameter with a plus sign [+]; when you do, it is added to the first value to determine the largest file size to include in the search.

You can exclude a size range by preceding the range with the ! character.

When you use a size range in a command it should immediately follow the command name. See General Rules for Using Ranges for additional details.

Either or both values in a size range can be suffixed with a scale factor from the table below. Lower case letters denote a power of 1,000, upper case letters a power of 1,024 (2**10).

	Code

	Scale Factor

	Code

	Scale Factor

	Unit Name

	k

	1,000

	10**3

	K

	1,024

	2**10

	kilobyte

	m

	1,000,000

	10**6

	M

	1,048,576

	2**20

	megabyte

	g

	1,000,000,000

	10**9

	G

	1,073,741,824

	2**30

	gigabyte

	t

	1,000,000,000,000

	10**12

	T

	1,099,511,627,776

	2**40

	terabyte

	p

	1,000,000,000,000,000

	10**15

	P

	1,125,899,906,842,624

	2**50

	petabyte

Examples of size ranges:

	Specification	Selects Files of Length

	/[s0,0]	zero (empty)

	/[s1M]	2**20 bytes or larger

	/[s10k,+200]	between 10,000 and 10,200 bytes, inclusive

	/[s10,153k]	between 10 and 153,000 bytes, inclusive

	/![s1K,5K]	less than 1K or greater than 5K

Date Ranges

Date ranges select files dated at any time of day between the inclusive limits specified. For example, /[d2011-12-1,2011-12-5] selects files that were last modified on or after December 1, 2011, but not modified after December 5, 2011.

When you use a date range in a command, only other range specifications may be between the command name and the date range. See General Rules for Using Ranges for additional details.

You can use hyphens, slashes, or periods to separate the month, day, and year. The year can be entered as a 2-digit or 4-digit value. Two-digit years between 80 and 99 are interpreted as 1980...1999; values between 00 and 79 are interpreted as 2000...2079. For example, /[d2010-12-31,2011-1-1] selects files modified between December 31, 2010 and January 1, 2011.

If either parameter begins with a four digit year (which must greater than 1900), it is assumed to be a date in the international format yyyy-mm-dd, otherwise it is assumed that the date elements are in the order appropriate for your locale. All non-ISO date examples in the HELP use the USA format: mm-dd-yy, unless otherwise stated explicitly.

The default time for the first date is the beginning of that day, and for the second date it is the end of that day. This is true even if the dates are in descending order, i.e., the first date is later than the second one. You can alter these defaults by including specific start and stop times inside the date range. The time is separated from the date with an at sign @. For example, the range /[d2010-7-01@8:00a,2010-7-03@6:00p] selects files that were modified at any time between 8:00:00 am on July 1, 2010 and 6:00:00 pm on July 3, 2010. If you prefer, you can specify the times in 24-hour format (e.g., @18:00 for the end time in the previous example).

If you omit the second parameter in a date range, TCC substitutes the current date and time. For example, /[d2010-10-1] selects files dated between October 1, 2010 and the instant of command execution.

Instead of an explicit date, you may use an offset value for either the beginning or ending date, or both. An offset begins with a plus sign [+] or a minus sign [-] followed by an integer. If you use an offset for the second value, it is calculated relative to the first. If you use an offset for the first (or only) value, the current date is used as the basis for calculation. For example:

	Specification

	Selects Files

	/[d2010-1-27,+3]

	modified between January 27, 2010 and January 30, 2010

	/[d2010-1-27,-3]

	modified between January 24, 2010 and January 27, 2010

	/[d-0]

	modified today (from today minus zero days, to today)

	/[d-1]

	modified yesterday or today (from today minus one day, to today)

	/[d-1,+0]

	modified yesterday (from today minus one day, to zero days after that)

As a shorthand way of specifying files modified today, you can also use /[d]; this has the same effect as the /[d-0] example shown above.

Instead of a date, you can specify a file age for the first and/or second parameter (not supported in TCC/LE). See Time Stamps, @AGEDATE and @MAKEAGE.

To select files last modified n days ago or earlier, use /[d-n,1980-1-1]. For example, to get a directory of all files last modified 3 days or more before today (i.e., those files not modified within the last 3 days), you could use this command:

dir /[d-3,1980-1-1]

This reversed date range (with the later date given first) will be handled correctly by TCC. It takes advantage of the facts that an offset in the start date is relative to today, and that the base or "zero" point for PC file dates is January 1, 1980 for FAT / VFAT, or January 1, 1601 for NTFS.

You cannot use offsets in the time portion of a date range (the part after an @ sign), but you can combine a time with a date offset. For example, /[d2010-12-08@12:00,+2@12:00] selects files that were last modified between noon on December 8 and noon on December 10, 2010. Similarly, /[d-2@15:00,+1] selects files last modified between 3:00 pm the day before yesterday and the end of the day one day after that, i.e., yesterday. The second time defaults to the end of the day because no time is specified.

You can exclude a date range by preceding the range with the ! character.

Notes:

●If the second date is the termination date, and it includes an explicit termination time, it is considered an exact value. For example, in the last example the termination time was 6PM. Files with a timestamp of 6:00:01 PM or later are not included in the date range. This is different from the behavior of time ranges.
●If you include seconds in the times you specify, they will be silently ignored (no error or warning).
●If the first date is later than the second, any time of day modifiers for the first date are silently ignored.

Date types and selection

Windows file systems keep track of three dates for a file: when it was created, when it was last modified (written), and when it was last accessed. You specify which date and time is used in a date range by adding a (access), c (creation), or w (write) after the d in the range. For example, to select all files created between February 1, 2010 and February 7, 2010, inclusive, you would use /[dc2010-02-1,2010-2-7]. If you don't specify which date and time to use, TCC will use the date the file was last modified (written).

NOTE: On FAT32 drives which support long filenames, only the last access date is recorded; the last access time is always returned as 00:00. However, on NTFS drives, last access information includes both date and time.

Date and time ranges may not always work as you expect across a network, including on FTP or HTTP servers, due to differences in time zone and file time storage method between the local and remote systems. Be sure to do some non-destructive testing before depending on date or time ranges to yield the results you want on a remote system.

Defaults for Date Ranges

	Start date:

	Today

	End date:

	Today

	Time of first parameter:

	Beginning of the day (00:00:00)

	Time of second parameter:

	End of the day (23:59:59)

	Missing second parameter:

	Current date and time

	Date type

	Modification (write)

Time Ranges

Time ranges select files timed at any time between the two specified times of day. For example, to select files modified at or between noon and 2:00 PM on any day, use /[t12:00p,2:00p]. The times in a time range can either be in 12-hour format, with a trailing a for AM or p for PM, or in 24-hour format.

When you use a time range in a command it should immediately follow the command name. See General Rules for Using Ranges for additional details.

If you omit the second parameter in a time range, you will select files that were modified between the first time and the current time, on any date. You can also use offsets, beginning with a plus sign [+] or a minus sign [-] for either or both of the parameters in a time range. The offset values are interpreted as minutes. Some examples:

	Specification

	Selects Files

	/[t12:00p,+120]

	modified between noon and 2:00 PM on any date

	/[t-120,+120]

	modified between two hours ago and the current time on any date

	/[t0:00,11:59]

	modified in the morning on any date

The separator character used in the time may vary depending upon your country information.

You can exclude a time range by preceding the range with the ! character.

Time types and selection

Windows keeps track of three times for a file: when it was created, when it was last modified (written), and when it was last accessed. You can specify which time is used in a time range by adding a (access), c (creation), or w (write) after the t in the range specification. For example, to select all files created between noon and 2:00 pm, you would use /[tc12:00p,2:00p]. If you don't specify which time to use, TCC will use the time the file was last modified (written).

NOTE: On FAT drives which support long filenames, only the last access date is recorded; the last access time is always returned as 00:00. However, on NTFS drives, last access information includes both date and time.

Time ranges may not always work as you expect across a network, including on FTP or HTTP servers, due to differences in time zone and file time storage method between the local and remote systems. Be sure to do some non-destructive testing before depending on time ranges to yield the results you want on a remote system.

When you use a time range in a command it should immediately follow the command name. See General Rules for Using Ranges for additional details.

Defaults

	Start time:	Current time

	End time:	Current time

	Time type:	Modification (last write)

File Exclusion

Most internal commands which accept wildcards also accept file exclusion ranges to further define the files that you wish to work with. TCC examines each file name and excludes files that match the names you have specified in the exclusion range.

When you use an exclusion range in a command it should immediately follow the command name. See General Rules for Using Ranges for additional details.

A file exclusion range begins with the switch character (usually a slash), followed by a left square bracket and an exclamation mark [! The range ends with a right square bracket]. You can specify multiple file exclusions (useful if you have a alias that is defining an exclusion and you want to pass another one as an argument).

Inside the brackets, you can list one or more filenames to be excluded from the command. The filenames can include wildcards and extended wildcards, but may not include path names or drive letters. You can exclude directories by appending a \ to the name.

The following example will display all files in the current directory except backup files (files with the extension .BAK or .BK):

dir /[!*.bak *.bk] *

You can combine file exclusion ranges with date, time, and size ranges. This example displays all files that are 10K bytes or larger in size and that were created in the last 7 days, except .C and .H files:

dir /[s10k] /[d-7] /[!*.c *.h] *

File exclusion ranges, a unique feature of TCC, work for internal commands. The EXCEPT command can also be used to exclude files from processing by any external or internal command which ignores files with the hidden attribute. You can utilize the file exclusion range with external commands utilizing the DO or FOR command; however, the performance will not be as good, since the external command is started separately for each match.

Note: File exclusion first checks to see if a file specification with embedded brackets exactly matches an existing file. If no such file is found, it interprets the brackets as wildcards.

See also: Include Lists.

Owner Ranges

Most internal commands which accept wildcards also accept owner ranges to further define the files that you wish to work with. TCC examines each file or directory and excludes those whose owner doesn't match that in the exclusion range.

Owner ranges support wildcard comparisons. The value is the same as shown in DIR /Q or %@owner.

The syntax is:

/[O"owner"]

If you precede the O with a !, the result is reversed.

The following example will display all files in the current directory owned by Bob:

dir /[O"*\Bob"] *

The following example will display all files in the current directory except those owned by Bob:

dir /[!O"*\Bob"] *

Description Ranges

Most internal commands which accept wildcards also accept description ranges to further define the files that you wish to work with.

When you use a description range in a command it should immediately follow the command name. See General Rules for Using Ranges for additional details.

A description range is specified as /I"text" where text is the description to be matched. Wildcards are supported. For example, /I"*agua*" selects all files with the string agua somewhere in the file description. The search text must be enclosed in double quotes, and must immediately follow the /I, with no intervening spaces.

You can select all files that have a description with /I"[?]*" (the [?] requires that the description contain at least one character, and the * allows any text).

You can select all files that do not have a description with /I"[]" (the [] requires that the first character, and therefore the descriptor itself, does not exist).

You can also search descriptions using regular expressions with /R"text".

If you precede the I or R with a !, the result is reversed. For example, /!I"*beta*" will select all of the files that do not have the word beta in their description.

See DESCRIBE for details on file descriptions.

Attribute Switches

Most file commands in TCC include the /A: switch, which allows you to select files for the command to process based on their attributes. These switches all use the format /A[:][-+]RHSAD. The colon after /A is optional in DIR, FFIND, and SELECT, but is required in all other commands. The characters after the /A: specify which attributes to select, as follows:

	R	Read-only

	H	Hidden

	S	System

	A	Archive

	D	Directory

On NTFS volumes, the extended attributes below are also available.

	E	Encrypted

	C	Compressed

	I	Not content-indexed

	L	Symbolic link or Junction (reparse point)

	N	Normal (cannot be used for file selection)

	O	Offline

	P	Sparse file

	T	Temporary

	V	Integrity (Windows 8 server ReFS only)

	X	No scrub data (Windows 8 server ReFS only)

The N (normal) attribute is not stored on disk. It is dynamically generated by the operating system if none of the other attributes is set. Its use for file selection is not supported in either commands or variable functions.

If no attributes are listed at all (i.e., /A:), the command will process all files, and (where applicable) all subdirectories, including hidden and system files and directories.

If attributes are combined, all the specified attributes must match for a file to be selected. For example, /A:RHS will select only those files with all three attributes set.

If you precede an attribute with a hyphen -, files with that attribute will be excluded. For example, /A:RH-S selects files which have the read-only and hidden attributes set and which do not have the system attribute set.

If you precede an attribute with a plus +, files will be selected which have that attribute turned on or off. When multiple attributes are preceded by +, only files which have at least one of these attributes will be selected. For example, /A:+H+S will select files with the hidden or system attribute, or both, but will not select files which have neither attribute set. /A:R+H+S will select files which are read-only, and also have the hidden or system attribute, or both.

You can combine the plus sign, hyphen, and unmarked attributes to build a specification as complex as you need.

If you use the format /A:=, TCC will display a dialog that allows you to select the attributes you want (not included in TCC/LE):

[image: clip0024]

Example

The (dangerous!) command below will make all hidden, system, and/or read-only files in the default directory visible and writeable, but not modify the attributes of files which are neither hidden nor system nor read-only (thus not reporting files already in the desired state):

attrib /e /p /a:+r+h+s -r -h -s

Multiple Filenames

Most file processing commands can work with multiple files at one time. To use multiple file names, you simply list the files one after another on the command line, separated by spaces. You can use wildcards in any or all of the filenames. For example, to copy all .TXT and .DOC files from the current directory to drive A, you could use this command:

copy *.txt *.doc a:

If the files you want to work with are not in the default directory, you must include the full path with each filename:

copy a:\details\file1.txt a:\details\file1.doc c:

Multiple filenames are handy when you want to work with a group of files which cannot be defined with a single filename and wildcards. They let you be very specific about which files you want to work with in a command.

When you use multiple filenames with a command that expects both a source and a destination, like COPY or MOVE, be sure that you always include a specific destination on the command line. If you don't, the command will assume that the last filename is the destination and may overwrite important files.

Like extended wildcards and include lists, multiple filenames will work with internal commands but not with external programs, unless those programs have been written to handle multiple file names on the command line.

If you have a list of files to process that's too long to put on the command line or too time-consuming to type, see @File Lists as well as the DO, FOR and SELECT commands for other ways of passing multiple file names to a command.

Include Lists

Any internal command that accepts multiple filenames will also accept one or more include lists. An include list is simply a group of filenames, with or without wildcards, separated by semicolons [;]. Only the first entry in each include list may specify a path. All files in an include list must be in the same directory. You may not add a space on either side of the semicolon. See the rule below to determine when a semicolon is part of a file name and when it is an include list separator.

For example, you can shorten this command which uses multiple file names:

copy a:\details\file1.txt a:\details\file1.doc c:

to this using an include list:

copy a:\details\file1.txt;file1.doc c:

Include lists are similar to multiple filenames, but have three important differences.

●First, you don't have to repeat the path to your files if you use an include list, because all of the included files must be in the same directory.

●Second, if you use include lists, you aren't as likely to accidentally overwrite files if you forget a destination path for commands like COPY, because the last name in the list will be part of the include list, and won't be seen as the destination file name. Include lists can only be used as the source parameter -- the location files are coming from -- for COPY and other similar commands. They cannot be used to specify a destination for files.

●Third, multiple filenames and include lists are processed differently by the DIR and SELECT commands. If you use multiple filenames, all of the files matching the first filename are processed, then all of the files matching the second name, and so on. When you use an include list, all files that match any entry in the include list are processed together, and will appear together in the directory display or SELECT list. You can see this difference clearly if you experiment with both techniques and the DIR command. For example,

dir \doc*.txt *.doc

		will list all the .TXT files in directory \DOC\ with a directory header, the file list, and a summary of the total number of files and bytes used. Then it will do the same for the .DOC files in the current directory. However,

dir \doc*.txt;*.doc

		will display all the .TXT and .DOC files in directory \DOC\ in one list.

Like extended wildcards and multiple filenames, include lists work with internal commands, but not with external programs (unless they have been programmed especially to support them).

The maximum length of an include list is 32,767 characters (same as the maximum length of a single file name).

Semicolons in filenames

Since a semicolon (";") is a valid (albeit unfortunate) character in a file name, you must quote any such name if you don't want TCC to treat it as an include list.

If a filename parameter includes a semicolon, TCC first attempts to find a filename containing an embedded semicolon. If found, that filename is used. If no file is found, the semicolon is considered to be an include list separator.

See also: Exclusion Ranges.

Delayed Variable Expansion

Some of the internal commands (COPY, MOVE, PDIR, REN) support delayed variable expansion for the target filename. The function argument must be an asterisk (*), which will be replaced by the name of each matching source file. The variable function name must be preceded by two %%'s; the first one will be removed before the command is called, and the second when the command calls the variable expansion routine. This allows much greater flexibility in building the target filenames.

For example, to copy all of your *.MP3 files, and append the string "_saved" to the filename part :

copy *.mp3 %%@name[*]_saved.mp3

Extended Parent Directory Names

TCC has an extended syntax for referencing parent directories, by adding additional . characters. Each additional . represents an additional directory level above the current directory. For example, .\FILE.DAT refers to a file in the current directory, ..\FILE.DAT refers to a file one level up, i.e., in the parent directory, and ...\FILE.DAT refers to a file two levels up, i.e., in the parent of the parent directory. If your default directory is C:\DATA\FINANCE\JANUARY, you can copy the file LETTERS.DAT from directory C:\DATA to drive A: with the command

[C:\DATA\FINANCE\JANUARY] copy ...\LETTERS.DAT A:

Note: This extended notation may not be understood by external programs. Consider using the @FULL function to expand file and directory references when necessary:

[C:\DATA\FINANCE\JANUARY] myprog %@full[...\LETTERS.DAT]

LFN File Searches

There are some special considerations applicable to volumes which support long file names (including VFAT, FAT32, and NTFS volumes). All files on such volumes have a short (FAT-compatible 8.3) file name (SFN). A file which was created (or renamed to) a name which contains lower case letters or other characters not compatible with SFNs, or a name longer than 8 characters, or an extension longer than 3 characters, or more than one period (.) in its name will have both the long file name (LFN) specified, and an SFN automatically generated by the file system. The SFN associated with an LFN may change when the file is moved or copied even when the LFN is not changed.

When CMD performs a wildcard search, it searches for both forms of each file name. The long filenames are checked first, followed by the short file names. Matching files which have only a short filename will be found during the first search, because in that case the file system treats the SFN name as if it were a LFN.

For example, suppose you have two files in a directory with these names:

Long Name Short Name

Letter Home.DOC LETTER~1.DOC

Letter02.DOC LETTER02.DOC

A search for LETTER??.DOC will find both files. The second file (Letter02.DOC) will be found during the search of long filenames. The first file (Letter Home.DOC) will be found during the search of short filenames but will return LFN.

Because this dual search can result in some very unexpected or even disastrous results, TCC defaults to searching only for the LFN. You can change the default with the Search for SFNs option in the OPTION / Startup dialog.

Take extra care when you use wildcards to perform operations on LFN volumes if you have set Search for SFNs, because you may select more files than you intended. For example, Windows often generates short filenames that end with ~1, ~2, etc. If you use a command such as:

del *1.*

you will delete all such files, including most files with long filenames, which is probably not the result you intended!

@File Lists

Many internal commands allow you to specify a file containing a list of all of the files you want to process in the command line (instead of enumerating them individually). You specify that a file is a file list by prefixing its name with the @ sign, e.g., LIST @XXX specifies that LIST is to operate on the files listed in the file XXX instead of on XXX itself.

A file list is simply a standard text file containing the names of the files to process, one per line. This allows you to create a list of files for processing using output from DIR /B, DIR /F, or FFIND, a text editor, or any other method that produces a file in the proper format. Both absolute and relative paths may be included in the file, However, wildcards are ignored, and each line is processed literally, without any further checking. This means that if a command allows options to restrict operations based on age (/U, /C), ranges (/I..., /[d..., /[t...), attributes (/A:), or location (/S), those restrictions will be ignored when processing the @file contents.

Commands supporting the @File syntax include:

	ATTRIB

	FOR

	TAIL

	COPY

	HEAD

	TOUCH

	DEL / ERASE

	LIST

	TYPE

	DESCRIBE

	MOVE

	ZIP

	DO

	RD / RMDIR

	

	EXCEPT

	REN / RENAME

	

To use a file list, precede its name with an @ sign in the command. For example, to copy all of the files listed in MYLIST.TXT to D:\SAVE\:

copy @mylist.txt d:\save\

If you use a drive and/or path specification the @ sign can appear before the path or before the file name. For example, these are equivalent:

copy @e:\lists\mylist.txt d:\save\

copy e:\lists\@mylist.txt d:\save\

To use appropriately formatted data on the Windows clipboard as an catalog file use @CLIP: as the file name, for example:

copy @clip: d:\save\

@File Lists and "@" Signs in File Names

Note that the @ sign is a rarely used, but legal filename character in Windows. If a file whose name begins with @ exists and you attempt to use an @file list with the same name, the file whose name begins with @ will take precedence. For example, if C:\ contains both a file named @MYLIST.TXT and another named MYLIST.TXT, this command:

[c:\] copy @mylist.txt d:\save\

will copy the single file @MYLIST.TXT to D:\SAVE\, and will not process the list of files in MYLIST.TXT. To avoid this confusion, use a different name for one of the files.

Switches for File Selection

Many of the file processing commands (ATTRIB, COPY, DEL, DESCRIBE, HEAD, MOVE, REN, TAIL, TYPE, etc.) support several standard switches for selecting files to process. Be sure to see the individual commands for details on which switches are supported for each command and how they work, and for additional switches specific to each command. Make sure that any range selections precede the options below in the command line.

The common file selection switches include:

	/A:[[-+]rhsadecijlopt]

	Select files based on their attributes, for example /A:RH selects files which have the read-only and hidden attributes set. See Attribute Switches for details; see File Attributes for more information on attributes.

	/N

	Don't actually process any files. This allows you to test what the results of a command would be, without actually performing the operation.

	/P

	Prompt for confirmation of each file.

	/S[n]

	Process files in the current directory and all of its subdirectories.

Input / Output and Redirection

This section covers features to change how TCC and some application programs handle input and output.

Internal commands and some external programs get their input from the computer's standard input device and send their output to the standard output device. Some programs, including TCC, also send special messages to the standard error device. Normally, the keyboard is used for standard input and the video display for both standard output and standard error, but you can temporarily change these assignments for special tasks.

For example, suppose you want a printed list of the files in a directory. If you change the standard output to the printer and issue a DIR command, the task is easy. DIR's output goes to the standard output device, and you have redirected standard output to the printer, so the DIR command prints filenames instead of displaying them on the screen. You can just as easily send the output of DIR (or any other command) to a file or a serial port.

We offer three methods of manipulating input and output: Redirection, Piping, and Keystack. All three are explained in this section. In addition, TCC supports a subset of ANSI X3.64 control sequences in displayed text. The last topic in this section explains ANSI X3.64 support in detail.

Redirection and piping affect the standard input, standard output, and standard error devices. They do not work with application programs which read the keyboard hardware directly, or which write directly to the display. Because most Windows applications fall into that category, you will find that redirection and piping are most useful when they are combined with internal commands.

The TEE and Y commands are "pipe fittings" which add more flexibility to pipes.

TCC's output is normally in ANSI. If you want to redirect output in Unicode, you need to either use the /U startup option in TCC, or the Unicode Output option in TCMD.INI.

●Redirection and Piping
●ANSI X3.64 Support
●Keystack
●Page and File Prompts

Redirection and Pipes

This section covers redirection and pipes. You can use these features to change how TCC and some application programs handle input and output.

Internal commands and some external programs get their input from the computer's standard input device and send their output to the standard output device. Some programs also send special messages to the standard error device. Normally, the keyboard is used for standard input and the video screen for both standard output and standard error, but you can temporarily change these assignments for special tasks.

For example, suppose you want a printed list of the files in a directory. If you change the standard output to the printer and issue a DIR command, the task is easy. DIR's output goes to the standard output device, and you have redirected standard output to the printer, so the DIR command prints filenames instead of displaying them on the screen. You can just as easily send the output of DIR (or any other command) to a file or a serial port.

Redirection and piping affect the standard input, standard output, and standard error devices. They do not work with application programs which read the keyboard hardware directly, or which write directly to the screen. Because most Windows applications fall into that category, you will find that redirection and piping are most useful when they are combined with internal commands.

The TEE and Y commands are "pipe fittings" which add more flexibility to pipes.

TCC's output is normally in ANSI. If you want to redirect output in Unicode, you need to either use the /U startup option in TCC, or the Unicode Output option in TCMD.INI.

Redirection

Redirection can be used to reassign the standard input (stdin), standard output (stdout), and standard error (stderr) devices from their default settings (the keyboard and screen) to another device such as NUL or serial port, to a file, or to the Windows clipboard. You must use some discretion when you use redirection with a device.

Redirection always applies to a specific command, and lasts only for the duration of that command. When the command is finished, the assignments for standard input, standard output, and standard error revert to whatever they were before the command.

TCC's output is normally in ANSI. If you want to redirect output in Unicode, you need to either use the /U startup option in TCC, or the Unicode Output option in TCMD.INI.

In the descriptions below, filename means either the name of a file or of an appropriate device (CON for the keyboard and screen; CLIP: for the clipboard; NUL for the "null" device, etc.).

Here are the standard redirection options supported by TCC (see below for additional redirection options using numeric file handles):

[image: Onestep] Input redirection

[image: Onestep] Output redirection

[image: Onestep] Special considerations for specific commands

[image: Onestep] NoClobber

[image: Onestep] Multiple redirections

[image: Onestep] Creating an empty file

[image: Onestep] Redirection by handle

[image: Onestep] "Here-document" redirection

[image: Onestep] "Here-string" redirection

Input redirection

	< filename	To get input from a file or device instead of from the keyboard.

Output redirection

	

	 overwrite

	append

	standard output

	> filename

	>> filename

	standard error

	>&> filename

	>>&> filename

	merge standard output and standard error

	>& filename

	>>& filename

To use redirection, place the redirection symbol and filename at the end of the command line, after the command name and any parameters. For example, to redirect the output of the DIR command to a file called DIRLIST, you could use a command line like this:

dir /b *.dat > dirlist

You can use any combination of input and output redirection for the same command, as appropriate for your purpose. For example, this command sends input to the external program SORT from the file DIRLIST, and sends output from SORT to the file DIRLIST.SRT:

sort < dirlist > dirlist.srt

You can redirect text to or from the Windows clipboard by using the pseudo-device name CLIP: (the colon is required).

If you redirect the output of a single internal command like DIR, the redirection ends automatically when that command is done. If you start a batch file with redirection, all of the batch file's output is redirected, and redirection ends when the batch file is done. Similarly, if you use redirection after the closing parenthesis of a command group (e.g., ...) > report), all of the output from the command group is redirected, and redirection ends when the command group is done.

Special considerations for specific commands

You cannot redirect all output from the execution of a DO loop due to the restriction that the DO command and its matching ENDDO may not be part of a command group.

To redirect the output of a TEXT command, append the redirection syntax to the TEXT command.

When you execute a FOR or GLOBAL command, redirection is separately performed for each iteration, based on the directory current for that iteration. This can result in repeated overwriting of the output file, or the creation of a separate output file in each directory. To generate a single, cumulative output file, use Command Grouping as in the example below:

(for /r %f in (*.btm) echo %@full[%f]) > c:\temp\btmlst

NoClobber

When output is directed to a file with >, >&, or >&>, and that file already exists, it will be overwritten. You can protect existing files by using the SETDOS /N1 command, the Protect redirected output files setting on the Startup tab of the configuration dialogs, or the Protect redirected output file option.

When output is appended to a file with >>, >>&, or >>&>, the file will be created if it doesn't already exist. However, if the NoClobber mode is set as described above, append redirection will not create a new file; instead, if the output file does not exist a "File not found" or similar error will be displayed.

You can temporarily override the current setting of NoClobber by using an exclamation mark [!] after the redirection symbol. For example, to redirect the output of DIR to the file DIROUT, and allow overwriting of any existing file despite the NoClobber setting:

dir >! dirout

Multiple redirections

Redirection is fully nestable. For example, you can invoke a batch file and redirect all of its output to a file or device. Output redirection on a command within the batch file will take effect for that command only; when the command is completed, output will revert to the redirected output file or device in use for the batch file as a whole.

Creating an empty file

You can use redirection to create an empty (zero-byte) file. To do so, enter >filename as a command, with no actual command before the > character. If you have enabled Protect redirected output file, use >!filename.

Redirection by handle

In addition to the redirection options above, TCC also supports the CMD syntax:

	n>file	Redirect handle n to the named file

	n>&m	Redirect handle n to the same place as handle m

Warning: You may not put any spaces between the n and the >, or between the >, &, and m in the second form. The values of n and m must be single decimal digits, and represent file handles. Windows defines 0, 1, and 2 as shown in the table below.

	Handle

	 Assignment

	0

	 standard input

	1

	 standard output

	2

	 standard error

The n>file syntax redirects output from handle n to file. You can use this form to redirect two handles to different places. For example:

dir > outfile 2> errfile

sends normal output to a file called OUTFILE and any error messages to a file called ERRFILE.

The n>&m syntax redirects handle n to the same destination as the previously assigned handle m. For example, to send standard error to the same file as standard output, you could use this command:

dir > outfile 2>&1

Notice that you can perform the same operations by using standard redirection features. The two examples above could be written as

dir > outfile >&> errfile

and

dir >& outfile

"Here-document" redirection

Wherever input redirection is supported, you can use a Linux-like "here-document" approach. The syntax is:

program << word

The current batch file is read up to the next occurrence of word, and the resulting text becomes standard input to program. For example:

c:\test\program.exe << endinput

input 1

input 2

input 3

endinput

echo This is the next line after "program.exe"

Special features of "here document":

●If the << is followed by a hyphen (-), the leading white space on the following lines will be removed before passing them to program (i.e. they will be effectively left-justified).

●The parser will perform variable expansion on each line, unless the word following << is enclosed in double quotes.

"Here-string" redirection (Not available in TCC/LE)

The "here-string" lets you send string text directly to a program's input. The syntax is:

program <<< string

This is similar to using KEYSTACK, but easier to enter for text input. (If you need to send special keys or insert waits, you'll need to use KEYSTACK.) For example, to send a string to the standard input of program:

c:\test\program.exe <<< This is some input text.

Pipes

Piping is a special form of redirection, using an additional instance of TCC for each instance of the piping specified in the command line.

You can create a pipe to send the standard output of a command (command1) to the standard input of another command (command2), and optionally also send the standard error as well:

	what is sent to pipe

	command format

	standard output only

	command1 | command2

	merge standard output and standard error

	command1 |& command2

For example, to take the output of the ALIAS command (which displays a list of your aliases and their values) and pipe it to the external SORT utility to generate a sorted list, you would use the command:

alias | sort

To do the same thing and then pipe the sorted list to the internal LIST command for full-screen viewing:

alias | sort | list /s

The TEE and Y commands are "pipe fittings" which add more flexibility to pipes.

TCC's output is normally in ANSI. If you want to redirect output in Unicode, you need to either use the /U startup option in TCC, or the Unicode Output option in TCMD.INI.

Like redirection, pipes are fully nestable. For example, you can invoke a batch file and send all of its output to another command with a pipe. A pipe on a command within the batch file will take effect for that command only; when the command is completed, output will revert to the pipe in use for the batch file as a whole. You may also have 2 or more pipes operating simultaneously if, for example, you have the pipes running in different windows or processes.

Processing each line received from a pipe

To process each line of text sent by the left side of a pipe in TCC, you may use the syntax below:

dir | for %file in (@CON:) command %file

This example shows how to pass each line of piped data to a command.

WARNINGS: TCC implements pipes by starting a new process for the receiving program. This process goes through the standard shell start-up procedure, including execution of the TCSTART file, for EACH receiving program. All of the sending and receiving programs run concurrently; the sending program writes to the pipe and the receiving program reads from the pipe. When the receiving program finds an End of File signal, it finishes reading and processing the piped data, and terminates. When you use pipes with TCC, make sure you consider the possible consequences from using a separate process to run the receiving program, especially that it cannot create/modify/delete environment variables of the sending program, and inclusion of a command to change directories in the TCSTART file may cause the new process to execute in a different directory. When you use more than one pipe in a single command, e.g. the second example above with LIST, each pipe adds another instance of TCC. If you need to execute the pipe in the same context, use in-process pipes (see below).

In-Process Pipes (Not available in TCC/LE)

In-process pipes work like the old-style DOS pipes, by creating a temporary output file, redirecting STDOUT to that file, and then redirecting the temp file to STDIN of the following command. The syntax is:

command1 |! command2

This the same as doing:

command1 > temp.dat & command2 < temp.dat

but is easier to type & to read.

The advantage of in-process pipes is that command2 will be run in the same context as command1, so you can do things like modify environment variables without having them discarded when command2 exits. There are also some disadvantages to using this type of "pseudo-pipe" -- it will usually be slower than a true pipe; it will use some disk space for its temp file; and command2 will not be started until command1 has exited.

ANSI X3.64 Support

There is no support for ANSI X3.64 in Windows. For this reason, TCC contains its own limited ANSI X3.64 support (key substitutions are not supported, nor are double-width or double-height characters, or blinking characters). TCC interprets only its own output, not the output of external commands. In some cases you can redirect the output of an application program to a temporary file, then send it through TCC ANSI X3.64 interpreter, e.g., by using the TYPE command. This will display ANSI X3.64 correctly, but will not work with an interactive application.

To utilize the TCC built-in ANSI X3.64 support you must enable it from the Windows tab of the configuration dialogs, or with the SETDOS /A command. You can determine whether or not ANSI X3.64 support is enabled with the _ANSI internal variable.

Several commands in TCC provide alternatives for ANSI X3.64 commands. For example, there are commands to set the screen colors and display text in specific colors and locations. These commands are easier to understand and use than the ANSI X3.64 control sequences.

For information on the specific ANSI X3.64 commands supported by TCC see the ANSI X3.64 Command Reference.

Keystack

The KEYSTACK command overcomes two weaknesses of input redirection:

1) some programs ignore standard input and read the keyboard through Windows APIs, and

2) input redirection doesn't end until the program or command terminates. You can't, for example, use redirection to send the first few commands to a program and then type the rest of the commands yourself. But KEYSTACK lets you do exactly that.

KEYSTACK sends keystrokes to an application program. Once the KEYSTACK buffer is empty, the program will receive the rest of its input from the keyboard. KEYSTACK is useful when you want a program to take certain actions automatically when it starts. It is most often used in batch files and aliases.

To place the letters, digits, and punctuation marks you would normally type for your program into the KEYSTACK buffer, enclose them in double quotes:

keystack "myfile"

Many other keys can be entered into the Keystack using their names. This example puts the F1 key followed by the Enter key in the KEYSTACK:

keystack F1 Enter

See Keys and Key names for details on how key names are entered. See the KEYSTACK command for information on using numeric key values along with or instead of key names, and other details about using the Keystack.

You must activate the window for the program that will receive the characters before you place them into the Keystack. See KEYSTACK for additional details; see ACTIVATE for information on activating a specific window.

Page and File Prompts

Page Prompts

Several TCC commands can generate prompts, which wait for you to press a key to view a new page or to perform a file activity. When TCC is displaying information in page mode, for example with a DIR /P or SET /P command, it displays the message

Press ESC to quit, A to turn off paging or another key to continue...

At this prompt, you can press Esc, Ctrl-C, or Ctrl- Break if you want to quit the command. Pressing A will turn off the pause and prompt at the end of each page, and continue with the command. You can press almost any other key to continue with the command and see the next page of information.

File Prompts

During file processing, if you have activated prompting with a command such as DEL /P, you will see a prompt similar to the following before processing every file:

Y/N/A/R?

You can answer this prompt by pressing

	Y

	Yes

	process this file

	N

	No

	do not process this file

	A

	All

	remaining files without further prompting

	R

	Remaining

	files without further prompting

The R and A responses are equivalent; A was added for compatibility with CMD versions which display a Yes/No/All prompt . You can also press Esc, Ctrl-C, or Ctrl-Break at this prompt to cancel the remainder of the command.

If you press Ctrl-C or Ctrl-Break while a batch file is running, you will see a Cancel batch job prompt. For information on responses to this prompt see Interrupting a Batch File.

TCC Configuration Options

TCC offers a wide range of configuration options, allowing you to customize their operation for your needs and preferences. The TCC OPTION command invokes the TCC Configuration Dialog.

We also discuss many ways of configuring TCC in other parts of the online help:

●With aliases and user-defined functions you can set default options for internal commands and create new commands (see Aliases and the ALIAS and FUNCTION commands).

●With executable extensions you can associate data files with the applications you use to open them.

●With the FILECOMPLETION environment variable or the Filename Completion Options configuration option, you can customize filename completion to match the command you are working with.

●With the COLORDIR environment variable or the Directory Colors configuration option you can set the colors used by the DIR command.

●With command line options you can specify where TCC looks for its startup files and how it operates for a specific instance.

Initialization Files

Part of the power of TCC is its flexibility, in allowing you to alter its configuration to match your style of computing. TCC's configuration is controlled through a file of initialization information.

See Locating the .INI files below to find out how TCC locates its TCMD.INI file.

Modifying the TCMD.INI File

You can create, add to, and modify the TCMD.INI file with the configuration dialog, available via the OPTION command, or (if in a Take Command tab window), the Configure TCC entry in the Options menu.

Most of the changes you make in the OPTION command take effect immediately. A few (e.g., those associated with the startup screen size) only take effect when you start a new TCC session. See the online help for each individual dialog page if you are not sure when a change will take effect.

The dialogs handle most of the configuration options. The Advanced directives and the Key Mapping directives do not have corresponding fields in the configuration dialogs, and must be entered manually.

TCC reads its TCMD.INI file (see Locating the .INI file) when it starts, and configures itself accordingly. The .INI file is not reread when you change it manually. For manual changes to take effect, you must restart TCC.

Each item that you can include in the .INI file has a default value. You only need to include entries in the file for settings that you want to change from their default values.

The password fields in TCMD.INI (for example, the Internet password settings) are encrypted by the OPTION command.

Using the TCMD.INI File

Some settings in the .INI file are initialized when you install TCC; others are modified as you use and when you exit TCC.

You can optionally include environment variables in the TCMD.INI [4NT] and [TCMD] sections; they will be expanded when TCMD.INI is loaded. If you want to delay expansion until command execution time (for example, with ColorDir) you will need to double the %'s.

Locating the TCMD.INI File

1) When starting TCC (a "primary shell"):

	[image: Onestep]	If there is an @d:\path\inifile option on the startup command line, TCC will use the path and file name specified there.

	[image: Onestep]	Otherwise, the default .INI file name in the table below is used, and the search starts in the directory where the TCC program file is stored. If the .INI file is not found, TCC will look in the %LOCALAPPDATA% directory.

If no .INI file is found, all options are set to their default values. A new .INI file will be created, using the default location and name, as explained above.

2) When starting TCC (a "secondary" shell) from another TCC shell:

TCC retrieves the primary shell's .INI file data, processes the [Secondary] section of the original .INI file if necessary, and then processes any @d:\path\inifile option on the secondary shell command line.

See Command Line Options for more details about the startup command line.

TCMD.INI File Sections

 The TCMD.INI file has a number of sections. Each section is identified by the section name in square brackets on a line by itself. Take Command stores the user-defined options in [TakeCommand]; TCC stores its user-defined options in [4NT].

The [Primary] and [Secondary] sections include directives that are used only in TCC primary and secondary shells, respectively. You don't need to set up these sections unless you want different directives for primary and secondary shells.

Directives in the [Primary] section are used for the first or primary shell. The values are passed automatically to all secondary shells, unless overridden by a directive with the same name in the [Secondary] section.

Directives in the [Secondary] section are used in secondary shells only, and override any corresponding primary shell settings.

Note that the terms Primary and Secondary Shells are now mostly obsolete in Windows. The interaction between Primary and Secondary TCC shells is limited to some minor inheritance (due to the design of Windows).

Directives

This topic contains general information on TCC initialization. For information on specific directives see the separate topic for each type of directive:

[image: Onestep] Key Mapping Directives

[image: Onestep] Advanced Directives

These topics list the directives, with a short description of each, and a cross reference which selects a full description of that directive. A few of the directives are simple enough that the short description is sufficient, but in most cases you should check for any additional information in the cross reference topic if you are not already familiar with the directive.

Syntax for Directives

Most lines in the .INI file consist of a one-word directive, an equal sign =, and a value. For example, in the following line, the word History is the directive and 2048 is the value:

History = 2048

Any spaces before or after the equal sign are ignored.

Regardless of how long a string value is, for example the list for the ColorDir directive, you must enter it all on one line. Strings cannot be continued to a second line.

Each line must be within the command line length limit.

The format of the value part of a directive line depends on the individual directive. It may be a numeric value, a single character, a choice (like Yes or No), a color setting, a key name, a path, a filename, or a text string. The value begins with the first non-blank character after the equal sign and ends at the end of the line or the beginning of a comment.

Blank lines are ignored in the .INI file and can be used to separate groups of directives.

You can place comments in the file by beginning a line with a semicolon ;. You can also place comments at the end of any line except one containing a text string value. To do so, enter at least one space or tab after the value, a semicolon, and your comment, like this:

History = 2048 ;set history list size

If you try to place a comment at the end of a string value, the comment will become part of the string and will probably cause an error.

If you use the configuration dialogs to modify the .INI file, comments on lines modified from within the dialogs will not be preserved when the new lines are saved. To be sure .INI file comments are preserved, put them on separate lines in the file.

When Take Command or TCC detects an error while processing the .INI file, it displays an error message and prompts you before processing the remainder of the file. This allows you to note any errors before the startup process continues. The directive in error will retain its previous or default value.

If you need to test different values for an .INI directive without repeatedly editing the .INI file, use the OPTION command or see the INIQuery directive.

The SETDOS command can override several of the .INI file directives. For example, the cursor shape used by TCC can be adjusted either with the CursorIns and CursorOver directives or the SETDOS /S command. The correspondence between a SETDOS option and a .INI directive is noted under both the individual help topic for that directive and under that option in the SETDOS help topic.

A TCC shell started from another TCC shell (a "secondary shell") automatically inherits the configuration settings currently in effect in the previous shell. If values have been changed by SETDOS or OPTION since the primary shell started, the current values will be passed to the secondary shell. If the previous shell's .INI file had a [Secondary] section, it will then be read and processed. If not, the previous shell's settings will remain in effect.

If you want to force secondary shells to start with a specific value for a particular directive, regardless of any changes made in a previous shell, repeat the directive in the [Secondary] section of the .INI file.

Types of Directives

There are various types of directives in the .INI file. The type of a directive is shown under the individual help topic for that directive. The types are distinguished by the kind of data, if any, that must be entered after the = (equal sign):

[image: Onestep] Name = nnnn (1234): This directive takes a numeric value which replaces the "nnnn." The default value is shown in parentheses or listed below the directive's description.

[image: Onestep] Name = c (X): This directive accepts a single character as its value. The default character is shown in parentheses. You must type in the actual character; you cannot use a key name.

[image: Onestep] Name = CHOICE1 | Choice2 | ... : This directive must be set to one of the vertical bar separated values listed between the braces. The default value is shown in all upper case letters in the directive description, but in your file any one of the choices can be entered, using any case. (Do not enter the vertical bar.) For example, if the choices were shown as YES | no then YES is the default.

[image: Onestep] Name = Color: This directive takes a color specification. See Colors and Color Names for the format of color names.

[image: Onestep] Name = Key : This directive takes a key specification. See Keys and Keynames for the format of key names.

[image: Onestep] Name = Path : This directive takes a path specification, without a filename. The value should include both a drive and path (e.g., C:\TCMD\) to avoid any possible ambiguities. A trailing backslash \ at the end of the path name is accepted but not required. Any default path is described in the text.

[image: Onestep] Name = File : This directive takes a filename. We recommend that you use a full filename including the drive letter and path to avoid any possible ambiguities. Any default filename is described in the text.

[image: Onestep] Name = String : This directive takes a string in the format shown. The text describes the default value and any additional requirements for formatting the string correctly. No comments are allowed.

[image: Onestep] Name : This directive accepts NO parameters and the = is unnecessary (e.g. ClearKeymap).

Evaluation of Directives

The directives are evaluated sequentially from top to bottom within each section processed. When a directive is processed more than once during startup, it replaces any previous value(s).

Most key mapping and advanced directives are cumulative and may appear several times when several concurrent values are desired, such as when assigning several different keystrokes to the same function.

Key Mapping Directives

These directives allow you to change the keys used for TCC command line editing and other internal functions. They cannot be entered via the configuration dialogs; you must enter them manually (see the .INI file topic for details).

They are divided into four types, depending on the context in which the keys are used. For a discussion and list of directives for each type see:

[image: Onestep] General Input Keys

[image: Onestep] Command Line Editing Keys

[image: Onestep] Popup Window Keys

[image: Onestep] LIST Keys

Using a key mapping directive allows you to assign a different or additional key to perform the function described. For example, to use function key F3 to invoke the HELP facility (normally invoked with F1):

Help = F3

Any directive can be used multiple times to assign multiple keys to the same function. For example:

ListFind = F ;F does a find in LIST

ListFind = F4 ;F4 also does a find in LIST

Use some care when you reassign keystrokes. If you assign a default key to a different function, it will no longer be available for its original use. For example, if you assign F1 to the AddFile directive (a part of filename completion), the F1 key will no longer invoke the help system, so you will probably want to assign a different key to Help.

See Keys and Key Names before using the key mapping directives.

Key assignments are processed before looking for keystroke aliases. For example, if you assign Shift-F1 to HELP and also assign Shift-F1 to a key alias, the key alias will be ignored.

Assigning a new keystroke for a function does not deassign the default keystroke for the same function. If you want to deassign one of the default keys, use the NormalKey, NormalEditKey, NormalPopupKey or NormalListKey directive. You must also deassign default keys before you can assign them to a different usage.

Note: if you assign the same key to two different functions, the first assignment found in the list will be used.

General Input Keys

These directives apply to all input. They are in effect whenever TCC requests input from the keyboard, including during command line editing and the DESCRIBE, ESET, INPUT, LIST, and SELECT commands. The general input keys are:

	Backspace

	Deletes the character to the left of the cursor

	BeginLine

	Moves the cursor to the start of the line

	Copy

	Copies highlighted text to the clipboard

	Del

	Deletes the character at the cursor

	DelToBeginning

	Deletes from the cursor to the start of the line

	DelToEnd

	Deletes from the cursor to the end of the line

	DelWordLeft

	Deletes the word to the left of the cursor

	DelWordRight

	Deletes the word to the right of the cursor

	Down

	Moves the cursor or scrolls the display down

	EndLine

	Moves the cursor to the end of the line

	EraseLine

	Deletes the entire line

	ExecLine

	Executes or accepts a line

	Ins

	Toggles insert / overstrike mode

	Left

	Moves the cursor or scrolls the display left

	NormalKey

	Deassigns a key

	Paste

	Pastes line from clipboard

	Right

	Moves the cursor or scrolls the display right

	Up

	Moves the cursor or scrolls the display up

	WordLeft

	Moves the cursor left one word

	WordRight

	Moves the cursor right one word

Backspace directive

Backspace = Key

Default: Bksp

Adds Key to the list of keys available during command line entry to delete the character to the left of the cursor.

See other General Input Keys.

BeginLine directive

BeginLine = Key

Default: Home

Specifies key during command line entry as a request to move the cursor to the beginning of the line.

See other General Input Keys.

Copy directive

Copy = Key

Default: Ctrl-Y

Adds Key to the list of keys available during command line entry to copy the highlighted text to the clipboard.

See other General Input Keys.

Del directive

Del = Key

Default: Del

Deletes the character at the cursor.

See other General Input Keys.

DelToBeginning directive

DelToBeginning = Key

Default: Ctrl-Home

Deletes from the cursor to the start of the line.

See other General Input Keys.

DelToEnd directive

DelToEnd = Key

Default: Ctrl-End

Deletes from the cursor to the end of the line.

See other General Input Keys.

DelWordLeft directive

DelWordLeft = Key

Default: Ctrl-L

Deletes the word to the left of the cursor.

See other General Input Keys.

DelWordRight directive

DelWordRight = Key

Default: Ctrl-R, Ctrl-Bksp

Deletes the word to the right of the cursor. See ClearKeyMap if you need to remove the default mapping of Ctrl-Bksp to this function.

See other General Input Keys.

Down directive

Down = Key

Default: Down

Scrolls the display down one line in LIST; moves the cursor down one line in SELECT and in the command line history, directory history, or @SELECT window.

See other General Input Keys.

EndLine directive

EndLine = Key

Default: End

Moves the cursor to the end of the line.

See other General Input Keys.

EraseLine directive

EraseLine = Key

Default: Esc

Deletes the entire line.

See other General Input Keys.

ExecLine directive

ExecLine = Key

Default: Enter

Executes or accepts a line.

See other General Input Keys.

Ins directive

Ins = Key

Default: Ins

Toggles insert / overstrike mode during line editing.

See other General Input Keys.

Left directive

Left = Key

Default: left arrow,ç

Specifies a key, such the using the key will move the cursor left.

See other General Input Keys.

NormalKey directive

NormalKey = Key

Deassigns a general input key in order to disable the usual meaning of the key and/or make it available for keystroke aliases. This will make the keystroke operate as a "normal" key with no special function. For example:

NormalKey = Ctrl-End

will disable Ctrl-End, which is the standard "delete to end of line" key. Ctrl-End could then be assigned to a keystroke alias. Another key could be assigned the "delete to end of line" function with the DelToEnd directive.

See other General Input Keys.

Paste directive

Paste = Key

Default: Ctrl-V

Paste the first line of the clipboard to the input line at the cursor position.

See other General Input Keys.

Right directive

Right = Key

Default: Right

Moves the cursor right one character on the input line; scrolls the display right 8 columns in LIST; scrolls the display right 4 columns in the command line history, directory history, or @SELECT window.

See other General Input Keys.

Up directive

Up = Key

Default: Up

Scrolls the display up one line in LIST; moves the cursor up one line in SELECT and in the command line history, directory history, or @SELECT window.

See other General Input Keys.

WordLeft directive

WordLeft = Key

Default: Ctrl-Left

Moves the cursor left one word; scrolls the display left 40 columns in LIST.

See other General Input Keys.

WordRight directive

WordRight = Key

Default: Ctrl-Right

Moves the cursor right one word; scrolls the display right 40 columns in LIST.

See other General Input Keys.

Command Line Editing Keys

These directives apply only to TCC command line editing. They are only effective at the prompt. The command line editing keys are:

	AddFile

	Keeps filename completion entry and adds another

	AliasExpand

	Expands aliases on the command line

	CommandEscape

	Allows direct entry of a keystroke

	DelHistory

	Deletes a history list entry

	DirWinOpen

	Opens the directory history window

	EndHistory

	Displays the last entry in the history list

	Help

	Invokes this help system

	HelpWord

	Invokes help for the word at the cursor

	HistWinOpen

	Opens the command history window

	LastHistory

	Recall the last history entry

	LFNToggle

	Toggles between long and short filenames

	LineToEnd

	Copies a line to the end of the history, then executes it

	NextFile

	Gets the next matching filename

	NextHistory

	Recalls the next command from the history

	NormalEditKey

	Deassigns a command line editing key

	PopFile

	Opens the filename completion window

	PrevFile

	Gets the previous matching filename

	PrevHistory

	Recalls the previous command from the history

	Redo

	Redo the previous undo

	RepeatFile

	Repeats previous match during filename completion

	SaveHistory

	Saves the command line without executing it

	Undo

	Undo the last edit

	VariableExpand

	Expand variables on the command line

AddFile directive

AddFile = Key

	Default:	F10

Adds Key to the list of keys available during command line entry to keep the current filename completion entry and insert the next matching filename.

See other Command Line Editing Keys.

AliasExpand directive

AliasExpand = Key

Default: Ctrl-F

Adds Key to the list of keys available during command line entry to expand all aliases in the current command line without executing them.

See other Command Line Editing Keys.

CommandEscape directive

CommandEscape = Key

Default: Alt-255

Adds Key to the list of keys available during command line entry to signify that the immediately subsequent keystroke is to be used literally, and not for command line editing control.

See other Command Line Editing Keys.

DelHistory directive

DelHistory = Key

Default: Ctrl-D

Deletes the displayed history list entry and displays the previous entry.

See other Command Line Editing Keys.

DirWinOpen directive

DirWinOpen = Key

Default: Ctrl-PgUp, F6

Opens the directory history window while at the command line.

See other Popup Window Keys.

EndHistory directive

EndHistory = Key

Default: Ctrl-E

Displays the last entry in the history list.

See other Command Line Editing Keys.

Help directive

Help = Key

Default: F1

Displays the Help File topic for the current command. See also: the HELP command and the HelpWord directive.

See other Command Line Editing Keys.

HelpWord directive

HelpWord = Key

Default: Ctrl-F1

Invokes the HELP facility for the word at the cursor.

See other Command Line Editing Keys.

HistWinOpen directive

HistWinOpen = Key

Default: PgUp

Brings up the history window while at the command line.

See other Popup Window Keys.

LastHistory directive

LastHistory = Key

Default: F3

Returns the last history entry. (Mostly useless; it is for compatibility with CMD.)

See other Command Line Editing Keys.

LFNToggle directive

LFNToggle = Key

Default: Ctrl-A

Toggles filename completion between long filename and short filename modes on LFN drives.

See other Command Line Editing Keys.

LineToEnd directive

LineToEnd = Key

Default: Ctrl-Enter

Copies the current command line to the end of the history list, then executes it.

See other Command Line Editing Keys.

NextFile directive

NextFile = Key

Default: F9, Tab

Gets the next matching filename during filename completion. See ClearKeyMap if you need to remove the default mapping of Tab to this function.

See other Command Line Editing Keys.

NextHistory directive

NextHistory = Key

Default: Down

Recalls the next command from the command history.

See other Command Line Editing Keys.

NormalEditKey directive

NormalEditKey = Key

Deassigns a command line editing key in order to disable the usual meaning of the key while editing a command line, and/or make it available for keystroke aliases. This will make the keystroke operate as a "normal" key with no special function. See NormalKey for an example.

PopFile directive

PopFile = Key

Default: F7, Ctrl-Tab

Opens the filename completion window. Note that Take Command uses Ctrl-Tab to select windows. See ClearKeyMap if you need to remove the default mapping of Ctrl-Tab to this function.

See other Command Line Editing Keys.

PrevArgument

PrevArgument = Key

Default: Ctrl-B

Recall the last argument from the previous command line.

See other Command Line Editing Keys.

PrevFile directive

PrevFile = Key

Default: F8, Shift-Tab

Gets the previous matching filename. See ClearKeyMap if you need to remove the default mapping of Shift-Tab to this function.

See other Command Line Editing Keys.

PrevHistory directive

PrevHistory = Key

Default: Up

Recalls the previous command from the command history.

See other Command Line Editing Keys.

Redo Directive

Redo = Key

Default: Alt-Y

Redo the last undo in the TCC command input.

See other Command Line Editing Keys.

RepeatFile directive

RepeatFile = Key

Default: F12

Repeats the previous matching filename during filename completion.

See other Command Line Editing Keys.

Save History directive

SaveHistory = Key

Default: Ctrl-K

Saves the command line in the command history list without executing it.

See other Command Line Editing Keys.

Undo Directive

Undo = Key

Default: Alt-Z

Undo the last edit in the TCC command input.

See other Command Line Editing Keys.

VariableExpand directive

VariableExpand = Key

Default: Ctrl-X

Expands variables at the command prompt.

See other Command Line Editing Keys.

LIST Keys

These directives are effective only inside the TCC LIST command.

	ListBack

	Return to the previous file

	ListClipboard

	Copy the current filename tot he clipboard

	ListContinue

	Continue to the next file

	ListExit

	Exits the current file

	ListFind

	Prompts and searches for a string

	ListFindRegex

	Prompt and search for a regular expression

	ListHex

	Toggles between hexadecimal and character display modes

	ListHighBit

	Toggles LIST's "strip high bit" option

	ListInfo

	Displays information about the current file

	ListNext

	Finds the next matching string

	ListOpen

	Displays the "open file" dialog

	ListPrevious

	Finds the previous matching string

	ListPrint

	Prints the file on the default printer

	ListRefresh

	Refresh the display

	ListUnicode

	Toggles Unicode display mode

	ListWrap

	Toggles LIST's wrap option

	NormalListKey

	Deassigns a LIST key

ListBack directive

ListBack = Key

Default: B

Returns to the previous file.

See other LIST Keys.

ListClipboard directive

ListClipboard = Key

Default: Ctrl-B

Copy the current LIST filename to the clipboard

See other LIST Keys.

ListContinue directive

ListContinue = Key

Default: C

Go to the next file.

See other LIST Keys.

ListExit directive

ListExit = Key

Default: Esc

Exits from the LIST command.

See other LIST Keys.

ListFind directive

ListFind = Key

Default: F

Prompts and searches for a string.

See other LIST Keys.

ListFindRegex directive

ListFindRegex = Key

Default: R

Perform a regular expression search in LIST.

See other LIST Keys.

ListHex directive

ListHex = Key

Default: X

Toggles between hexadecimal and character display modes.

See other LIST Keys.

ListHighBit directive

ListHighBit = Key

Default: H

Toggles LIST's "strip high bit" option, which can aid in displaying files from certain word processors.

See other LIST Keys.

ListInfo directive

ListInfo = Key

Default: I

Displays information about the current file.

See other LIST Keys.

ListNext directive

ListNext = Key

Default: N

Finds the next matching string.

See other LIST Keys.

ListOpen directive

ListOpen = Key

Default: O

Opens the common Windows "open file" dialog to select a new file to LIST.

See other LIST Keys.

ListPrevious directive

ListPrevious = Key

Default: Ctrl-B

Finds the previous matching string.

See other LIST Keys.

ListPrint directive

ListPrint = Key

Default: P

Prints the file on the default printer.

See other LIST Keys.

ListRefresh directive

ListRefresh = Key

Default: F5

Refresh the LIST display. (Useful when viewing a growing log file.)

See other LIST Keys.

ListUnicode directive

ListUnicode = Key

Default: U

Toggles the LIST display mode between Unicode and ASCII.

See other LIST Keys.

ListWrap directive

ListWrap = Key

Default: W

Toggles LIST's wrap option on and off. The wrap option wraps text at the right margin.

See other LIST Keys.

NormalListKey directive

NormalListKey = Key

Deassigns a LIST key in order to disable the usual meaning of the key within LIST. This will make the keystroke operate as a "normal" key with no special function. See NormalKey for an example.

See other LIST Keys.

Popup Window Keys

The following directives apply to popup windows, including the command history window, the directory history window, the filename completion window, the extended directory search window, and the @SELECT window.

	NormalPopupKey

	Deassigns a popup window key

	PopupWinDel

	Deletes a line from within the popup window

	PopupWinEdit

	Moves a line from the popup window to the prompt

	PopupWinEditWin

	Edit a line in the popup window

	PopupWinExec

	Selects the current item and closes the popup window

NormalPopupKey directive

NormalPopupKey = Key

Deassigns a popup window key in order to disable the usual meaning of the key within the popup window. This will make the keystroke operate as a "normal" key with no special function. See NormalKey for an example.

See other Popup Window Keys.

PopupWinDel directive

PopupWinDel = Key

Default: Ctrl-D

Deletes a line from within the command history or directory history window.

See other Popup Window Keys.

PopupWinEdit directive

PopupWinEdit = Key

Default: Ctrl-Enter

Moves a line from the command history or directory history window to the prompt for editing.

See other Popup Window Keys.

PopupWinEditWin

PopupWinEdit = Key

Default: Ctrl-E

Edit a line in the command history or directory history window.

See other Popup Window Keys.

PopupWinExec directive

PopupWinExec = Key

Default: Enter

Selects the current item and closes the window.

See other Popup Window Keys.

Advanced Directives

These directives are generally used for unusual circumstances, or for diagnosing problems. Most often they are not needed in normal use. They cannot be entered via the configuration dialogs; you must enter them manually (see the .INI file for details).

	AliasSize

	Set the global alias list size

	AutoFirewall

	Enable / disable automatic firewall detection

	AutoProxy

	Enable / disable automatic HTTP proxy detection

	ClearKeyMap

	Clear default key mappings

	CMDBatchDelimiters

	Use CMD delimiter characters in batch file commands

	CMDVariables

	Use the CMD variable syntax (%var%)

	CompleteAllFiles

	Match all extensions at the beginning of a command line

	Copyright

	Enable / disable the TCC copyright message display

	Debug

	Set debugging options

	DelWipePasses

	Set default passes for DEL /W

	EverythingSearch

	Use Everything Search for CDD fuzzy directory searches

	FilesCaseSensitive

	Enable / disable case sensitivity in filename comparisons

	FunctionSize

	Set the global user-defined functions list size

	INIQuery

	Query for each line in the .INI file

	LanguageDLL

	Set localized language DLL

	MSAAMenu

	Check for screen readers & disable detachable menus

	NoINIErrors

	Don't display error messages for TCMD.INI errors

	StartTabWait

	Delay after starting each TCMD tab

	TrayHotKey

	Hotkey to toggle TCMD to / from the system tray

	UpdateINI

	Enable / disable changes to the .INI file.

	UTF8Output

	Write TCC redirected output in UTF-8 format

AliasSize

AliasSize = n

AliasSize allows you to set the size of the global alias list (in characters). The default is 256K; you should only need to change this if you have an exceptionally large alias list or if you want to minimize TCC's memory footprint.

You do not need to set the alias list size if you're using local lists -- TCC will automatically resize the alias list as needed.

AutoFirewall

AutoFirewall=YES|no

If set to "yes", TCC will attempt to automatically detect and use HTTP firewall system settings (if available).

AutoProxy

AutoProxy=YES|no

If set to "yes", TCC will attempt to automatically detect and use HTTP proxy server system settings (if available).

ClearKeyMap directive

ClearKeyMap

Clears all current key mappings. ClearKeyMap is a special directive which has no value or = after it. Use ClearKeyMap with caution - it deletes all of the default definitions, and also any definitions in your .INI file directives that are processed before ClearKeyMap is processed. It is useful only if you want to make available most of the keys which have default assignments for other purposes, e.g., for keystroke aliases. ClearKeyMap should appear before any other key mapping directives. You may restore default mappings to keys you want to retain using the appropriate key assignment directives, e.g., NextFile=Tab.

To clear the default mappings for just a few keys, use the NormalEditKey, NormalKey, NormalListKey, and/or NormalPopupKey directives.

See other Advanced Directives.

CMDBatchDelimiters

CMDBatchDelimiters=YES|no

If set to "no", TCC will not treat an = as a batch argument delimiter. (Note: this will break CMD compatibility!). This is only for users with (very) old 4NT scripts; it is strongly discouraged for new installations.

CMDVariables

CMDVariables = yes | NO

TCC allows you to specify variables with only a single leading %; CMD requires both a leading and a trailing %. Normally TCC is able to detect this, but if you have variable names with embedded whitespace (a bad idea!) TCC will not expand the variable.

If you need as close to 100% CMD compatibility as possible, and you don't care about running existing TCC batch files or aliases, setting CMDVariables=yes will allow TCC to properly expand these types of variable names.

CompleteAllFiles

CompleteAllFiles = yes | NO

Normally, TCC will only complete directories and executable files (as defined by PATHEXT) when you press Tab or F9 at the beginning of a command line. If CompleteAllFiles is set to YES, TCC will complete any matching filename. Note that if you also have CompletePaths set, you'll probably have several hundred (or thousand!) matches for any filename you enter.

Copyright

Copyright=YES | no

Display the TCC copyright message at startup. This is the same as the TCC /Q startup option, and only applies to registered copies.

Debug directive

Debug = n

Default: 2

Controls certain debugging options which can assist you in tracking down unusual problems. Use the following values for Debug (to enable more than one option, add the desired values together):

	0	Disabled.

	1	During the startup process, display the complete command tail passed to Take Command, then wait for a keystroke.

	2	(default) Include the product name with every error message displayed by Take Command. This may be useful if you are unsure of the origin of a particular error message.

		

See also: the batch file debugger, a separate and unrelated facility for stepping through batch files.

See other Advanced Directives.

DelWipePasses

DelWipePasses = n

Default: 3

Sets the default number of passes for a DEL /W (wipe). If you have a slow disk drive you might want to set this to 1 or 2. The range is 1-999 (but there's little reason to set it higher than 3 or 4).

EverythingSearch

EverythingSearch = yes | NO

If YES, CD and CDD will use "Everything Search" (http://www.voidtools.com) instead of JPSTREE.IDX for fuzzy directory matching. See CDD for details.

FilesCaseSensitive

FilesCaseSensitive = yes | NO

If YES, filename comparisons will be case sensitive (like Linux, and unlike Windows). This will only affect filename matching within TCC.

FunctionSize

FunctionSize = n

FunctionSize allows you to set the size of the global user-defined function list (in characters). The default is 128K; you should only need to change this if you have an exceptionally large function list or if you want to minimize TCC's memory footprint.

You do not need to set the function list size if you're using local lists -- TCC will automatically resize the function list as needed.

INIQuery directive

INIQuery = yes | NO

If set to Yes, a prompt will be displayed before execution of each subsequent line in the current .INI file. This allows you to modify certain directives when you start Take Command or TCC in order to test different configurations. INIQuery can be reset to No at any point in the file. Normally INIQuery = Yes is only used during testing of other .INI file directives.

The dialog displayed when INIQuery = Yes gives you three options:

	Yes	Executes the directive

	No	Skips the directive

	Cancel	Executes the directive and all remaining directives in the [TakeCommand] section of the .INI file (i.e., cancels the INIQuery = Yes setting)

See other Advanced Directives.

LanguageDLL directive

LanguageDLL = filename

Specifies the filename of the language DLL Take Command and TCC should use (English.dll, French.dll, German.dll, Italian.dll, Russian.dll, or Spanish.dll). Take Command normally uses the language dll that matches the default Windows user language, but you can override it with this directive.

(In most cases you shouldn't set this directive -- if you use a non-default language dll, you will get a mix of one language from Take Command and another from Windows for the system error messages.)

See other Advanced Directives.

MSAAMenu

MSAAMenu = yes | NO

Take Command checks to see if a screen reader is installed, and if so it sets MSAAMenu=Yes. This is to avoid problems with the Take Command detachable menus and some screen readers.

NoINIErrors

NoINIErrors = yes | NO

If set to YES, no TCMD.INI parsing error messages will be displayed for all lines following the NoINIErrors line. This directive would normally be placed at the beginning of the [TakeCommand] and/or [4NT] section. It will not apply to the other section, so if you want all parsing errors suppressed you need to add NoIniErrors=Yes to both sections.

Note that setting this directive is generally not recommended, as it will suppress potentially critical errors.

StartTabWait

StartTabWait = n

The number of milliseconds to wait between launching each Take Command startup tab. The range is 0 (default) to 5000.

This should only be needed in rare cases when tabs are interfering with one another while starting (for example, in their TCSTART code).

TrayHotKey

TrayHotKey = Z

The hotkey to toggle Take Command to and from the system tray. The specified alphabetic key is combined with Ctrl + Shift, so the default hotkey is Ctrl-Shift-Z.

UpdateINI

UpdateINI = YES | no

Enable or disable changes to the .INI file. (Useful for administrators who want to prevent users from changing their configuration.)

UTF8Output

UTF8Output = yes | NO : The TCC output files (such as redirected output and pipes) will be written in UTF-8 format.

Configuration Dialog

This dialog, available via the OPTION command, contains several "pages" or "tabs" of options that let you change the way TCC looks and works.

The configuration dialog displays the name of the active TCMD.INI file in the title bar.

Unless you select the Cancel button, any changes you make will take effect immediately. If you select Apply, the settings will only apply for the duration of that session. If you select OK, the settings will be recorded in the appropriate main section ([4NT]) of the TCMD.INI file and will be in effect each time you start that command processor. If you want to set configuration directives in the [Primary] or [Secondary] sections of the .INI file, you must edit the file directly instead of using the dialog. Similarly, if you modified directives that originally resided in a separate included INI file, new directives will be saved to the main .INI file but the included file itself will not be altered. It would be wise to verify that no "old" directive in included files override the changes you made into the main file.

For details about the .INI file and .INI file directives, the allowable ranges for each, and the effect of each, see Initialization (.INI) Files and Directives.

While you are using the dialog, you can move between sets of configuration options by clicking on the individual tabs. The options available in this dialog are:

	Startup	

Windows

Command Line

Advanced

Internet

Updates

Startup

If you are not familiar with the purpose or use of the Startup configuration dialog, review the main configuration dialogs topic before continuing.

[image: tcc_startup]

Logging:

Command : Save internal and external commands (after alias and variable expansion) executed either from the command prompt or a batch file to the log file. See LOG for more details.

Errors : Save error messages to the log file. If you enter a file name in the File field, that file will be used for error logging. See LOG for more details.

History : Save each command executed from the command prompt exactly as it was entered (before aliases and variable expansion) to the log file. If you enter a file name in the File field, that file will be used for history logging. See LOG for more details.

TCSTART / TCEXIT:

You can set the path to your TCSTART / TCEXIT files if they aren't in the same directory as Take Command.

Local Lists:

Local Aliases instructs TCC to use a local or (if unchecked) global alias list.

Local Functions instructs TCC to use a local or (if unchecked) global function list.

Local History instructs TCC to use a local or (if unchecked) global command history list.

Local Directory History instructs TCC to use a local or (if unchecked) global directory history.

Scripting: Not in LE

REXX : Enable the internal REXX support (Open Object REXX).

Perl : Enable the internal Perl (ActiveState 5.10) support.

Python : Enable the internal Python (ActivePython 2.6) support.

Ruby : Enable the internal Ruby (1.8 or 1.9) support.

Tcl : Enable the internal Tcl (8.5.7) support.

Note : you must restart the TCC tab window for the REXX, Perl, Python, Ruby, and Tcl options to take effect.

Language:

The Language combo box allows you to override the default language that Take Command uses for menus and dialogs.

Search for SFNs : If enabled, filename searches will search for both long filenames and short filenames. See LFN File Searches for details.

PathExt : Determines whether TCC will use the PATHEXT environment variable. If disabled, the PATHEXT variable is ignored. If enabled, the PATHEXT variable will be used to determine extensions to look for when searching the PATH for an executable file. For details, see the PATHEXT variable and the PATH command. If you enable PathExt and then fail to set the PATHEXT variable, path searches will fail as there will be no extensions for which to search!

Delete to Recycle Bin : If enabled, files deleted by the DEL / ERASE commands and by RD /S are placed in the Windows Recycle Bin. If disabled, the files are deleted without being placed in the Recycle Bin. DEL's and RD's /K and /R switches allow you to override this setting for individual commands. The RecycleExclude environment variable can be used to exclude specific files.

Prompt on Wildcard Deletes : Enable the confirmation prompt from DEL /Q when doing a wildcard-only or directory deletion. Use caution if you disable this option, as this will allow DEL /Q to delete an entire directory without prompting for confirmation. See DEL for additional details.

Copy Prompt on Overwrite : If enabled COPY and MOVE will prompt before overwriting an existing file if the command is being performed at the command prompt. (This duplicates the behavior of the current version of CMD.)

Default Batch Echo : Set the default batch echo mode. If enabled, all batch file commands are echoed unless ECHO is explicitly set off in the batch file. If disabled, no batch file commands are echoed unless ECHO is explicitly set on. See also: SETDOS /V.

Protect Redirected Output Files : If enabled, standard output redirection will be prevented from overwriting an existing file, and will require that the output file already exist for append redirection. (You can override this option by adding the exclamation point to the output redirection symbol; i.e. >!.) See also: SETDOS /N.

Wait for External Apps : Determines whether TCC waits for an external program started from the command line to complete before redisplaying the prompt. See Waiting for Applications to Finish for details on the effects of this option.

Update Titles : Take Command normally changes the window titles to include the command or batch file name each time a new command is executed. If you prefer a static title bar which does not change with each command, disable this option.

UNIX/Linux-style Paths : Enables the forward slash as a path separator in the command name (the first item on the command line). Note that setting UnixPaths to Yes does not change the switch character, it simply allows you to put forward slashes in the command name. When this option is enabled, command switches beginning with a forward slash must be preceded by a space to avoid confusion (this is a good general practice).

Zone ID : Set the NTFS Zone ID security when running executables downloaded from the Internet. (Note that CMD never checks for the Zone ID, so setting it may introduce a minor incompatibility.)

Notify Windows Shell on File or Directory Change : Notify the system shell when changing files or directories. The shell notification is done by the ASSOC, COPY, DEL, MD, MOVE, and RD commands. Note that setting this option could introduce a slight incompatibility with CMD, which doesn't notify the system shell about anything.

Update Environment on System Change : If enabled, TCC will monitor the WM_SETTINGCHANGE message and if the environment is specified, update the environment from the User, Volatile, and System registry entries. The updates are done whenever TCC displays a prompt (to prevent the environment from changing in the middle of a batch file). Unless you have a specific need for this option it's better not to enable it, as it can result in variables set by TCC's parent process being destroyed.

MouseWheel Support in LIST : Set mouse wheel support in LIST. Disable this option if you experience incompatibilities with other applications.

AutoRun : If enabled when a TCC tabbed window starts, execute the AutoRun registry variables (HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor\AutoRun and/or HKEY_CURRENT_USER\Software\Microsoft\Command Processor\AutoRun).

Win64 File System Redirection : If disabled, overrides the default Win64 behavior of remapping windows\system32 calls to windows\SysWOW64.

Show Symbolic Links : Displays the symbolic link in DIR or PDIR (Windows Vista or later only).

Cancel Batch File on Ctrl-C : Cancel batch file processing without the usual prompt when you press Control-C.

Duplicate CMD bugs : Tells the TCC parser to duplicate bugs in CMD. The only bugs currently replicated are in the IF command.

Unicode Output : The TCC output files (such as redirected output) will be written in Unicode format.

Expand Aliases in Batch Files : If disabled, TCC won't try to expand command aliases when in a batch file. (Directory aliases will still be expanded.)

Automatic Directory Changes : If enabled, TCC will change directories when a directory name with a trailing \ is the only argument on the command line.

CMD delayed variable expansion (!var!) : If enabled, TCC will emulate the peculiar CMD !var! expansion.

Web Help : If enabled, TCC will use the browser-based help (at http://jpsoft.com/help/index.htm) instead of the local help. Using web help allows you to add comments to the help topics.

Windows

If you are not familiar with the purpose or use of the Windows configuration dialog, review the main configuration dialogs topic before continuing.

[image: tcc_windows]

Command Prompt Window

(These options are only used when TCC is not running in a Take Command tab window.)

The Normal, Max, Min, and Custom buttons select the initial state for the TCC window.

The X, Y, Width, and Height fields set the initial size and position of the TCC window. They are ignored unless the Custom button is also selected.

Colors:

ANSI Colors : Enable ANSI X3.64 string processing of the output of Take Command internal commands. Note that ANSI X3.64 processing of the output of external applications is not supported. See the ANSI X3.64 Commands Reference for a list of the ANSI X3.64 commands supported by TCC.

Colors : Select foreground and background colors for input, output, and error messages.

Directory Colors : Sets the directory colors used by DIR and SELECT. The format is the same as that used for the COLORDIR environment variable. See Color-Coded Directories for a detailed explanation.

Editor:

Editor : The pathname of the editing program to run from LIST if there is no Windows "edit" association for the extension. (The default is NOTEPAD.EXE.)

Pop-Up Font:

Set the font to use in the command history, directory history, filename completion, and fuzzy directory searching popup windows.

Console Palette:

Defines a custom color palette, not restricted to the standard console window 16 colors. (Requires Windows Vista or later.) This will not work when running TCC in a Take Command tab window due to a Windows API bug. (But you can define custom palettes in Take Command for tab windows.)

Command Line

If you are not familiar with the purpose or use of the Command Line configuration dialog, review the main configuration dialogs topic before continuing.

[image: tcc_cmdline]

Command History:

Minimum Length : Set the minimum command line size to save in the command history list. Any command line whose length is less than this value will not be saved. Legal values range from 0, which saves everything, to 8192. You can prevent any command line from being saved in the history by beginning it with an "at" sign ("@"). See also the HISTORY command.

Copy to end : This option controls what happens when you re-execute a line from the command history. If this option is set, the line is appended to the end of the history list. The original copy of the command is always retained at its original position in the list. If this option is set, it will override Move to End.

Move to end : If enabled, a recalled line will be moved to the end of the command history. The difference between this directive and Copy to end is that Copy to end copies each recalled line to the end of the history but leaves the original in place. Move to end copies the line to the end of history and removes the original line. This directive has no effect if Copy to end is set.

Wrap : If enabled, the command history "wraps" when you reach the top or bottom of the list (so the list appears "circular"). If this option is disabled, history recall will stop (and beep) at the beginning and end of the list rather than wrapping.

Case Sensitive : If enabled, the command history comparisons will be case sensitive.

Duplicates : Controls duplicate entry placement in the history list.

	Off	Always add new entries

	Save First	Add new entry only if it does not match any old entries

	Save Last	Add new entry unconditionally, and delete matching older entries

History File : Load the specified history list file before running TCSTART, and save the command history to the file after running TCEXIT. You should include the full pathname.

Filename Completion:

Complete hidden files : If enabled, hidden and system files will be displayed by filename completion.

Complete hidden directories : If enabled, hidden directories will be displayed by filename completion. CDD /S will also index hidden directories if this option is set.

Add '\' to Directories : If enabled, a \ (backslash) is automatically appended to directory names (or / to FTP directories) in filename completion.

Double % in filename : If enabled, and the filename has embedded % characters, and the first argument on the command line is an internal command, the % characters will be doubled so that variable expansion won't delete (or unexpectedly expand) the filename. (This will not affect filenames on lines beginning with aliases or variables.)

Search PATH : If enabled, the directories in the PATH variable are searched if a match isn't found in the current directory.

Options : Sets the files returned during filename completion for selected commands. The format is the same as that used for the FILECOMPLETION environment variable. See Customizing Filename Completion for a detailed explanation of selective filename completion.

Server Completion : Configures server name completion (see Filename Completion for information on how to use server name completion). Local lists only local servers (i.e., those in your "network neighborhood"). Global will enumerate the entire network. None will disable server completion; this may be necessary to prevent "hanging" if you start typing a server name and accidentally press Tab, and your local domain is very large or slow to respond.

Editing:

Edit Mode : Starts the command line editor in either Insert or Overstrike mode. If you specify Initial Overstrike or Initial Insert, the command line editor will start in the specified state, but if you toggle insert mode while editing a line, the editor will continue to use the new mode on subsequent lines. See also: SETDOS /M.

Overstrike Cursor : The shape of the cursor for insert mode during command line editing, and all commands which accept line input (DESCRIBE, ESET, etc.). The size is a percentage of the total character cell size, between 0% and 100%. Because of the way video drivers map the cursor shape, you may not get a smooth progression in cursor shapes as Insert Cursor and Overstrike Cursor change. If you set Insert Cursor and Overstrike Cursor to -1, the cursor shape won't be modified at all. If you set them to 0, the cursor will be invisible. See also: SETDOS /S.

Insert Cursor : The shape of the cursor for overstrike mode during command line editing and all commands which accept line input. The size is a percentage of the total character cell size, between 0% and 100%. See also: Overstrike Cursor (above) and SETDOS /S.

Extended Directory Search:

Search Level : Configure extended directory searches. 0 disables extended searches. For complete details on the meaning of the other settings see Extended Directory Searches.

Path : The path to JPSTREE.IDX, the file used for the extended directory search database.

Directory History :

	

		File : Load the specified directory history list file before running TCSTART, and save the directory history to the file after running TCEXIT.

	

		Save Directory on Entry: TCC normally saves the previous directory to the directory history when you change to a new directory. This option saves the new directory to the directory history when you change directories.

History Buffer Sizes

Command History : Set the amount of memory allocated to the command history list (in characters). The allowable range of values is from 4,000 to 500,000. If you use a global history list, this value is ignored in all sessions except that which first establishes the global list. (To change the size, you will need to close all of the TCC windows, and any SHRALIAS session.)

Directory History : Set the amount of memory allocated to the directory history list (in characters). The allowable range is 1,000 to 50,000. If you use a global directory history list, this value is ignored in all sessions except that which first establishes the global list. (To change the size, you will need to close all of the TCC windows, and SHRALIAS session.)

Advanced

If you are not familiar with the purpose or use of the Advanced configuration dialog, review the main configuration dialogs topic before continuing.

[image: tcc_advanced]

Special Characters: Not in LE

Expand Pseudovariables: If set, TCC will expand the %= and %+ pseudovariables. (You can disable this option if you're looking for maximum CMD compatibility.)

Separator : The character used to separate multiple commands on the same line. The default is an ampersand (&). It can be dynamically modified by the /C option of the SETDOS command. You cannot use any of the redirection characters (| > <) or any of the white space characters (space, tab, comma, or equal sign).

Escape : The character used to suppress the normal meaning of the following character. The default is a caret (^). See Escape Character for a description of the special escape sequences. You cannot use any of the redirection characters (|, >, or <) or the white space characters (space, tab, comma, or equal sign) as the escape character. See also: SETDOS /E.

Parameter : The character used after a percent sign to specify all or all remaining command line parameters in a batch file or alias (e.g., %$ or %n$; see Batch File Parameters and ALIAS). The default is the dollar sign [$]. See also: SETDOS /P.

Localization:

Time : The format of time displays in the output of the DATE, DIR, SELECT, TIME and TIMER commands, and in LOG files. It has no effect on %_TIME, %@MAKETIME, the $t and $T options of PROMPT, or date and time ranges.

	Country	Formats the time according to the country code set for your system.

	am/pm	Displays the time in 12-hour format with a trailing "a" for AM or "p" for PM.

	24-hour	Display the time in 24-hour time format.

Decimal : Sets the character used as the decimal separator for @EVAL, numeric IF and IFF tests, version numbers, and other similar uses. The only valid settings are period [.], comma [,], and Auto (the default). A setting of Auto tells TCC to use the decimal separator associated with your current country code. If you change the decimal character you will need to adjust the thousands character so that the two characters are different. See also: SETDOS /G.

Thousands : Sets the character used as the thousands separator for numeric output. The only valid settings are period [.], comma [,], and Auto (the default). Auto tells TCC to use the thousands separator associated with your current country code. If you change the thousands character you will need to adjust the decimal character so that the two characters are different. See also: SETDOS /G.

Default Beep:

Length : The default BEEP length in system clock ticks (approximately 1/18 of a second per tick). Also the default length for "error" beeps (for example, if you press an illegal key).

Frequency : The default frequency (in Hz) for the BEEP command. This is also the frequency for "error" beeps (for example, if you press an illegal key). To disable all error beeps set the length and frequency to 0. If you do, the BEEP command will still be operable, but will not produce sound unless you explicitly specify the frequency and duration.

You can play a system sound on an error by setting Length to 0 and Frequency to the desired sound:

	0	Windows default ("OK") beep sound

	16	Windows Critical Stop ("Hand") sound

	32	Windows Question sound

	48	Windows Exclamation sound

	64	Windows Asterisk sound

Tabs:

Tabs : Sets the tab stops for LIST output. The allowable range is 1 to 32.

Descriptions:

Enable Descriptions : Set description handling for the file processing commands (COPY, DEL, MOVE, REN, etc.). If disabled, TCC will not update the description file when files are moved, copied, deleted or renamed. See also: SETDOS /D.

NTFS Descriptions : If set, TCC uses the Comments field in the NTFS SummaryInformation stream for each file to hold its description, instead of the DESCRIPT.ION file. The advantages are that the description will always remain with the file regardless of what program copies, moves, or renames it. The disadvantage is that you cannot attach a description to directories.

Maximum Length : Set the description length limit for DESCRIBE. The allowable range is 20 to 511 characters.

Filename : Sets the file name in which to store file descriptions. The default file name is DESCRIPT.ION. See also: SETDOS /D.

@EVAL Precision

Minimum : The minimum number of digits after the decimal point in values displayed by @EVAL. The allowable range is 0 to 1000. This directive will be ignored if Minimum is larger than Maximum. You can override this setting with the construct @EVAL[expression=n,n]. See also: SETDOS /F.

Maximum : The maximum number of digits after the decimal point in values displayed by @EVAL. You can override this setting with the construct @EVAL[expression=n,n]. The allowable range is 0 to 1000; if you use the "=n,n" syntax the maximum is 10,000. See also: SETDOS /F.

Regular Expression Syntax

Sets the type of regular expression syntax to use.

	Internet	Not in LE

If you are not familiar with the purpose or use of the Internet configuration dialog, review the main configuration dialogs topic before continuing.

[image: tcc_internet]

SMTP:

Server : The SMTP server name to use in SENDMAIL and SENDHTML for outgoing mail. (If not set, TCC will attempt to get the address from the registry.)

Address : The email address to use in SENDMAIL and SENDHTML for outgoing mail. (If not set, TCC will attempt to get the current user's email address from the registry.)

User : The email username (if your SMTP server requires it for authentication).

Password : The email password of the user (if your SMTP server requires it for authentication).

Port : The SMTP port number for use by SENDMAIL and SENDHTML. (The default port number is 25).

Auto SSL : If checked, SENDMAIL and SENDHTML will use Auto SSL negotiation. If the remote port is set to the standard plaintext port, TCC will use Explicit mode. In all other cases, SSL negotiation will be implicit.

Firewall:

Type : The type of firewall in use on your network.

Host : The server name of the firewall (if any) for FTP and HTTP access.

User : The user name if the firewall requires authentication.

Password : The password if the firewall requires authentication.

RSHELL / REXEC:

Host : The name of the local host or user-assigned IP interface through which connections are initiated or accepted (for REXEC and RSHELL).

User : The name of the user on the local machine (for RSHELL).

Port : The port number (or communication endpoint) in the local machine to bind to for REXEC and RSHELL.

Timeouts:

Set the timeout (inactivity) period in seconds for FTP, TFTP, and HTTP operations.

JABBER:

Server is the JABBER server to log into.

User : The default user name for logging onto a Jabber server and sending IM's via the JABBER command.

Password : The logon password for the default Jabber user.

Time Server:

Time Server : The URL for the internet time server for TIME /S. If no server is specified, TIME uses clock.psu.edu.

HTTP Proxy:

Server : The proxy server address to use for HTTP calls

User : The user name if Basic authentication is to be used for the HTTP proxy.

Password : The user password if Basic authentication is to be used for the HTTP proxy.

Port : The proxy port number to use for HTTP calls.

FTP:

Passive FTP : Set passive mode for FTP calls (sometimes required by a firewall).

FTP.CFG : Specify the location and name of the file containing the FTP user names and passwords, and optionally the directory format for non-standard FTP servers. The default is FTP.CFG in the Take Command installation directory. See Using FTP/HTTP Servers for details.

SSH:

SSHPort : The port on the SSH server where the SSH service is running (default is 22).

SSHLocalPort : The TCP port in the local host where IPPort binds.

SSHLocalHost : The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Updates

[image: ftp]The Check for Updates button queries the JP Software web server to see if there is an updated version of Take Command / TCC available. If there is, the new version information will be displayed and you can choose to download and automatically update your existing version.

	IDE / Batch Debugger	Not in LE

Take Command has a very powerful IDE (Integrated Development Environment) for creating, editing, and debugging batch files. The IDE includes syntax coloring for batch files (.BAT, .BTM, and .CMD) and code folding for command groups, DO, IFF, SWITCH, and TEXT.

[image: ide]

The IDE window includes a slider control on the lower right corner of the status bar to control the transparency level.

If a file in a tab window has been modified but not yet saved, the tab title will be prefixed with a *. When the file is saved, the * is removed.

The edit window toolbar (which is configurable by clicking on the rightmost down arrow), has a number of icons to control debugging. Each has a tooltip for quick reference:

	New	Create a new batch file in a new tab window.

	Open	Open an existing batch file in a new tab window.

	Save	Save the current batch file.

	Print	Print the current batch file.

	Cut	Copy the highlighted selection to the clipboard and delete it from the file.

	Copy 	Copy the highlighted selection to the clipboard.

	Paste	Copy the contents of the clipboard to the current cursor location.

	Delete	Delete the highlighted selection.

	Undo	Undo the last edit.

	Redo	Restore the last Undo.

	Find	Search for text.

	Batch Arguments	New batch file arguments. The text will be parsed into %1 - %n batch arguments and used when the batch file is debugged.

	Start Debugging	Starts the debugger. The cursor will be placed on the first line.

	Pause Debugging	Pause execution at the next line.

	Stop Debugging	Stops the debugger.

	Step Into	Execute the current line.

	Step Over	Execute the current line but disable the debugger during a CALL or GOSUB.

	Run to Breakpoint	Execute the batch file, stopping at the next breakpoint.

	Toggle Breakpoint	Sets or turns off a breakpoint on the current line.

	Clear Breakpoints	Clear all breakpoints in the current batch file.

	File Properties	Displays information on the current batch file.

	Start New Shell	Start another copy of TCC (this is useful if you need to perform some tasks while debugging a file.)

	Help	Display the online help.

The IDE includes tabbed windows to display and/or modify the watch list, aliases, batch variables, environment variables, and user functions. The variable windows also have a toolbar, with the following buttons:

	New	Restore the original values for the list (alias, variable, environment, or function)

	Open	Add the contents of a file to the list

	Save	Save the current list to a file

	Apply	Replace the original values with the modified list

	Print	Print the current list

	Cut	Copy the highlighted selection to the clipboard and delete it from the file

	Copy 	Copy the highlighted selection to the clipboard

	Paste	Copy the contents of the clipboard to the current cursor location

	Delete	Delete the highlighted selection (or the character at the cursor location if no selection)

	Undo	Undo the last edit

	Redo	Restore the last Undo

	Find	Search for text

	Help	Display the online help

The environment variables window displays any variables changed since the last command in red. You can specify variables to exclude from the environment variable window with the DebugVariableExclude variable. For example, to suppress the display of the processor and user variables:

set DebugVariableExclude=proc*;user*

Note that this option doesn't affect the existence of the variables, just whether they're displayed in the environment variable window.

If you right click on the first column in the Watch window, the debugger will display an environment variable listbox. Select an entry to have it added to the watch list.

If you press Ctrl-C or Ctrl-Break while debugging, you will see the prompt:

Cancel batch job filename (Y/N/A/D) :

Pressing D will return you to single-step mode in the debugger. (This allows you to interrupt a run-to-breakpoint without terminating the debugger and batch file.)

Margins

There are three possible margins on the left of the edit window:

●The line number (selectable by the "Options / Display Line Numbers" menu option).
●The Breakpoint margin (left click in this margin to set a breakpoint on this line).
●The Fold margin (selectable by the "Options / Display Fold Margin" menu option), which will display a - for blocks that can be collapsed to a single line (DO, IFF, and SWITCH commands, and command groups). When a block is collapsed, the Fold margin will display a +. Left clicking in the Fold margin will toggle the fold state.

Edit Windows

The text processing commands available in the IDE edit windows are listed below. The text commands can be classified into general categories:

[image: Onestep] Caret commands

[image: Onestep] Edit commands

[image: Onestep] Mark / Clipboard commands

[image: Onestep] Search commands

[image: Onestep] File commands

[image: Onestep] Bookmark commands

[image: Onestep] Breakpoint commands

[image: Onestep] Expression evaluation commands

●Caret commands

	Right

	This command will move the caret one character to the right. When the caret is on the last position of the current line it is moved to the first position of the next line.

	Shift-Right

	In addition to the caret movement this command will also extend the current selection to the new caret position.

	Left

	This command will move the caret one character to the left. When the caret is on the first position of the current line it is moved to the last position of the previous line.

	Shift-Left

	In addition to the caret movement, this will also extend the current selection to the new position.

	Up

	This command will move the caret one line up. The caret column position will be set as close to its previous column position as possible.

	Shift-Up

	In addition to the caret movement this command will also extend the current selection to the new position.

	Down

	This command will move the caret one line down. The caret column position will be set as close to it's previous column position as possible. When the caret is on the last line but not on the last column it will be moved to the last column.

	Shift-Down

	In addition to the caret movement this command will also extend the current selection to the new position.

	End

	This command will move the caret to the end of the line it is currently on. If the caret is already at the end nothing happens.

	Shift-End

	In addition to the caret movement this command will also extend the current selection to the new position.

	Home

	This command will move the caret to the start of the line it is currently on. If the caret is already at the start nothing happens.

	Shift-Home

	In addition to the caret movement this command will also extend the current selection to the new position.

	Ctrl-Right

	This command will move in one of the following ways:

	

	●When the caret is located on a delimiter character the caret is moved right until the first non-delimiter is found.

	

	●When the caret is located on a non-delimiter character the caret is moved to the next delimiter character.

	

	●When the caret is located on the last word or delimiter of the current line the caret is moved to the first word or delimiter of the next line.

	Ctrl-Shift-Right

	In addition to the caret movement this command will also extend the current selection to the new caret position.

	Ctrl-Left

	This command will move in one of the following ways:

	

	●When the caret is located on a delimiter character the caret is moved to the start of the previous word.

	

	●When the caret is located on a non-delimiter character and not on a white-space character the caret is moved to the start of the current word.

	

	●When the caret is located on the start of the first word, delimiters or white-space of the current line the caret is moved to the start of the last word or delimiters of the previous line.

	Ctrl-Shift-Left

	In addition to the caret movement this command will also extend the current selection to the new position.

	Ctrl-Home

	This command will move the caret to the beginning of the text. When the caret is already at this location nothing happens.

	Ctrl-Shift-Home

	In addition to the caret movement this command will also extend the current selection to the new position.

	Ctrl-End

	This command will move the caret to the end of the text. When the caret is already at this location nothing happens.

	Ctrl-Shift-End

	In addition to the caret movement this command will also extend the current selection to the new position.

	PgUp

	This command will move the caret one view up when it is located on the top line currently in the view. When the caret is not located on the top line of the view, it will be moved there.

	Shift-PgUp

	In addition to the caret movement this command will also extend the current selection to the new position.

	PgDn

	This command will move the caret one view down when it is located on the bottom line currently in the view. When the caret is not located on the bottom line of the view, it will be moved there.

	Shift-PgDn

	In addition to the caret movement, this command will also extend the current selection to the new position.

●Edit commands

	Ctrl-Z

	This command will undo the last change made to the edit control contents. You can undo any number of changes made to the control contents up to the maximum number of undo/redo hops.

	Ctrl-Y

	This command will redo the last change you have undone. You can re-do any number of changes up to the number of changes undone.

	Backspace

	This command will remove the character to the left of the caret. When the caret is located at the start of the line, the characters right of the caret are appended to the previous line and the caret is moved to be positioned between the old line contents and the appended characters.

	Delete

	This command removes the character to the right of the caret. When there are no characters to the right of the caret, the contents of the next line is appended to the current line.

	Return

	This command will split the current line and create a new line of the characters, if any, right of the caret. The caret is moved to the start of the newly created line.

	Ctrl-Delete

	When the caret is located on a word, this command will delete all characters in the word right of the caret position.

	Ctrl-Backspace

	When the caret is located on a word, this command will delete all characters in the word left of the caret position.

	Tab

	This command does one of the two following things:

	

	●When there is a valid text selection, this command will indent the lines covered by the selection right by one tab-stop.

	

	●When there is no text selection, a tab is inserted at the current caret position.

	Shift-Tab

	When there is a valid text selection, this command will indent the lines covered by the selection left by one tab-stop.

	Shift-Ctrl-U

	When there is a valid selection, this command will convert all lower-case characters in the selection to upper-case characters. If there is no valid selection, nothing happens.

	Ctrl-U

	When there is a valid selection, this command will convert all upper-case characters in the selection to lower-case characters. If there is no valid selection, nothing happens.

	Ins

	This command will toggle the current editing mode between overwrite and insert.

●Mark / Clipboard commands

	Ctrl-A

	This command will select all the text.

	Ctrl-V

	This command will, when there is text present in the clipboard, paste the clipboard contents at the current position.

	Ctrl-C

	This command will, when there is a selection, copy the selected text to the clipboard.

	Ctrl-X

	This command will, when there is a selection, copy the selected text to the clipboard and remove the selection from the text.

●Search commands

	Ctrl-F3

	This command will find the next occurrence of the word under the caret. When the next occurrence is found, it is selected.

	F3

	This command will find the next occurrence of the current search pattern. When the search pattern is found, it is selected.

	Shift-F3

	This command will find the previous occurrence of the current search pattern. When the search pattern is found, it is selected.

	Ctrl-G

	This command will show the goto dialog.

	Ctrl-F

	This command will show the find dialog.

	Ctrl-H

	This command will show the replace dialog.

●File commands

	Ctrl-N

	Open a new file in a new tab window.

	Ctrl-O

	Open an existing file in a new tab window.

	Ctrl-W

	Close all files.

	Ctrl-S

	This command will save the current file.

	Ctrl-Shift-S

	Save all files.

	Ctrl-P

	This command will open the print dialog.

	Ctrl-I

	Display the properties for the current file.

	Alt-F4

	Exit the debugger.

●Bookmark commands

	Ctrl-F2

	This command will clear the bookmark on the current line if it is set, or set the bookmark if it is cleared.

	Shift-Ctrl-F2

	This command will clear all bookmarks.

	F2

	This command will place the caret on the next line which has a bookmark set. When there is no next line with a bookmark, the text is searched starting at the first line.

	Shift-F2

	This command will place the caret on the previous line which has a bookmark set. When there is no previous line with a bookmark, the text is searched from the last line up again.

●Breakpoint commands

	Ctrl-F9

	This command will toggle a breakpoint on the current line.

	Ctrl-Shift-F9

	This command will clear all breakpoints.

●Expression evaluation commands

	Alt-F11

Alt-Shift-F11

	Invoke the Evaluate Expression dialog.

Invoke the Evaluate Expression dialog for the current selection. If no text is selected, evaluate the current line.

You can select the result and copy it to the clipboard.

Setup and Troubleshooting

[image: Onestep] Troubleshooting Service and Support

[image: Onestep] Supported Platforms

[image: Onestep] Help File

[image: Onestep] Error Messages

[image: Onestep] Registration

Troubleshooting, Service and Support

If you need help with Take Command, we encourage you to review our documentation and then contact us for assistance if required.

If you need help with sales, ordering, or registration keys, please contact our Sales and Customer Service department. See Contacting JP Software for our email address, mail address, and telephone numbers. Note that Sales and Customer service staff cannot assist you with technical problems and conversely Technical Support representatives cannot answer your sales or registration questions.

If you need technical support for Take Command, review the Technical Support information section, which tells you what we need to know to provide you with accurate and timely support, then contact us via one of the methods described there. In most instances, our Online Support Forum is the fastest and most efficient way to address your technical questions and concerns.

Note that we do not provide support for TCC/LE. If you have questions about TCC/LE, post them on the TCC/LE forum on our web site.

Technical Support

Support Plans

Standard, no-charge support is available electronically through our Support Forums (see below). We also offer a paid support option which includes automatic upgrades and support by private email or telephone. For complete details on all support options, including plans currently offered and support terms and conditions, see our web site at http://jpsoft.com/.

Before you contact Technical Support, please review the What Information do we need? section which outlines the basic data we need to best address your questions and concerns.

Online Support

The primary venue for Technical Support is via our free online Support Forums, where our support personnel can read and respond to your messages, and other users can participate in and benefit from the exchange. The Forums are a lively community frequented by a number of experienced and helpful users. JP Software representatives read every Forum message and respond as promptly as reasonably possible whenever appropriate.

If you have any kind of Internet access, even if only email, chances are you can use the Forums which we make accessible as a mailing list and a set of web pages. Forum members must provide a valid email address and a full name to be able to post, but you do need not need to join or provide any information to simply visit or search the Forum. For complete details and direct access links see the support area of our web site at http://jpsoft.com/.

A number of other support resources are available from our web site, including documentation files, technical tips and discussions, other technical information, and links to other sites. We update this information regularly, and we encourage you to check the Technical Support area of the web site to see if the information there will address any questions you have.

If you are unable to gain access to the forum, or you need to include confidential information in your support request, contact us via email at support@jpsoft.com and we will assist you in resolving the problem with forum access, or assist you with your request privately if appropriate. Please do not use that address for standard support questions which can be posted on the forum.

If you are a paid support customer you should use the online Support Forums for routine questions. To create a private support incident refer to the materials sent to you with your subscription for contact information, or email priority_support@jpsoft.com and include your support ID (mail to this address may not be answered if it does not include a valid support ID).

What Information do we need?

Before contacting us for support, please check this help file and other documentation for answers to your question. If you can't find what you need, try the Index. If you're having trouble getting Take Command to run properly, review the information on Error Messages, and look through the Support Forum for any last-minute information.

If you need help with sales, ordering, registration keys, or other similar non-technical issues please contact our Sales and Customer Service department. Technical Support will not be able to assist you with those matters. Conversely, Customer Service is not equipped to answer your technical questions. See Contacting JP Software for our addresses.

Regardless of how you contact us for support, we can do a much better job of assisting you if you can give us some basic information, separate from your interpretations of or conclusions about the problem. Remember that we know NOTHING about your system or configuration unless you tell us, and we can't always make accurate guesses if you don't. The first four items listed below are essential for us to be able to understand and assist you with your problem:

●What environment are you working in? This includes the operating system version you are using, the version of the JP Software product involved, and related information such as network connections and the name and version number of any other software which appears to be involved in the problem. Use the VER /R command to determine the Take Command version and operating system version. This item is essential! Every question posted on the Forum should include a brief identification such as "Take Command 14.0.25 under Windows 7 x64" or something similar.

●What exactly did you do? A concise description of what steps you must take to make the problem appear is much more useful than a long analysis of what might be happening. In most cases, posting the exact command line(s) giving you trouble is the simplest approach.

●What did you expect to happen? Tell us the result you expected from the command or operation in question, so that we understand what you are trying to do. Something that seems "obvious" to you might not be so to others. For example, tell us "I was expecting the file name to be in upper case" or a similar brief explanation.

●What actually happened? At what point did the failure occur? If you saw an error message or other important or unusual information on the screen, what exactly did it say? Don't simply tell us "it didn't work". For example, if you were expecting output from a command and saw none, at least tell us that much.

●Briefly, what techniques did you use to try to resolve the problem? What results did you get? One technique that tends to solve many problems is to review the help for the command or feature in question and try it with the documented exact correct syntax, as opposed to some undocumented alternative.

●If the problem seems related to startup and configuration issues, what are the contents of any startup files you use (such as TCSTART or TCEXIT, and the .INI file), any batch files they call, and any alias or environment variable files they load?

●Can you repeat the problem or does it occur randomly? If it's random, does it seem related to the programs you're using when the problem occurs? Random or occasional problems are very difficult to diagnose. Do your best to determine some sort of pattern or sequence of events that triggers the problem. If you can't reproduce it, chances are we won't be able to either. Note that mysterious unexplainable problems often permanently disappear after simply reloading the program or even rebooting the system.

●If Take Command or TCC experience an unrecoverable failure, they will save the error information to a file called TCMD.GPF (which will be in the same directory as TCMD.INI). They will also send the TCMD.GPF file to JP Software at support@jpsoft.com. If you can reproduce the error, please email us with the steps necessary to reproduce it and attach the TCMD.GPF file to your email; it will make it much easier for us to reproduce and fix the problem.

Contacting JP Software

You can contact JP Software at the following addresses and numbers. Our normal business hours are 9:00 AM to 5:00 PM weekdays, Eastern US time (except holidays).

	Address:	JP Software Inc.

P.O. Box 328

Chestertown, MD 21620

USA

	Phone:	800-595-8197

	Fax:	800-595-8197 (rings through to fax)

	Online:	Web site: http://jpsoft.com/

Sales / Customer Service

	Technical Support:	Standard (no-charge) support: Available via our online Support Forum, accessible from the support area of our web site.

See Technical Support for additional details, and for information on paid support options.

Note: Our server implements anti-spam measures. Please make sure you are using the correct address with appropriate subject line and contents, else we might not receive your email message.

Supported Platforms

Take Command is a 32-bit or 64-bit GUI application.

TCC and TCC/LE are 32-bit or 64-bit console (character-mode) applications.

All are designed to run under Windows XP (SP2 and later), Windows 2003, Windows Vista, Windows 2008, Windows 7, and Windows 8.

The 32-bit and 64-bit versions of Take Command and TCC are identical in features. The 64-bit versions are slightly faster and don't have to deal with the directory and registry remapping that Windows does with 32-bit apps running in 64-bit Windows. The 64-bit versions will also use slightly more memory.

Help File

The installers for Take Command and TCC/LE include TCMD.CHM, a help file in Window's compiled HTML format. That file includes description and syntax for all commands, variables and functions, as well as reference information to assist you in installing and using Take Command and developing batch files, aliases and functions. Take Command uses the default Windows help system to display the contents of tcmd.chm. Under most configurations, Windows will remember the last used settings (window size, tab selected, etc.) for that file. Once you've started the help system with F1 or the HELP command, you can use standard Windows HTML Viewer (HH.EXE) keystrokes to navigate. For more information, see your Windows documentation.

The help is also available on our web site as a PDF file.

You can request help at the prompt from the Help menu, by typing HELP (or HELP plus a command name), or by pressing the F1 key at any time when TCC is accepting keyboard input at the prompt. If you use the HELP command by itself you will be taken to an introductory page, but if you follow the command with a topic name (e.g. help copy) you will see help on the requested topic if available.

If you type a command name on the line and then press F1, the help system will provide context sensitive help by using the first word on the line as the help topic. For example, if you press F1 after entering each of the command lines shown below you will get the display indicated:

	[c:\]

	Overview

	[c:\] copy * a:

	Help on the COPY command

	[c:\] c:\util\map

	"The page cannot be displayed"

You can use this feature to obtain help directly on any topic, not just on commands. All internal commands, internal variables, variable functions, and key mapping directives have their own topic, allowing you to directly query, for example, help @eval (help for the @eval[] function) or help _disk (help for the _DISK internal variable).

You can also invoke help for the word immediately above (or immediately to the left of) the cursor by pressing the Ctrl-F1 key. This feature is especially useful when you need the syntax for a variable function.

If the topic you seek is not listed, look for a suitable cross reference from the Index tab or use the Search tab. The topics you use most often can be stored and recalled through the Favorites tab.

Quick Syntax Help:

If you just need a quick reminder of an internal command's syntax, type the name of the command at the prompt, followed by a slash and a question mark /? For example:

copy /?

TCC will display the syntax and the valid options for the command.

If you are running TCC or TCC/LE in a Take Command tab window, and you enter an internal command name, Take Command will display quick help for that command on the status bar. If you move the mouse over the status bar, Take Command will display a more detailed tooltip help window.

Error Messages

A B C D E F G I K L M N O R S T U V W

This section lists error messages generated by Take Command, and includes a recommended course of action for most errors. If you are unable to resolve the problem after reviewing these help files, contact JP Software for technical support.

Error messages relating to files are generally reports of errors returned by Windows. You may find some of these messages (for example, "Access denied") vague enough that they are not always helpful. Take Command includes the file name in file error messages, but is often unable to determine a more accurate explanation of these errors. The message shown is the best information available based on the error codes returned by Windows.

Not all errors potentially reported by Windows can be listed here. See Windows System Errors for examples of system errors returned in the _SYSERR internal variable.

The following list includes most common error messages, in alphabetical order:

Access denied: You tried to write to or erase a read-only file, rename a file or directory to an existing name, create a directory that already exists, remove a read-only directory or a directory with files or subdirectories still in it, or access a file in use by another program in a multitasking system.

Alias loop: An alias refers back to itself either directly or indirectly (i.e., a = b = a), or aliases are nested more than 16 levels deep. Correct your alias list.

Already debugging a batch file: You are attempting to invoke a nested instance of the Batch File Debugger (BDEBUGGER) while you are already in the debugger.

Already excluded files: You used more than one exclude range in a command. Combine the exclusions into a single range.

Array variable is already defined: You tried to create an array variable that already exists.

Bad disk unit: Generally caused by a disk drive hardware failure.

Batch file missing: TCC can't find the batch (.BTM or .CMD) file it was running. It was either deleted, renamed, moved, or the disk was changed. Correct the problem and rerun the file.

Can't COPY or MOVE file to itself: You cannot COPY or MOVE a file to itself. TCC attempts to perform full path and filename expansion before copying to help ensure that files aren't inadvertently destroyed.

Can't create: TCC can't create the specified file. The disk may be full or write protected, or the file already exists and is read-only, or the root directory is full.

Can't delete: TCC can't delete the specified file or directory. The disk is probably write protected.

Can't end current process: You attempted to terminate TCC with a TASKEND command. TASKEND can only be used to end other processes; to terminate TCC, use the EXIT command.

Can't get directory: TCC can't read the directory. The disk drive is probably not ready.

Can't make directory entry: TCC can't create the filename in the directory. This is usually caused by a full root directory. Create a subdirectory and move some of the files to it.

Can't open: TCC can't open the specified file. Either the file doesn't exist or the disk directory or File Allocation Table is damaged.

Can't query key type: The key name supplied to @REGQUERY refers to a key with a type that @REGQUERY does not support. See @REGQUERY for a list of supported key types.

Can't remove current directory: You attempted to remove the current directory, which Windows does not allow. Change to the parent directory and try again.

CD-ROM door open or CD-ROM not ready: The CD-ROM drive door is open, the power is off, or the drive is disconnected. Correct the problem and try again.

CD-ROM not High Sierra or ISO-9660: The CD-ROM is not recognized as a data CD (it may be a music CD). Put the correct CD in the drive and try again.

Clipboard is empty or not text format: You tried to retrieve some text from the Windows clipboard, but there is no text available. Correct the contents of the clipboard and try again.

Clipboard is in use by another program: Take Command could not access the Windows clipboard because another program was using it. Wait until the clipboard is available, or complete any pending action in the other program, then try again.

Command line too long: A single command or the entire command line exceeded the maximum allowable length (including during alias, variable, or function expansion). Reduce the complexity of the command or use a batch file. Also check for an alias which refers back to itself either directly or indirectly.

Command only valid in batch file: You have tried to use a batch file command, like DO or GOSUB, from the command line or in an alias. A few commands can only be used in batch files (see the individual commands for details).

Contents lost before copy: COPY was appending files, and found one of the source files is the same as the destination. That source file is skipped, and appending continues with the next file.

Data error: Windows can't read or write properly to the device. On a floppy drive, this error is usually caused by a defective floppy disk, dirty disk drive heads, or a misalignment between the heads on your drive and the drive on which the disk was created. On a hard drive, this error may indicate a drive that is too hot or too cold, or a hardware problem. Retry the operation; if it fails again, correct the hardware or diskette problem.

Directory stack empty: POPD or DIRS can't find any entries in the directory stack.

Disk is write protected: The disk cannot be written to. Check the disk and remove the write-protect tab or close the write- protect window if necessary.

Divide by zero: The command or function you used tried to do a division by zero. If the data causing the problem is from your own input or batch file, change the input to avoid the divide by zero condition. If the data was generated internally by Take Command, contact JP Software for assistance.

Drive not ready; close door: The removable disk drive door is open. Close the door and try again.

Duplicate redirection: You tried to redirect standard input, standard output, or stand error more than once in the same command. Correct the command and try again.

Error in command line directive: You used the //iniline option to place an .INI directive on the startup command line, but the directive is in error. Usually a more specific error message follows, and can be looked up in this list.

Error on line [nnnn] of [filename]: There is an error in your .INI file. The following message explains the error in more detail. Correct the line in error and restart TCC for your change to take effect.

Error reading: Windows experienced an I/O error when reading from a device. This is usually caused by a bad disk, a device not ready, or a hardware error.

Error writing: Windows experienced an I/O error when writing to a device. This is usually caused by a full disk, a bad disk, a device not ready, or a hardware error.

Exceeded batch nesting limit: You have attempted to nest batch files more than 10 levels deep.

Exceeded the maximum number of simultaneous monitors: You have attempted to create more than 100 monitoring functions.

File Allocation Table bad: Windows can't access the FAT on the specified disk. This can be caused by a bad disk, a hardware error, or an unusual software interaction.

File association not found: The ASSOC command could not find a file association for the specified extension in the Windows registry.

File exists: The requested output file already exists, and TCC won't overwrite it.

File not found: TCC couldn't find the specified file. Check the spelling and path name.

File type not found: The FTYPE command could not find the specified file type in the Windows registry.

General failure: This is usually a hardware problem, particularly a disk drive failure or a device not properly connected to a serial or parallel port. Try to correct the problem, or reboot and try again. See also: Data error above.

Include file not found: You used the Include directive in the .INI file, but the file you specified was not found or could not be opened.

Include files nested too deep: You used the Include directive in the .INI file, and attempted to nest include files more than three levels deep.

Infinite COPY or MOVE loop: You tried to COPY or MOVE a directory to one of its own subdirectories and used the /S switch, so the command would run forever. Correct the command and try again.

Input and output files must have different names: (BATCOMP) You are attempting to compress a file to itself.

Input file is already compressed: (BATCOMP) You are attempting to compress a batch file that has already been compressed.

Insufficient disk space: COPY or MOVE ran out of room on the destination drive. Remove some files and retry the operation.

Invalid array argument (out of bounds): You tried to reference an array element that exceeded the array size.

Invalid batch file: The batch file is corrupted, or improperly compressed, or encrypted. Retry with a new copy of the file.

Invalid character value: You gave an invalid value for a character directive in the .INI file.

Invalid choice value: You gave an invalid value for a "choice" directive (one that accepts a choice from a list, like "Yes" or "No") in the INI file.

Invalid color: You gave an invalid value for a color directive in the INI file.

Invalid count: The character repeat count for KEYSTACK is incorrect.

Invalid date: An invalid date was entered. Check the syntax and reenter.

Invalid directive name: Take Command can't recognize the name of a directive in the INI file.

Invalid drive: A bad or non-existent disk drive was specified.

Invalid key name: You tried to make an invalid key substitution in the INI file, or you used an invalid key name in a keystroke alias or command. Correct the error and retry the operation.

Invalid numeric value: You gave an invalid value for a numeric directive in the INI file.

Invalid parameter: TCCdidn't recognize a parameter. Check the syntax and spelling of the command you entered.

Invalid path: The specified path does not exist. Check the disk specification and/or spelling.

Invalid path or file name: You used an invalid path or filename in a directive in the .INI file.

Invalid time: An invalid time was entered. Check the syntax and reenter.

Keystroke substitution table full: TCC ran out of room to store keystroke substitutions entered in the .INI file. Reduce the number of key substitutions or contact JP Software or your dealer for assistance.

Label not found: A GOTO or GOSUB referred to a non-existent label. Check your batch file.

Listbox is full: There is no more room in the Find Files / Text dialog's results box. Use a more selective search, or use the FFIND command rather than the dialog.

Missing close paren: A KEYSTACK command is missing a closing parentheses around a character group. Correct the command.

Missing ENDTEXT: A TEXT command is missing a matching ENDTEXT. Check the batch file.

Missing GOSUB: TCC cannot perform the RETURN command in a batch file. You tried to do a RETURN without a GOSUB, or your batch file has been corrupted.

Missing SETLOCAL: An ENDLOCAL was used without a matching SETLOCAL.

No aliases defined: You tried to display aliases but no aliases have been defined.

Not an array variable: You tried to reference a non-existent array variable.

No closing quote: TCC couldn't find a second matching back quote [`] or double-quote ["] on the command line.

No expression: The expression passed to the %@EVAL variable function is empty. Correct the expression and retry the operation.

No shared memory found: The SHRALIAS command could not find any global alias list, history list, or directory history list to retain, because you executed the command from a session with local lists. Start TCC with at least one global list, then invoke SHRALIAS.

No SMTP server: SENDMAIL can't find an SMTP server. Check your INI file or mailer configuration (see SENDMAIL for additional details).

Not a directory: The name passed to RD is not a directory.

Not an alias: The specified alias is not in the alias list.

Not in environment: The specified variable is not in the environment.

Not ready: The specified device can't be accessed.

Not same device: This error usually appears in RENAME. You cannot rename a file to a different disk drive.

Out of function space: You are attempting to create a User-defined Function that would require more resources than what your system makes available. Shorten the function definition or delete functions you no longer need

Out of memory: Take Command or Windows had insufficient memory to execute the last command. Try to free some memory by closing other sessions. If the error persists, contact JP Software for assistance.

Out of paper: Windows detected an out-of-paper condition on one of the printers. Check your printer and add paper if necessary.

Overflow: An arithmetic overflow occurred in the @EVAL variable function. Check the values being passed to @EVAL.

Read error: Windows encountered a disk read error; usually caused by a bad or unformatted disk. See also: Data error above.

Sector not found: Disk error, usually caused by a bad or unformatted disk. See also: Data error above.

Seek error: Windows can't seek to the proper location on the disk. This is generally caused by a bad disk or drive. See also: Data error above.

Sharing violation: You tried to access a file in use by another program in a multitasking system or on a network. Wait for the file to become available, or change your method of operation so that another program does not have the file open while you are trying to use it.

SHRALIAS already loaded: You used the SHRALIAS command to load SHRALIAS.EXE, but it was already loaded. This message is informational and generally does not indicate an error condition.

SHRALIAS not loaded: You used the SHRALIAS /U command to unload SHRALIAS.EXE, but it was never loaded. This message is informational and may not indicate an error condition.

String area overflow: TCC ran out of room to store the text from string directives in the .INI file. Reduce the complexity of the .INI file or contact JP Software for assistance.

String too long: You tried to put more than 2038 characters into the KEYSTACK buffer. Reduce the number of characters you are trying to send to the application at one time.

Syntax error: A command or variable function was entered in an improper format. Check the syntax and correct the error.

Too many open files: Windows has run out of file handles.

Unbalanced parentheses: The number of left and right parentheses did not match in an expression passed to the @EVAL variable function. Correct the expression and retry the operation.

UNKNOWN_CMD loop: The UNKNOWN_CMD alias called itself more than ten times. The alias probably contains an unknown command itself, and is stuck in an infinite loop. Correct the alias.

Unknown command: A command was entered that TCC didn't recognize and couldn't find in the current search path. Check the spelling or PATH specification. You can handle unknown commands with the UNKNOWN_CMD alias (see ALIAS).

Unknown option name: (OPTION) You are attempting to modify or display an invalid or unknown option name.

Unknown process: TASKEND cannot find the process you specified. If you are ending a process using the title you may need to use wildcards to get a match on the title string. Correct the command and try again.

Variable loop: A nested environment variable refers to itself, or variables are nested more than 16 deep. Correct the error and retry the command.

Window title not found: The ACTIVATE command could not find a window with the specified title. Correct the command or open the appropriate window and try again.

Write error: Windows encountered a disk write error; usually caused by a bad or unformatted disk. See also: Data error above.

Take Command Registration

There are no separate trial and registered versions of Take Command. Without registration, a trial version is fully functional for 30 days of use.

At any time you can apply your current personal registration information to a trial version in order to turn it into a registered product. Use the command VER /R from the TCC prompt to verify the status of the copy you are currently running. You can also view the Help/About menu entry in Take Command.

When you purchase a new or upgrade copy of Take Command, you will receive an email with your name and registration key. Start Take Command, click on the Options menu entry and then Configure Take Command. Select the Register tab and enter the registration information exactly as you received it in the email. Remember to save your registration key in a safe place in case you need to reinstall. If you have lost your registration key, you can request a replacement by contacting JP Software at registration@jpsoft.com.

When you enter your registration information, Take Command will save it in the Windows Registry unless the Take Command installation is on a removable drive. The drive must be identified by Windows as a removable drive (many USB external disk drives identify themselves to Windows as non-removable). If you are unsure, try running:

echo %@removable[d:]

where d: is the drive letter. If it returns 1, then it is a removable drive. If Take Command is installed on a removable drive, it will read / write its registration info to a key file in the Take Command installation directory. This allows you to move your registered copy of Take Command among different machines by installing it to a USB thumb drive. Note that you cannot install Take Command on a removable drive if you have already installed it elsewhere on your system -- the Windows Installer does not support installing multiple copies of the same program version on the same system.

(Windows 7/8 and Vista) If you are running an elevated administrator session, you can optionally check the "Register for All Users" option.

Reference

[image: Onestep] Updater

[image: Onestep] Windows x64

[image: Onestep] Plugins

[image: Onestep] CMD Comparison

[image: Onestep] CMD Compatibility

[image: Onestep] Limits

[image: Onestep] File Systems and File Name Conventions

[image: Onestep] Regular Expression Syntax

[image: Onestep] XML in TCC

[image: Onestep] Miscellaneous Reference Information

[image: Onestep] ANSI X3.64 Command Reference

[image: Onestep] Colors, Color Names & Codes

Updater

You can check for updates to Take Command with the Help / Check for Updates menu entry. (In TCC, you can also use the OPTION / Check for Updates tab.)

You can also automate updates by using the Updater tool. UPDATE.EXE is a small executable tool (located in your Take Command installation directory) whose role is to check for updates, inform the user of their presence and offer to download and install them. When launched, the Updater checks if a newer version of Take Command exists.

Updater options

You can also run the Updater from the command line or batch files. The Updater has the following command line options:

●/checknow - The Updater is launched, pops up a dialog box, checks for updates and automatically informs the user that new updates are available. If no updates are available, the Updater will exit immediately.
●/silent - The Updater will search silently for updates at the interval specified by the user. The search interval can be specified in the Configuration dialog. By default it is the value you specified in the "Check Frequency" field (Updater Page). If the check frequency has not passed or there are no updates available, the Updater will exit immediately.
●/silentall - The Updater will search silently for updates and automatically install all updates. This has the has the same effect as the /silent option if the user has selected the "Check and automatically install all updates" option in the configuration dialog. If the check frequency has not passed or there are no updates available, the Updater will exit immediately.
●/configure - the Configure dialog will be displayed allowing the configuration of the Updater. In this dialog the user can specify the download folder, the check frequency, enable or disable the automatically update option.

Windows x64

Take Command, TCC, and TCC/LE come in both 32-bit (x86) and 64-bit (x64) versions. The 32-bit versions will run on either 32-bit or 64-bit versions of Windows; the 64-bit versions will only run on 64-bit Windows. (Either Windows XP x64, Windows 2003, Vista, Windows 2008, Windows 7, or Windows 8.)

There are a few differences between the 32 and 64-bit Take Command / TCC versions as a result of third-party module differences. Perl and Python are available from ActiveState in 64-bit versions (www.activestate.com), but Tcl is only available in a 32-bit version. (You can get the source code for Tcl and with a bit of work build an x64 version.)

Plugins

TCC plugins are user-written DLL's that allow you to write your own internal variables, variable functions, and internal commands, and have TCC load them at startup. Plugin names will override existing names, so you can extend and/or replace internal variables and commands. When TCC starts, it will automatically load any plugins in the default directory (the subdirectory PLUGINS\ in the TCC installation directory). The plugins will be loaded before the startup file (TCSTART) are executed.

You can also write keystroke plugins that will be called for every keystroke entered at the command line. A keystroke plugin can perform actions when a specific key is entered, or even change the key before passing it back to the command processor.

Plugins can be written in any language that can create a Windows DLL. The TCC plugin SDK has samples for Visual C++ and Delphi. The SDK is available on our web site at http://jpsoft.com/downloads/sdk/sdk.zip.

Plugin Syntax:

// PluginInfo structure - returned by plugin in response to GetPluginInfo() call from command processor

// Note that the strings should all be Unicode; if your PlugIn is compiled for ASCII you'll need to use

// the MultiByteToWideChar API to convert the strings before passing them back to TCC

typedef struct {

TCHAR *pszDll; // name of the DLL

TCHAR *pszAuthor; // author's name

TCHAR *pszEmail; // author's email

TCHAR *pszWWW; // author's web page

TCHAR *pszDescription; // (brief) description of plugin

TCHAR *pszFunctions; // comma-delimited list of functions in the

 // plugin (leading _ for internal vars, @ for

 // var funcs, * for keystroke function,

 // otherwise it's a command)

int nMajor; // plugin's major version #

int nMinor; // plugin's minor version #

int nBuild; // plugin's build #

HMODULE hModule; // module handle

TCHAR *pszModule; // module name

} PLUGININFO, *LPPLUGININFO;

// structure passed to plugin functions to monitor keystrokes. A

// keystroke function can be named anything, but must prefix a

// * to its name in the function list (pszFunctions, above).

// If the keystroke plugin handled the keystroke and doesn't want

// pass it back to TCC, it should set nKey = 0

// The command processor will call the keystroke function with all

// parameters set to 0 just before accepting input for each new

// command line.

// The string pointers are Unicode

typedef struct {

int nKey; // key entered

int nHomeRow; // start row

int nHomeColumn; // start column

int nRow; // current row in window

int nColumn; // current column in window

LPTSTR pszLine; // command line

LPTSTR pszCurrent; // pointer to position in line

int fRedraw; // if != 0, redraw the line

} KEYINFO, *LPKEYINFO;

__declspec(dllexport) BOOL WINAPI InitializePlugin(void); // called by command processor after loading all plugins

__declspec(dllexport) LPPLUGININFO WINAPI GetPluginInfo(HMODULE hModule); // called by command processor to get information from plugin, primarily for the names of functions & commands

__declspec(dllexport) BOOL WINAPI ShutdownPlugin(BOOL bEndProcess); // called by command processor when shutting down

// if bEndProcess = 0, only the plugin is being closed

// if bEndProcess = 1, the command processor is shutting down

The functions listed in "pszFunctions" and called by TCC need to be in the format:

DLLExports INT WINAPI MyFunctionName(LPTSTR pszArguments);

Internal variable names in pszFunctions (and their corresponding functions) must begin with an underscore ('_').

Variable function names in pszFunctions must begin with an @; the corresponding function must be prefixed by "f_".

(This allows variable functions to have the same name as internal commands.)

For example:

pszFunctions = "reverse,@reverse"

Entering the name "reverse" on the command line will invoke the command reverse()

Entering the name "@reverse[]" on the command line will invoke the variable function f_reverse()

Variable function names are limited to a maximum of 31 characters.

Internal command names are any combination of alphanumeric characters (maximum 12 characters).

Calling the PlugIn:

For internal variables, pszArguments is empty (for output only)

For variable functions, pszArguments passes the argument(s) to the plugin function

For internal commands, pszArguments is the command line minus the name of the internal command

Returning from the PlugIn:

For internal variables and variable functions, copy the result string over pszArguments. The maximum string length for internal variables and variable functions is 2K (2047 characters + null byte).

Internal variables have no meaningful integer return value. For variable functions, the integer return can be:

0 = success

< 0 = failure; error message already displayed by the PlugIn function

> 0 = failure; error value should be interpreted as a system error and

 displayed by 4NT / TC

There is a special return value (0xFEDCBA98) that tells the parser to assume that the plugin decided not to handle the variable/function/command. The parser then continues looking for a matching internal, then external. Note that you can use this return value to have your plugin modify the command line and then pass it on to an existing internal variable/function/command!

For internal commands, return the integer result (anything left in pszArgument will be ignored)

Exception Handling:

TCC will trap any exceptions occurring in the plugin, to prevent the plugin from crashing the command processor. An error message will be displayed and the plugin will return an exit code = 2.

Take Command Interface:

Added some new API functions for manipulating the directory history and command history:

DirHistoryStart(void) - returns a pointer to the beginning of the directory history

HistoryStart(void) - returns a pointer to the beginning of the command history

DeleteFromHistory(LPTSTR lpszLine) - deletes the line from the command history (this is a pointer to the line to be deleted, not a line to be matched!)

If the user tries to display online help with HELP, F1 or Ctrl-F1, TCC will check for a plugin variable, variable function, or command, and if the name matches search for, load and execute a "Help" function in the plugin. The plugin is responsible for displaying its own help. The "Help" function should NOT appear in the plugin's comma-delimited function list in pszFunctions. Help should return 1 if it displayed help (or if it doesn't want TCC to try to display help for this topic). The syntax of the Help function in the plugin should be:

Help(LPTSTR pszName);

If Take Command wants to display usage text, TCC will check for a plugin command, and if the name matches search for, load and execute a "Usage" function in the plugin. The plugin is responsible for displaying its own help. The "Usage" function should NOT appear in the plugin's comma-delimited function list in pszFunctions. The plugin should return a multi-line string containing the command syntax. The first line (terminated by a \r) is displayed in the Take Command status bar. The entire string is displayed as a tooltip popup when the mouse hovers over the status bar message. Usage should return 1 if it wrote something to pszUsage (or if it doesn't want TCC to try to display a usage string). The syntax of the Usage function in the plugin should be:

Usage(LPTSTR pszName, LPTSTR pszUsage);

The TakeCommandIPC function allows plugins to communicate with the controlling Take Command instance. The syntax is:

__declspec(dllexport) int TakeCommandIPC(LPTSTR pszCommand, LPTSTR pszArguments);

The supported commands are:

HWND

 Returns the Take Command window handle in pszArguments

TCTAB

Returns 1 if the process ID in pszArguments is running in a TC window

TCTABS

Returns the number of Take Command tab windows

HVIEW

Returns the handle of the active tab window in pszArguments

HELP

Displays the Take Command help for the topic in pszArguments

USAGE

Display the usage message in pszArguments in the status bar. The first line (up to the first CR) is displayed in the

 status bar; the rest is displayed in the tooltip if you hover the mouse over the status bar.

STATUSBAR

Display the message in pszArguments in the status bar

TCTOOLBAR

Update the Take Command tab toolbar with pszArguments

TCFILTER

Return the selected filter in the list view in pszArguments

TCFILTER_CMD

Set the selected filter in the list view to the value in pszArguments

CDD

Change the folder and list view to the directory in pszArguments

TCFOLDER

Return the selected folder in the Folders tree control in pszArguments

SHORTCUT

Return the name of the shortcut that started Take Command in pszArguments

SELECTED

Return the currently selected text in pszArguments

SELECT

Mark the selection specified in pszArguments (top, left, bottom, right) in Take Command

START

Attach a hidden console window whose hex PID is in pszArguments

ACTIVATE

Activate the window whose handle is in pszArguments

WINDOW

Has a number of arguments (specified in pszArguments) to control the Take Command window:

MAX

MIN

HIDE

RES

TRAY

TRANS=n

FLASH=n

DETACH n (where n is the PID of the process to detach)

TOPMOST

NOTOPMOST

TOP

BOTTOM

ArrayVariables

Plugins can access TCC array variables directly through the ArrayVariables array. See TakeCmd.h in the SDK for details.

CMD Comparison

The comparison of commands available is based on the version of CMD included with Windows 7.

If the CMD command name matches an internal TCC command, the TCC command is almost always substantially enhanced.

[image: Onestep] TCC, TCC/LE, and CMD commands

[image: Onestep] Command line editing

[image: Onestep] Filename completion

[image: Onestep] Command completion

[image: Onestep] Redirection

[image: Onestep] Wildcards

[image: Onestep] Built-In Variables

[image: Onestep] Unique TCC features

TCC, TCC/LE, and CMD commands

	TCC

	TCC/LE

	CMD

	?

	Y

	

	ACTIVATE

	Y

	

	ALIAS

	Y

	

	ASSOC

	Y

	Y

	ASSOCIATE

	

	

	ATTRIB

	Y

	*

	BATCOMP

	

	

	BDEBUGGER

	

	

	BEEP

	Y

	

	BREAK

	Y

	Y

	BREAKPOINT

	

	

	CALL

	Y

	Y

	CANCEL

	Y

	

	CD / CHDIR

	Y

	Y

	CDD

	Y

	

	CHCP

	Y

	*

	CLIPMONITOR

	

	

	CLS

	Y

	Y

	COLOR

	Y

	Y

	COPY

	Y

	Y

	DATE

	Y

	Y

	DATEMONITOR

	

	

	DEBUGSTRING

	

	

	DEFER

	

	

	DEL / ERASE

	Y

	Y

	DELAY

	Y

	

	DESCRIBE

	Y

	

	DETACH

	

	

	DIR

	Y

	Y

	DIRHISTORY

	Y

	

	DIRS

	Y

	

	DISKMONITOR

	

	

	DO

	Y

	

	DRAWBOX

	Y

	

	DRAWHLINE

	Y

	

	DRAWVLINE

	Y

	

	ECHO

	Y

	Y

	ECHOERR

	Y

	

	ECHOS

	Y

	

	ECHOSERR

	Y

	

	ECHOX

	

	

	ECHOXERR

	

	

	EJECTMEDIA

	Y

	

	ENDLOCAL

	Y

	Y

	ESET

	Y

	

	EVENTLOG

	

	

	EVENTMONITOR

	

	

	EVERYTHING

	

	

	EXCEPT

	Y

	

	EXIT

	Y

	Y

	FFIND

	Y

	

	FIREWIREMONITOR

	

	

	FOLDERMONITOR

	

	

	FONT

	

	

	FOR

	Y

	Y

	FREE

	Y

	

	FTYPE

	Y

	Y

	FUNCTION

	

	

	GLOBAL

	Y

	

	GOSUB

	Y

	

	GOTO

	Y

	Y

	GZIP

	

	

	HEAD

	

	

	HELP

	Y

	*

	HISTORY

	Y

	

	IDE

	

	

	IF

	Y

	Y

	IFF

	Y

	

	IFTP

	

	

	INKEY

	Y

	

	INPUT

	Y

	

	JABBER

	

	

	KEYBD

	Y

	

	KEYS

	Y

	Y

	KEYSTACK

	Y

	

	LIST

	Y

	

	LOADBTM

	

	

	LOADMEDIA

	Y

	

	LOG

	Y

	

	MD / MKDIR

	Y

	Y

	MEMORY

	Y

	

	MKLINK

	Y

	Y

	MKLNK

	Y

	

	MOVE

	Y

	Y

	MSGBOX

	Y

	

	NETMONITOR

	

	

	ON

	Y

	

	OPTION

	Y

	

	OSD

	

	

	PATH

	Y

	Y

	PAUSE

	Y

	Y

	PDIR

	Y

	

	PLAYAVI

	

	

	PLAYSOUND

	

	

	PLUGIN

	Y

	

	POPD

	Y

	Y

	POSTMSG

	

	

	PRINT

	

	

	PRIORITY

	

	

	PROCESSMONITOR

	

	

	PROMPT

	Y

	Y

	PUSHD

	Y

	Y

	QUERYBOX

	Y

	

	QUIT

	Y

	

	RD / RMDIR

	Y

	Y

	REBOOT

	Y

	

	RECYCLE

	

	

	REM

	Y

	Y

	REN / RENAME

	Y

	Y

	RETURN

	Y

	

	REXEC

	

	

	RSHELL

	

	

	SCREEN

	Y

	

	SCREENMONITOR

	

	

	SCRIPT

	

	

	SCRPUT

	Y

	

	SELECT

	Y

	

	SENDHTML

	

	

	SENDMAIL

	

	

	SERVICEMONITOR

	

	

	SERVICES

	

	

	SET

	Y

	Y

	SETARRAY

	

	

	SETDOS

	Y

	

	SETERROR

	

	

	SETLOCAL

	Y

	Y

	SHIFT

	Y

	Y

	SHORTCUT

	

	

	SHRALIAS

	Y

	

	SMPP

	

	

	SNMP

	

	

	SNPP

	

	

	START

	Y

	Y

	STATUSBAR

	

	

	SWITCH

	Y

	

	SYNC

	

	

	TAIL

	

	

	TAR

	

	

	TASKBAR

	

	

	TASKDIALOG

	

	

	TASKEND

	

	

	TASKLIST

	

	

	TCDIALOG

	

	

	TCFILTER

	Y

	

	TCTOOLBAR

	Y

	

	TEE

	Y

	

	TEXT

	Y

	

	TIME

	Y

	Y

	TIMER

	Y

	

	TITLE

	Y

	Y

	TOUCH

	Y

	

	TRANSIENT

	

	

	TREE

	Y

	*

	TRUENAME

	Y

	

	TYPE

	Y

	Y

	UNALIAS

	Y

	

	UNFUNCTION

	

	

	UNGZIP

	

	

	UNSET

	Y

	

	UNSETARRAY

	

	

	UNTAR

	

	

	UNZIP

	

	

	USBMONITOR

	

	

	VBEEP

	

	

	VER

	Y

	Y

	VERIFY

	Y

	Y

	VIEW

	

	

	VOL

	Y

	Y

	VSCRPUT

	Y

	

	WEBFORM

	

	

	WEBUPLOAD

	

	

	WHICH

	Y

	

	WINDOW

	Y

	

	WMIQUERY

	

	

	Y

	Y

	

	ZIP

	

	

	ZIPSFX

	

	

* This is an internal command in TCC but an external command in CMD.

Command line editing

TCC offers vastly more sophisticated command line editing capabilities; see Command Line Editing for details.

Filename completion

CMD has a simple filename completion (with the tab key); TCC offers many more options, including server and sharename completion, customizable completion and (optional) popup window selection. See Filename Completion and Filename Completion Window for more details.

Command history

CMD has simple (optional) command history recall. TCC offers many more options, including loading and saving history lists, editing and moving commands in the list, searching for matching commands, and a popup command history window.

Redirection

In addition to the CMD <, > and |, TCC allows you to also redirect standard error, combine standard output and standard error, protect existing files from being overwritten by redirection, and redirect standard input using "here-documents". See Redirection for more details.

Wildcards

CMD only supports the ? and * wildcards in filenames. TCC adds character sets and regular expressions, and also supports wildcards in pathnames. See Wildcards for more details.

Built-In Variables

CMD has a few built-in variables (i.e., which are treated as environment variables but which do not exist in the environment):

CD - current directory

CMDCMDLINE - command line that started CMD

CMDEXTVERSION - the command extensions internal version number

DATE - the current date (in the default short format)

RANDOM - a random number between 0 and 32767

TIME - current time

TCC supports all of these built-in variables. (In TCC, CMDEXTVERSION will always return 2.) TCC also includes 180+ additional internal variables, 310+ variable functions, and 60+ command variables.

Unique TCC features

TCC includes many more features not in CMD, including:

Batch debugger

Aliases

Internal functions

User defined functions

File selection

File Ranges

Conditional Commands

Internet access and email

OpenAFS support

ANSI X3.64 support

Directory navigation and Directory History

Histories and Logs

Intersession sharing

Perl, Python, REXX, Ruby, and Tcl support

CMD Compatibility

We try to keep TCC as compatible as possible with CMD, given the limitations and bugs in CMD, the variances in CMD in different versions of Windows, and the thousands of additional features available in TCC. On rare occasions, you may find batch files that exploit undocumented features (or bugs) in CMD (or are simply badly written) that don't work in TCC. In almost all of those cases, TCC will run those batch files if you set the appropriate compatibility options.

There are two options you should set if you regularly run batch files created for CMD:

OPTION / Startup / Duplicate CMD.EXE bugs (This is the default, and tells TCC to duplicate two bugs in CMD's IF command parsing.)

OPTION / Startup / CMD.EXE delayed expansion (If you have this startup option set for your CMD environment.)

If you only run batch files created for CMD, you should also set:

CMDVariables=YES

in your TCMD.INI file. WARNING: This means you won't be able to run any batch files written for TCC, which only requires a single leading % for variables.

There are also some TCC features that might on very rare occasions cause conflicts with CMD batch files:

Enable "OPTION / Startup / Search for SFNs". (Definitely not recommended unless you want some potentially unpleasant results when you're copying, moving, or deleting files, but it *is* how CMD does it.)

Disable pseudovariable expansion (OPTION / Advanced / Special Characters)

SETDOS /X279 to disable nested aliases, quoting, and include lists.

Finally, if you want CMD-style command line editing (i.e., practically none), you can remove most of the TCC command line editing features with the OPTION / Command Line dialog.

Limits

Length Limits (characters)

	entity

	name

	value

	combined

	environment variable

	1023

	20,000

	20,000

	alias

	1023

	20,000

	20,000

	user defined function

	1023

	20,000

	20,000

	command type

	before expansion

	after expansion

	command line

	32,767

	65,535

	command group

	32,767

	65,535

Nesting Limits

	command

	depth

	CALL

	32

	DO

	no limit

	FOR

	no limit

	GOSUB without parameters

	no limit

	GOSUB with parameters

	22

	SETLOCAL

	16

	IFF

	no limit

Miscellaneous Limits (characters)

	entity

	limit

	character count in any function

	20,000

	number of batch file parameters

	4,095

	number of GOSUB parameters

	255

	file name

	20,000

	include list

	20,000

	single parameter

	20,000

	global alias list *

	262,144

	global function list *

	131,072

	key substitution table

	128

	directory stack (PUSHD)

	4,095

* The global alias list and global function list sizes may be increased with the AliasSize and FunctionSize .INI directives.

File Systems and File Names

The unique name of any file is composed of a drive letter, a directory path, and a filename. In Windows, each of these parts of the file's name is case insensitive; you can mix upper and lower case letters in any way you wish. (Note that when accessing Linux / UNIX FTP servers, the filenames are case sensitive.)

The topics below are roughly divided according to the different parts of a file name, and cover the file system structure and naming conventions:

[image: Onestep] Drives and Volumes

[image: Onestep] File Systems

[image: Onestep] Directories and Subdirectories

[image: Onestep] File Names

[image: Onestep] File Attributes

[image: Onestep] Time Stamps

[image: Onestep] NTFS Streams

Drives and Volumes

A drive letter designates which drive contains the file. In a file's full name, the drive letter is followed by a colon. Drive letters A: and B: are normally reserved for the floppy disk drives (now largely obsolete).

Normally, drive C: is the first (or only) hard disk drive. Most current operating systems can partition a large hard disk into multiple logical drives or volumes that are usually called C:, D:, E:, etc. Network systems (LANs) give additional drive letters to sections of the network file server drives. In addition, you can access network drives via their UNC (universal naming convention) name (e.g. \\data\vol1\...), without using a drive letter. See File Systems for more details.

Most systems also include optical drives (i.e. CD-ROM, CD-RW, and/or DVD). The optical drive is also assigned a drive letter (or several letters, for changers), typically using letters beyond that used by the last hard disk in the system, but before any network drives.

For example, on a system with a large hard disk you might have A: and B: as floppy drives, C:, D:, and E: as parts of the hard disk, F: as a CD-ROM drive, G: as a DVD drive, and H: and I: as network drives.

Each volume is formatted under a particular file system; see File Systems for details. Additional information about disk files and directories is available under Directories and Subdirectories, File Names, and File Attributes.

File Systems

Take Command uses only documented Windows APIs to access the file systems, so it works with any file system supported by Windows.

Additional information about disk files and directories is available under Drives and Volumes, Directories and Subdirectories, File Names, and File Attributes.

Network File Systems

A network file system allows you to access files stored on another computer on a network, rather than on your own system. Take Command supports all network file systems which are compatible with the underlying operating system. The networking software used to access remote systems (such as UNIX, Linux, OS X, etc..) which use different file systems typically emulates one of the common Windows file systems. Those emulations do not always provide a perfect duplicate of some functions (attributes, timestamps, etc.), an issue unrelated to Take Command.

File and directory names for network file systems depend on both the "server" software running on the system that has the files on it, and the "client" software running on your computer to connect it to the network. However, they usually follow the rules described here.

Most network software maps unused drive letters on your system to specific locations on the network, and you can then treat the drive as if it were physically part of your local computer.

When you use a network file system, remember that the naming rules for files on the network may not match those on your local system. For example, your local system may support long filenames while the network server or client software does not, or vice versa. Take Command will usually handle whatever naming conventions are supported by your network software, as long as the network software accurately reports the types of names it can handle.

In rare cases, Take Command may not be able to report correct statistics on network drives (such as the number of bytes free on a drive). This is usually because the network file system does not provide complete or accurate information.

Universal Naming Convention (UNC)

Some networks also support the Universal Naming Convention, which provides a common method for accessing files on a network drive without using a mapped drive letter. Names specified this way are called UNC names. They typically appear as \\server\path\filename, where server is the name of the network server where the files reside, and the path\filename portion is a directory name and file name which follow the conventions described under Directories.

Take Command also allows you to use UNC directory names when changing directories (see Directory Navigation for more details).

OpenAFS

Take Command and TCC have built-in support for OpenAFS. (TCC/LE does not support OpenAFS.) The parser will recognize Linux-style AFS names (i.e., /afs/athena/user) and convert them to Windows-compatible names (i.e., \\afs\athena\user). (It will also check for custom AFS mount points, and use that name instead of afs.)

See http://www.openafs.org for more information on OpenAFS.

Directories and Subdirectories

A file system is a method of organizing all of the files on an entire disk or hard disk volume. Directories (or folders) are used to divide the files on a disk into logical groups that are easy to work with. Their purpose is similar to that of file drawers containing groups of hanging folders, hanging folders containing smaller folders, and so on. (The terms directory and folder are not synonymous but often used as such in common Windows terminology. For accuracy, we use directory throughout these help files unless other folder types are also specifically applicable.)

Every drive has a root or base directory, and many have one or more subdirectories. Subdirectories can also have subdirectories, extending in a branching tree structure from the root directory. The collection of all directories on a drive is often called the directory tree, and a portion of the tree is sometimes called a subtree. The terms directory and subdirectory are typically used interchangeably to mean a single subdirectory within this tree structure.

Subdirectory names follow the same naming rules as files in each operating system (see File Names).

The drive and subdirectory portions of a file's name are called the file's path. For example, the file name C:\DIR1\DIR2\MYFILE.DAT says to look for the file MYFILE.DAT in the subdirectory DIR2 which is part of the subdirectory DIR1 which is on drive C. The path for MYFILE.DAT is C:\DIR1\DIR2. The backslashes between subdirectory names are required.

Under TCC, the path and filename can be up to 32,767 characters, though many Windows applications (including CMD and Explorer) have trouble with path and filename lengths exceeding 260 characters. Shorter paths and names are advisable under Windows whenever feasible.

TCCmaintains both a current or default drive for your system as a whole, and a current or default directory for every drive in your system. Whenever a program tries to create or access a file without specifying the file's path, the operating system uses the current drive (if no other drive is specified) and the current directory (if no other directory path is specified).

The root directory is named using the drive letter and a single backslash. For example, D:\ refers to the root directory of drive D:. Using a drive letter with no directory name at all refers to the current directory on the specified drive. For example, E:JPSOFT.DOC refers to the file JPSOFT.DOC in the current directory on drive E:, whereas E:\JPSOFT.DOC refers to the file JPSOFT.DOC in the root directory on drive E:.

There are also two special subdirectory names that are useful in many situations: a single period [.] means "the current default directory." Two periods [..] means "the directory which contains the current default directory" (referred to as the parent directory). These special names can be used wherever a full directory name can be used. TCC allows you to use additional periods to specify directories further "up" the tree (see Extended Parent Directory Names).

Additional information about disk files and file systems is available under Drives and Volumes, File Systems, File Names, and File Attributes.

File Names

FAT File Names

Under the FAT file system, a filename consists of a base name of 1 to 8 characters plus an optional extension composed of a period plus 1 to 3 more characters. FAT filenames with an 8-character name and a 3-character extension are sometimes referred to as short filenames (SFNs) to distinguish them from long file names (LFNs).

You can use alphabetic and numeric characters plus the punctuation marks ! # $ % & ' () - @ ^ _ ` { } and ~ in both the base name and the extension of a FAT filename. Because the exclamation point [!], percent sign [%], caret [^], at sign [@], parentheses [()], and back-quote [`] also have other meanings to TCC, it is best to avoid using them in filenames. It is also better to use only those characters found in ASCII, because changing font and/or code page may change drastically how they are displayed.

FAT file names are always stored on the disk in upper case, and are displayed in upper or lower case depending on the options you select in TCC.

Long File Names

VFAT, FAT32 and NTFS allow using long file names with a maximum of 255 characters, including spaces and other characters that are not allowed in a FAT system file name, but excluding some punctuation characters which are allowed in FAT file names. See your operating system documentation for details on the characters allowed. If you use file names which contain semicolons [;], see Wildcards for details on avoiding problems with interpretation of those file names under TCC.

LFNs are stored and displayed exactly as you entered them, and are not automatically shifted to upper or lower case. For example, you could create a file called MYFILE, myfile, or MyFile, and each name would be stored in the directory just as you entered it. However, case is ignored when looking for filenames, so you cannot have two files whose names differ only in case (i.e., the three names given above would all refer to the same file). This behavior is sometimes described as "case-retentive but not case-sensitive" because the case information is retained, but does not affect access to the files. This is in contrast with Linux-style file systems, which are case sensitive, and permit AA, Aa, aA, and aa to be four different file names.

A file that has an LFN may have an additional, "FAT-compatible" name, which contains only those characters legal on a FAT volume, and which meets the 8-character name / 3-character extension limits. Programs which cannot handle long names generally can access files by using their FAT-compatible names. This name is assigned at the time the LFN is created in the specific directory, and to make it unique, it depends on what other SFNs exist in that directory at that instance. Consequently, when copying the file to another directory by its LFN the SFN generated in the target directory may be different from the SFN in the source directory.

When specifying an LFN-compatible file name, which includes spaces or other characters that would either not be allowed in a FAT name, or that may have syntactical significance for TCC, you must place double quotes around the name in the command line. For example, suppose you have a file named LET3 on a FAT volume, and you want to copy it to the LETTERS directory on drive F:, an LFN volume, and give it the name Letter To Sara. To do so, use either of these commands:

copy let3 f:\LETTERS\"Letter To Sara"

copy let3 "f:\LETTERS\Letter To Sara"

The LFN file systems do not explicitly define an "extension" for file names which are not FAT-compatible. However, by convention, all characters after the last period in the file name are treated as the extension. For example, the file name "Letter to Sara" has no extension, whereas the name "Letter.to.Sara" has the extension Sara.

Additional information about disk files and file systems is available under Drives and Volumes, File Systems, Directories and Subdirectories, File Attributes, and Time Stamps.

File Attributes

Each file has attributes, each of which defines a single characteristic of the file that can be either set or reset. Most file processing commands allow you to select files for processing based on their attributes. The basic attributes Archive, Read only, Hidden, System, and Directory are present on all disk volumes. NTFS volumes support additional attributes: Encrypted, Compressed, Normal, Offline, Temporary, Not content-indexed, Sparse, Junction / Symbolic Link / Reparse point, No Scrub, and Integrity. Take Command fully supports these extended attributes.

Archive - set by the operating system when the contents of the file are modified to indicate that it is a candidate to be archived, i.e., to be backed up. The attribute can be reset by any program to indicate that the file's contents have been archived. Most programs which can unset this attribute require that you use the explicit reset option, and default to retaining the status of this attribute. For example, the TCC command COPY requires the /X option to reset this attribute.

Read-only - if this attribute is set, the file can't be changed or erased accidentally. Most programs honor this attribute by default, which helps to protect important files from erasure and damage.

Either of the Hidden and System attributes, when set, prevent the file from appearing in directory listings and file searches, including those performed by file processing command of Take Command, unless explicitly requested.. This both protects such files from accidental modification, and also speeds up user tasks not explicitly intended to process them.

Directory - this attribute is set by the operating system when a subdirectory is created, e.g., by the MKDIR command. The attribute cannot be reset. The operating system restricts all accesses to a directory file to directory manipulation operations.

Volume label - a special attribute of at most one directory entry in the root directory of a disk drive. The entry can be created, modified, or deleted only through the Windows utility LABEL (or equivalent third-party software). Take Command does not directly modify the volume label or any of its attributes, and provide read access only through the VOL command and the @LABEL[] variable function. All other commands ignore this directory entry.

Normal - this pseudo attribute is considered to be set if all other attributes (including the extended attributes available only on an NTFS volumes) are reset. It is not stored by the file system. When Take Command checks file attributes, it considers the Normal attribute as set if each of the other attributes is either reset, or unsupported by the combination of the file system and operating system.

The file attributes can also be accessed with the ATTRIB and DIR commands, and by the @ATTRIB and @WATTRIB variable functions.

Attributes can be set, reset, and viewed with the ATTRIB command. The DIR command also has options to view the attribute status of files, and to view information about normally invisible hidden and system files and directories.

File Time Stamps

Each file has one or more time stamps. They are used by the operating system to record when the file was created, last modified, or last accessed. Most TCC file processing commands allow you to select files for processing based on their time stamps.

	1.	Write time is the date and time the file was last written, i.e., when its content was last modified, On FAT volumes this is the only timestamp. In all commands and functions this is the timestamp used unless you specify another. On FAT and VFAT volumes, the resolution is 2 seconds. NTFS volumes have a 100 nanosecond resolution for the file creation and last write. (UNIX and Linux systems use 1 second resolution.) When a file is copied using the COPY command, even across a network, its write time is not changed. However, different file systems record time with different resolution, so minor changes may occur.

	2.	Creation time is the date and time the current instance of the file was created.

	3.	Access time is the date, and on NTFS volumes, the time, when the file was last accessed for either reading or writing.

Several TCC commands and functions let you specify which set of time and date stamps you want to view or work with on LFN volumes. These commands and functions use the letter

	c	creation time stamp,

	w	last write time stamp, and

	a	last access time stamp.

Note that FAT32 and VFAT volumes store the date but not the time of the last access. On these drives the time of last access will always be 00:00.

Time Stamp Resolution

The resolution of time stamps as well as the range of time instances representable vary with file systems.

	file system

	resolution

	earliest time stamp

	latest time stamp

	FAT/VFAT

	2 s

	1980-01-01 00:00:00 local

	2107-12-31 23:59:58 local

	NTFS

	100 ns

	1601-01-01 00:00:00 UTC

	60056-05-28 UTC

NTFS Timestamp Reports

These operating systems report timestamps in local time. However, conversion between UTC and local time is based on the difference between UTC and local time at the time of conversion, instead of that in effect when the file event occurred. Consequently, if daylight saving time is currently in effect, all file events around the year will be reported in DST. conversely, when DST is not in effect, all file events around the year will be reported in standard time. This method has the advantage that differences in event times can be calculated easily. However, the times reported will not be those when the event took place if the state DST at time of event is not the same as at the time of reporting.

The TOUCH command can be used to modify the timestamps of files and directories.

Additional information about disk files and file systems is available under Drives and Volumes, File Systems, Directories and Subdirectories, and File Names.

NTFS File Streams

The NTFS file system allows each file to contain multiple "streams" or sets of data. For example a compiler could use streams to store a program's source code, object code, and other data, or a word processing program could use them to store multiple versions of the same document.

Streams are specified by entering a stream name following the file name, for example:

myfile.doc:version1

myfile.doc:version2

You cannot use wildcards in stream names except when using filename completion.

You can display stream names with the DIR /: option. The file processing commands COPY, DEL, FFIND, HEAD, LIST, MOVE, TAIL and TYPE support file streams when the stream name is explicitly specified; see the individual commands for additional details. Other file-related commands, such as ATTRIB and TOUCH work with the file as a whole, and not with any particular stream or portion of the file data.

Variable functions which reference file contents, such as @FILEOPEN, @LINE, and @LINES also accept stream names.

Regular Expression Syntax

Oniguruma Regular Expressions Version 5.9.2 2010/01/09

This section covers the Ruby regular expression syntax. For information on Perl regular expression syntax, see your Perl documentation or http://www.perl.com/doc/manual/html/pod/perlre.html.

1. Syntax elements

	\ 	escape (enable or disable meta character meaning)

	|	alternation

	(...)	group

	[...]	character class

2. Characters

	\t	horizontal tab (0x09)

	\v	vertical tab (0x0B)

	\n	newline (0x0A)

	\r	return (0x0D)

	\b	back space (0x08)

	\f	form feed (0x0C)

	\a	bell (0x07)

	\e	escape (0x1B)

	\nnn	octal char (encoded byte value)

	\xHH	hexadecimal char (encoded byte value)

\x{7HHHHHHH} wide hexadecimal char (character code point value)

	\cx	control char (character code point value)

	\C-x	control char (character code point value)

	\M-x	meta (x|0x80) (character code point value)

	\M-\C-x	meta control char (character code point value)

(* \b is effective in character class [...] only)

3. Character types

	.	any character (except newline)

	\w	 word character

	

		Not Unicode:

	 	 alphanumeric, "_" and multibyte char.

	

		Unicode:

		 General_Category -- (Letter|Mark|Number|Connector_Punctuation)

\W non word char

	\s	whitespace char

	

		Not Unicode:

		 \t, \n, \v, \f, \r, \x20

	

		Unicode:

		 0009, 000A, 000B, 000C, 000D, 0085(NEL),

		 General_Category -- Line_Separator

 -- Paragraph_Separator

 -- Space_Separator

	\S	non whitespace char

	\d	decimal digit char

	

		Unicode: General_Category -- Decimal_Number

	\D	non decimal digit char

	\h	hexadecimal digit char [0-9a-fA-F]

	\H	non hexadecimal digit char

Character Property

* \p{property-name}

* \p{^property-name} (negative)

* \P{property-name} (negative)

property-name:

+ works on all encodings

Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper, XDigit, Word, ASCII,

4. Quantifier

greedy

	

		? 1 or 0 times

		* 0 or more times

		+ 1 or more times

		{n,m} at least n but not more than m times

		{n,} at least n times

		{,n} at least 0 but not more than n times ({0,n})

		{n} n times

reluctant

	

		?? 1 or 0 times

		*? 0 or more times

		+? 1 or more times

		{n,m}? at least n but not more than m times

		{n,}? at least n times

		{,n}? at least 0 but not more than n times (== {0,n}?)

possessive (greedy and does not backtrack after repeated)

	

		?+ 1 or 0 times

		*+ 0 or more times

		++ 1 or more times

	

		({n,m}+, {n,}+, {n}+ are possessive op. in ONIG_SYNTAX_JAVA only)

	

		ex. /a*+/ === /(?>a*)/

5. Anchors

	^	beginning of the line

	$	end of the line

	\b	word boundary

	\B	not word boundary

	\A	beginning of string

	\Z	end of string, or before newline at the end

	\z	end of string

	\G	matching start position (*)

6. Character class

	^...	negative class (lowest precedence operator)

	x-y	range from x to y

	[...]	set (character class in character class)

	..&&..	intersection (low precedence at the next of ^)

ex. [a-w&&[^c-g]z] ==> ([a-w] AND ([^c-g] OR z)) ==> [abh-w]

* If you want to use '[', '-', ']' as a normal character in a character class, you should escape these characters by '\'.

POSIX bracket ([:xxxxx:], negate [:^xxxxx:])

Not Unicode Case:

alnum alphabet or digit char

alpha alphabet

ascii code value: [0 - 127]

blank \t, \x20

cntrl

digit 0-9

graph include all of multibyte encoded characters

lower

print include all of multibyte encoded characters

punct

space \t, \n, \v, \f, \r, \x20

upper

word alphanumeric, "_" and multibyte characters

xdigit 0-9, a-f, A-F

Unicode Case:

alnum Letter | Mark | Decimal_Number

alpha Letter | Mark

ascii 0000 - 007F

blank Space_Separator | 0009

cntrl Control | Format | Unassigned | Private_Use | Surrogate

digit Decimal_Number

graph [[:^space:]] && ^Control && ^Unassigned && ^Surrogate

lower Lowercase_Letter

print [[:graph:]] | [[:space:]]

punct Connector_Punctuation | Dash_Punctuation | Close_Punctuation | Final_Punctuation | Initial_Punctuation | Other_Punctuation | Open_Punctuation

space Space_Separator | Line_Separator | Paragraph_Separator | 0009 | 000A | 000B | 000C | 000D | 0085

upper Uppercase_Letter

word Letter | Mark | Decimal_Number | Connector_Punctuation

xdigit 0030 - 0039 | 0041 - 0046 | 0061 - 0066 (0-9, a-f, A-F)

7. Extended groups

	(?#...)	comment

	(?imx-imx)	option on/off

		i: ignore case

		m: multi-line (dot(.) match newline)

		x: extended form

	(?imx-imx:subexp)	option on/off for subexp

	(?:subexp)	not captured group

	(subexp)	captured group

	(?=subexp)	look-ahead

	(?!subexp)	negative look-ahead

	(?<=subexp)	look-behind

	(?<!subexp)	negative look-behind

	

		Subexp of look-behind must be fixed character length. But different character length is allowed in top level alternatives only.

		ex. (?<=a|bc) is OK. (?<=aaa(?:b|cd)) is not allowed.

	

		In negative-look-behind, captured group isn't allowed, but shy group(?:) is allowed.

	(?>subexp)	atomic group

		don't backtrack in subexp.

	(?<name>subexp)	define named group

		(All characters of the name must be a word character. And first character must not be a digit or upper case)

		Not only a name but a number is assigned like a captured group.

	

		Assigning the same name as two or more subexps is allowed. In this case, a subexp call can not be performed although the back reference is possible.

8. Back reference

	\n	back reference by group number (n >= 1)

	\k<n>	back reference by group number (n >= 1)

	\k'n'	back reference by group number (n >= 1)

	\k<-n>	back reference by relative group number (n >= 1)

	\k'-n'	back reference by relative group number (n >= 1)

	\k<name>	back reference by group name

	\k'name'	back reference by group name

In the back reference by the multiplex definition name, a subexp with a large number is referred to preferentially. (When not matched, a group of the small number is referred to.)

* Back reference by group number is forbidden if named group is defined in the pattern and ONIG_OPTION_CAPTURE_GROUP is not setted.

Back reference with nest level

level: 0, 1, 2, ...

\k<n+level> (n >= 1)

\k<n-level> (n >= 1)

\k'n+level' (n >= 1)

\k'n-level' (n >= 1)

\k<name+level>

\k<name-level>

\k'name+level'

\k'name-level'

Destinate relative nest level from back reference position.

example 1.

/\A(?<a>|.|(?:(?.)\g<a>\k<b+0>))\z/.match("reer")

example 2.

r = Regexp.compile(<<'__REGEXP__'.strip, Regexp::EXTENDED)

(?<element> \g<stag> \g<content>* \g<etag>){0}

(?<stag> < \g<name> \s* >){0}

(?<name> [a-zA-Z_:]+){0}

(?<content> [^<&]+ (\g<element> | [^<&]+)*){0}

(?<etag> </ \k<name+1> >){0}

\g<element>

__REGEXP__

p r.match('<foo>f<bar>bbb</bar>f</foo>').captures

9. Subexp call ("Tanaka Akira special")

	\g<name>	call by group name

	\g'name'	call by group name

	\g<n>	call by group number (n >= 1)

	\g'n'	call by group number (n >= 1)

	\g<-n>	call by relative group number (n >= 1)

	\g'-n'	call by relative group number (n >= 1)

* left-most recursive call is not allowed.

	ex.	(?<name>a|\g<name>b) => error

		(?<name>a|b\g<name>c) => OK

* Call by group number is forbidden if named group is defined in the pattern and ONIG_OPTION_CAPTURE_GROUP is not set.

* If the option status of called group is different from calling position then the group's option is effective.

ex. (?-i:\g<name>)(?i:(?<name>a)){0} match to "A"

10. Captured group

Behavior of the no-named group (...) changes with the following conditions. (But named group is not changed.)

case 1. /.../ (named group is not used, no option)

(...) is treated as a captured group.

case 2. /.../g (named group is not used, 'g' option)

(...) is treated as a no-captured group (?:...).

case 3. /..(?<name>..)../ (named group is used, no option)

(...) is treated as a no-captured group (?:...).

numbered-backref/call is not allowed.

case 4. /..(?<name>..)../G (named group is used, 'G' option)

(...) is treated as a captured group.

numbered-backref/call is allowed.

where

g: ONIG_OPTION_DONT_CAPTURE_GROUP

G: ONIG_OPTION_CAPTURE_GROUP

A-1. Syntax dependent options

+ RUBY

(?m): dot(.) match newline

+ PERL and JAVA

(?s): dot(.) match newline

(?m): ^ match after newline, $ match before newline

A-2. Original extensions

+ hexadecimal digit char type \h, \H

+ named group (?<name>...)

+ named backref \k<name>

+ subexp call \g<name>, \g<group-num>

A-3. Missing features compared with Perl 5.8.0

 + \N{name}

 + \l,\u,\L,\U, \X, \C

 + (?{code})

 + (??{code})

 + (?(condition)yes-pat|no-pat)

 * \Q...\E

 This is effective in PERL and JAVA.

	XML in TCC	Not in LE

TCC provides the ability to open, parse and close XML documents through the use of a subset of the XPath language. The syntax of the language is explained more clearly at the W3C site: http://www.w3schools.com/xpath/xpath_syntax.asp. We support a limited subset of the language explained below. Any functions of the language beyond what are listed below are unsupported, but may work.

The most common use of XML in TCC is to parse an XML formatted data file to extract elements for further processing in Take Command.

There are four TCC functions that provide XML support:

1.@XMLOPEN - open an XML file for use by @XMLXPATH and/or @XMLNODES. The syntax is:

 @XMLOPEN[filename]

 Example: set a=%@XMLOPEN[bookstore.xml]

2.@XMLCLOSE - close an XML file previously opened by @XMLOPEN. The syntax is:

 @XMLCLOSE[]

 Example: set a=%@XMLCLOSE[]

3.@XMLNODES - return the number of nodes (children) for the specified path in an XML file. The syntax is:

 @XMLNODES[["filename"],path]

Example: set a=%@XMLNODES["bookstore.xml",/bookstore] - returns the number of books in the bookstore file (see example file below)

If you don't specify a filename (which *must* be in double quotes), @XMLNODES will use the XML file previously opened by @XMLOPEN.

4.@XMLXPATH - XML XPath query. (See the XML XPath docs for details on XPath syntax.) The syntax is:

 @XMLXPATH[["filename"],path]

Example: echo %@XMLXPATH[/bookstore/book] - lists all the sub-element values for the first book (see example file below)

If you don't specify a filename (which *must* be in double quotes), @XMLXPATH will use the XML file previously opened by @XMLOPEN.

To return an attribute, preface the attribute name with an @.

Typical Use of The XML Functions

All discussions in this section refer to the following XML data file.

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book>

 <title lang="jap">Harry Potter</title>

 <price>29.99</price>

</book>

<book>

 <title lang="eng">Learning XML</title>

 <price>39.95</price>

</book>

<book>

 <title lang="ger">Day Watch</title>

 <price>14.99</price>

</book>

<book>

 <title lang="eng">Winston Churchill: An Autobiography</title>

 <price>49.99</price>

</book>

</bookstore>

Each tag in this file is referred to as a node (e.g., bookstore, book, title). The identifiers within a tag are often referred to as an attribute (e.g., lang).

Typically you will use the four commands in the following order:

1.Open the file with @XMLOPEN
2.Get the number of child nodes (records) to process with @XMLNODES
3.Set up a loop from one to the number of records to process the records with @XMLXPATH
4.Close the file with @XMLCLOSE

Below is a simple example of batch processing (without error handling J):

SET a=%@XMLOPEN[bookstore.xml]

SET b=%@XMLNODES[/bookstore]

DO i = 1 to %b

SET Title= %@XMLXPATH[/bookstore/book[%i]/title]

SET Price= %@XMLXPATH[/bookstore/book[%i]/price]

ECHO %Title ` costs only ` %Price

ENDDO

SET c=%@XMLCLOSE[]

This example:

●Opens the bookstore data file,
●Evaluates the number of books in the bookstore as 4(since the only child of bookstore is books) ,
●Gets the title and price for each book
●Prints each title and price out
●Closes the data file.

XPath offers a large number of processing options in addition to the ones above. We have not tested their syntax. If you wish to test additional functionality and report back to us, we will add that information to our documentation.

Miscellaneous

●Executable Files and File Searches
●Popup Windows
●Windows System Errors
●ASCII Codes and Key Names
●ANSI X3.64 Command Reference
●Colors, Colors Names & Codes

Executable Files and File Searches

When TCC can't find a matching internal command name, it tries to find an executable file whose name matches the command name. (Executable files are typically those with an .EXE extension.)

If TCC cannot find an executable program to run, it next looks for a matching batch file name. TCC looks first for a .BTM file, then for a .CMD file, then for a .BAT file, and finally for a .REX, .REXX, .PL, .PY, .RB, or .TCL file (if REXX, Perl, Python, Ruby, and/or Tcl are enabled).

You can change the list of extensions that are considered "executable", and the order in which they are searched, with the PATHEXT environment variable, and the related PathExt configuration option. PATHEXT is supported for compatibility reasons but should not generally be used as a substitute for executable extensions, which are more flexible.

Note: If the search for an external program or batch file fails, TCC checks to see if the command name matches the name of a file with an executable extension. If an executable extension is found, TCC runs the program specified when the association was defined. If no executable extension is found, TCC will look for a direct association for the extension in the registry and insert the associated string (usually the name of an application) at the beginning of the command line, then call the Windows CreateProcess API to execute that command. If the CreateProcess call fails, or if no association was found in the registry, TCC calls the ShellExec Windows API. TCC has no control over which action the above Windows APIs will take when presented with a file name. If you are concerned about what Windows might do with an "unknown" extension, create a specific executable extension.

TCC first performs this search (for an executable program, a batch file, or a file with an executable extension) in the current directory. If that search fails, they repeat the search in every directory in your search path.

The search path is a list of directories that TCC (and some applications) search for executable files. For example, if you wanted TCC to search the root directory of the C: drive, the \WINUTIL subdirectory on the C: drive, and the \UTIL directory on the D: drive for executable files, your search path would look like this:

PATH=C:\;C:\WINUTIL;D:\UTIL

The directory names in the search path are separated by semicolons.

You can create or view the search path with the PATH command. You can use the ESET command to edit the path. Many programs also use the search path to find their own files. The search path is stored in the environment with the name PATH.

Take Command also searches the \WINDOWS\SYSTEM32 directory followed by the \WINDOWS directory. (The actual directory names may be different on your system. TCC will determine the correct names for the "Windows" and "Windows System" directories and use them.) This part of the search procedure conforms with the traditional search sequences used under each Windows operating system.

Note: If the file is not found on the PATH, TCC then checks for a corresponding App Paths entry in the Windows registry. App Paths entries are created by some applications during the installation process.

Remember, TCC always looks for an executable file (or a file with an executable extension or Windows file association) in the current subdirectory, then in the Windows directories if appropriate (see above), then in each directory in the search path, and then in the App Paths area of the registry. (You can change the search order so the current directory is not searched first; see the PATH command for details.)

If you include an extension as part of the command name, TCC only searches for a file with that extension. Similarly, if you include a path as part of the command name, TCC will look only in the directory you specified, and ignore the usual search of the current directory and the PATH.

If your command name includes a path, the elements must be separated with backslashes (e.g. c:\wp\wp). If you are accustomed to Linux syntax where forward slashes are used in command paths, and want TCC to recognize this approach, you can set the Unix/Linux Paths configuration option.

Once the file is found, TCC executes it based on its extension. .EXE files are executed by passing their names to the operating system. .BTM, .BAT, and (if applicable) .CMD files are executed by TCC, which reads each line in the file as a new command. Files with executable extensions are executed by starting the associated application, and passing the name of the file on the command line.

If you specify a file name including extension, and the file exists in the current directory (or you specify a path), but the file does not have an extension known to TCC (.EXE, .BTM, .BAT, .CMD, or an executable extension), then the file name will be passed to Windows to check for file associations defined in the Windows registry. This allows you to execute any file whose extension is known to Windows, simply by typing its name. For example, if you have no executable extension defined for .PSP files, but this is an extension known to Windows, at the prompt you can simply enter a command like this:

[c:\graphics] image1.psp

and Take Command will request that Windows start the application for you. See Windows File Associations for additional details on how to control Windows file associations in TCC.

The following table sums up the possible search options (the term "standard search" refers to the search of the current directory, the Windows directories, and each directory in the search path):

	Command	TCC Search Sequence

	WP	Search for any executable file whose base name is WP.

	WP.EXE	Search for WP.EXE; will not find files with other extensions.

	C:\WP\WP	Looks in the C:\WP directory for any executable file whose base name is WP. Does not check the standard search directories.

	C:\WP\WP.EXE	Looks only for the file C:\WP\WP.EXE.

	LAB.DOC	Search for LAB.DOC, if .DOC is defined as an executable extension. Runs the associated application if the file is found. If .DOC is not an executable extension, passes the name to Windows to check for a Windows file association.

	C:\LI\LAB.DOC	Looks only for the file C:\LI\LAB.DOC, and only if .DOC is defined as an executable extension. Runs the associated application if the file is found. If .DOC is not an executable extension, passes the name to Windows to check for a Windows file association.

If TCC cannot find an executable file, batch program, or a file with an executable extension or Windows file association in the current directory, a directory in the search path, or the directory you specified in the command, it then looks for an alias called UNKNOWN_CMD (see the ALIAS command for details). If you have defined an alias with that name, it is executed (this allows you to control error handling for unknown commands). If TCC cannot find an UNKNOWN_CMD alias, it will look for a plugin command named UNKNOWN_CMD. Otherwise, TCC displays an "Unknown command" error message and waits for your next instruction.

See also: the WHICH command.

Windows File Associations

Windows includes the ability to associate file extensions with specific applications. For example, a graphics program might be associated with files with a .JPG extension, while Notepad could be associated with files with a .TXT extension.

When you attempt to start an application from the command line or a batch file, TCC first searches for an external program file with a standard extension (.EXE, .CMD, etc.). It then checks executable extensions. If all of these tests fail, TCC passes the command name to Windows to see if Windows can find an association for it.

TCC offers two commands which provide control over file associations. Both should be used with caution to avoid creating errors in the registry or damaging existing file types. The ASSOC command modifies or displays the associations between extensions and file types in the Windows registry. The FTYPE command modifies or displays the default command used to "open" a file of a specified type.

Executable extensions defined in TCC always take precedence over file associations defined in Windows. For example, if you associate the .TXT extension with your own editor using a TCC executable extension, and Windows has associated .TXT with Notepad, your setting will have priority, and the association with Notepad will be ignored when you invoke a .TXT file from within TCC.

See also: START, ASSOC, FTYPE, Executable Extensions, Executable Files and File Searches.

Popup Windows

Several features of TCC display popup windows. A popup window may be used to display filenames, recently-executed commands, recently-used directories, the results of an extended directory search, or a list created by the SELECT command or the @SELECT internal function.

Popup windows always display a list of choices and a cursor bar. You can move the cursor bar inside the window until you find the choice that you wish to make, then press the Enter key to select that item.

Navigation inside any popup window follows the conventions described below. Additional information on each specific type of popup window is provided where that window is discussed in detail.

The popup windows can be moved and resized, and will remember their position and size when recalled. (Not supported in TCC/LE.) You can also change the keys used in popup windows with key mapping directives.

Once a window is open, you can use these navigation keys to find the selection you wish to make:

	Up Arrow	Move the selection bar up one line

	Down Arrow	Move the selection bar down one line

	Left Arrow	Scroll the display left 1 column, if it is a scrolling display (i.e. if it has a horizontal scrollbar)

	Right Arrow	Scroll the display right 1 column, if it is a scrolling display (i.e. if it has a horizontal scrollbar)

	PgUp	Scroll the display up one page

	PgDn	Scroll the display down one page

	Home	Go to the beginning of the list

	End	Go to the end of the list

	Esc	Close the window without making a selection

	Enter	Select the current item and close the window

	Ctrl-E	Edit the current selection

	Ctrl-D	Delete the current selection

Note: The keystrokes shown above are the defaults values. See Key Mapping Directives for details on how to assign different keystrokes.

All of the popup windows have an edit control on the toolbar. Entering a search string there (or just typing while the popup window has focus) will eliminate non-matching entries from the window. The search string can also contain wildcards or regular expressions. If the string doesn't contain any wildcards or a leading :: (for a regular expression), TCC will append a * to the string (to match any line beginning with the string. For example, entering *jpsoft in the edit control at the top of the window will select all matching lines that contain "jpsoft" anywhere.

Windows System Errors

System errors are internal errors returned by Windows when Windows APIs fail. You can retrieve the number of the most recent Windows system error with the internal variable _SYSERR.

For a detailed list of Windows system error codes, see:

http://msdn2.microsoft.com/en-us/library/ms681381(VS.85).aspx

ASCII Codes and Key Names

For ASCII codes and key names see:

[image: Onestep] ASCII Tables

[image: Onestep] Keys & Key Names

The remainder of this section gives a explanation of the ASCII character sets and key names. For more information on TCC's ANSI X3.64 string support see ANSI X3.64 Commands Reference. If you are troubleshooting a keyboard or character display problem, be sure to read all of the explanation below before referring to the tables.

The translation of a key you type on the keyboard to a displayed character on the screen depends on several related aspects of character handling. A complete discussion of these topics is well beyond the scope of this document. However, a basic picture of the steps in the keystroke and character translation process will help you understand how characters are processed in your system, and why they occasionally may not come out the way you expect.

Internally, computers use numbers to represent the keys you press and the characters displayed on the screen. To display the text that you type, your computer and operating system require five pieces of information:

	1.	The numeric key code for the physical key you pressed (determined by your keyboard hardware);

	2.	The specific character that key code represents based on your current keyboard layout or country setting;

	3.	The character set currently in use on your system (see below);

	4.	The international code page in use for that character set; and

	5.	The display font used to display the character.

If the key codes produced by your keyboard, the code page, and the font you choose are not fully compatible, the characters displayed on the screen will not match what you type. The differences are likely to appear in line-drawing characters, "international" (non-English) characters, and special symbols, but not in commonly-used U.S. English alphabetic, numeric, or punctuation characters.

The control codes can be entered on most keyboards by pressing the Ctrl key plus another character, or by pressing the special keys Tab, Enter, Backspace, and Esc.

See your operating system documentation for more information about character sets, code pages, and country and language support. Refer to your operating system and/or font documentation for details on the full character set available in any particular font.

The tables in this section are based on U.S. English conventions. Your system may differ if it is configured for a different country or language. See your operating system documentation for more information about country and language support.

Note: You may also be able to use the Alt + keypad approach to generate ASCII values. See "Command Line Editing" for additional information.

ASCII Tables

Codes: (0 - 31, 127) (32 - 47) (48 - 63) (64 - 79) (80 - 95) (96 - 111) (112 - 126)

These tables show the 128-character ASCII set for U.S. English systems. Most of the characters in code range 32..126 (the only codes for which ASCII specifies displayable symbols) will be the same on non-U.S. systems. The symbols associated with all other codes vary from font to font, as well as from country to country.

For more details on ASCII, character sets, and key codes, see the general information topic on ASCII, Key Codes, and ANSI X3.64 Commands.

●Control Characters 0 - 31, 127
●Printing Characters 32 - 47
●Printing Characters 48 - 63
●Printing Characters 64 - 79
●Printing Characters 80 - 95
●Printing Characters 96 - 111
●Printing Characters 112 - 126

Control Characters 0 - 31, 127

	ASCII (Dec)

	ASCII (Hex)

	Ctrl + Key

	Acronym

	Name

	0

	00

	@

	NUL

	null

	1

	01

	A

	SOH

	start of header

	2

	02

	B

	STX

	start text

	3

	03

	C

	ETX

	end text

	4

	04

	D

	EOT

	end of transmission

	5

	05

	E

	ENQ

	enquiry

	6

	06

	F

	ACK

	acknowledge

	7

	07

	G

	BEL

	bell

	8

	08

	H

	BS

	backspace

	9

	09

	I

	HT

	horizontal tab

	10

	0A

	J

	LF

	linefeed

	11

	0B

	K

	VT

	vertical tab

	12

	0C

	L

	FF

	form feed

	13

	0D

	M

	CR

	carriage return

	14

	0E

	N

	SO

	shift out

	15

	0F

	O

	SI

	shift in

	16

	10

	P

	DLE

	data link escape

	17

	11

	Q

	DC1

	device control 1

	18

	12

	R

	DC2

	device control 2

	19

	13

	S

	DC3

	device control 3

	20

	14

	T

	DC4

	device control 4

	21

	15

	U

	NAK

	negative acknowledge

	22

	16

	V

	SYN

	synchronize

	23

	17

	W

	ETB

	end text block

	24

	18

	X

	CAN

	cancel

	25

	19

	Y

	EM

	end of medium

	26

	1A

	Z

	SUB

	substitute

	27

	1B

	[

	ESC

	escape

	28

	1C

	\

	FS

	field separator

	29

	1D

]

	GR

	group separator

	30

	1E

	^

	RS

	record separator

	31

	1F

	_

	US

	unit separator

	127

	7F

	n/a

	DEL

	delete

Printing Characters 32 - 47

	Dec

	Hex

	Char

	Special character name

	032

	20

	Space

	space

	033

	21

	!

	exclamation mark

	034

	22

	"

	quote mark

	035

	23

	#

	number sign

	036

	24

	$

	dollar (currency) sign

	037

	25

	%

	percent mark

	038

	26

	&

	ampersand

	039

	27

	'

	apostrophe

	040

	28

	(

	left parenthesis

	041

	29

)

	right parenthesis

	042

	2A

	*

	asterisk

	043

	2B

	+

	plus sign

	044

	2C

	,

	comma

	045

	2D

	-

	hyphen (minus sign)

	046

	2E

	.

	period

	047

	2F

	/

	slash

Printing Characters 48 - 63

	Dec

	Hex

	Char

	Special character name

	048

	30

	0

	

	049

	31

	1

	

	050

	32

	2

	

	051

	33

	3

	

	052

	34

	4

	

	053

	35

	5

	

	054

	36

	6

	

	055

	37

	7

	

	056

	38

	8

	

	057

	39

	9

	

	058

	3A

	:

	colon

	059

	3B

	;

	semicolon

	060

	3C

	<

	less than sign

	061

	3D

	=

	equal sign

	062

	3E

	>

	greater than sign

	063

	3F

	?

	question mark

Printing Characters 64 - 79

	Dec

	Hex

	Char

	Special character name

	064

	40

	@

	at sign

	065

	41

	A

	

	066

	42

	B

	

	067

	43

	C

	

	068

	44

	D

	

	069

	45

	E

	

	070

	46

	F

	

	071

	47

	G

	

	072

	48

	H

	

	073

	49

	I

	

	074

	4A

	J

	

	075

	4B

	K

	

	076

	4C

	L

	

	077

	4D

	M

	

	078

	4E

	N

	

	079

	4F

	O

	

Printing Characters 80 - 95

	Dec

	Hex

	Char

	Special character name

	080

	50

	P

	

	081

	51

	Q

	

	082

	52

	R

	

	083

	53

	S

	

	084

	54

	T

	

	085

	55

	U

	

	086

	56

	V

	

	087

	57

	W

	

	088

	58

	X

	

	089

	59

	Y

	

	090

	5A

	Z

	

	091

	5B

	[

	left bracket

	092

	5C

	\

	backslash

	093

	5D

]

	right bracket

	094

	5E

	^

	caret

	095

	5F

	_

	underscore

Printing Characters 96 - 111

	Dec

	Hex

	Char

	Special character name

	096

	60

	`

	accent grave (back tick or back quote)

	097

	61

	a

	

	098

	62

	b

	

	099

	63

	c

	

	100

	64

	d

	

	101

	65

	e

	

	102

	66

	f

	

	103

	67

	g

	

	104

	68

	h

	

	105

	69

	i

	

	106

	6A

	j

	

	106

	6B

	k

	

	108

	6C

	l

	

	109

	6D

	m

	

	110

	6E

	n

	

	111

	6F

	o

	

Printing Characters 112 - 126

	Dec

	Hex

	Char

	Special character name

	112

	70

	p

	

	113

	71

	q

	

	114

	72

	r

	

	115

	73

	s

	

	116

	74

	t

	

	117

	75

	u

	

	118

	76

	v

	

	119

	77

	w

	

	120

	78

	x

	

	121

	79

	y

	

	122

	7A

	z

	

	123

	7B

	{

	left brace

	124

	7C

	|

	vertical bar

	125

	7D

	}

	right brace

	126

	7E

	~

	tilde

Key Names

Key names are used by Take Command in tab toolbar buttons, and in TCC to define keystroke aliases, in key mapping directives, and in the INKEY and KEYSTACK commands. The format of a key name is the same in all four cases:

[Prefix-]Keyname

The valid prefix and keyname combinations are shown in the table below. Names of keys must be spelled exactly as shown, except for case. Note that you cannot specify a punctuation key.

	Prefix

	Valid for keynames

	none

	A-Z, 0-9, F1-F12, Tab, Bksp, Enter, Up, Down, Left, Right, PgUp, PgDn, Home, End, Ins, Del, Esc

	Alt-

	A-Z, 0-9, F1-F12, Bksp, and the non-alphanumeric keys `-=[]\;',./

	Ctrl-

	A-Z, F1-F12, Tab, Bksp, Enter, Up, Down, Left, Right, PgUp, PgDn, Home, End, Ins, Del

	Shift-

	F1-F12, Tab

The prefix and key name must be separated by a hyphen (-). For example:

Alt-F10 ctrl-bksp

Some keys are intercepted by Windows and are not passed on to Take Command. For example, Alt-Tab, Alt-Esc and Ctrl-Esc typically pop up a task list, or are used in switching among multiple tasks. Alt-space brings down a menu to control window size and position, etc. Keys which are intercepted by the operating system (including menu accelerators, i.e. Alt plus another key) generally cannot be assigned to aliases or with key mapping directives, because Take Command never receives these keystrokes. However, KEYSTACK can send them to Windows (though not to another application).

The above comments are based on common 101/102-key US-style keyboards. Some key combinations might not be available on some keyboards.

ANSI X3.64 Command Reference

TCC includes support for ANSI Std X3.64, allowing you to manipulate the cursor, screen color, and other display attributes through sequences of special characters embedded in the text sent to the display. These sequences are called "ANSI commands". (For a general description of this feature, see ANSI Support.) Because of the design of Windows, TCC cannot provide ANSI X3.64 support to external applications.

TCC supports most common ANSI X3.64 screen commands, but does not provide the complete set of options supported by some operating system's ANSI X3.64 drivers (for example, TCC does not include ANSI X3.64 key substitutions; that functionality is already provided with key aliases). This section is a quick reference to the ANSI X3.64 commands supported by TCC.

ANSI X3.64 support within TCC can be enabled or disabled with the ANSI Colors configuration option, or the SETDOS /A command. You can test whether ANSI X3.64 support is enabled with the _ANSI internal variable.

An ANSI X3.64 command string consists of three parts:

	<ESC>[The ASCII character ESC, followed by a left bracket. These two characters must be present in all ANSI X3.64 strings.

	parameters	Optional parameters for the command, usually numeric. If there are multiple parameters, they are separated by semicolons.

	command	A single-letter command. (Case sensitive!)

For example, to position the cursor to row 7, column 12 the ANSI X3.64 command is:

<ESC>[7;12H

The parameters part of this command is "7;12" and the command part is "H".

To transmit ANSI X3.64 commands to the screen you can use the ECHO command. The ESC character can be generated by inserting it into the string directly (if you are putting the string in a batch file and your editor will insert such a character), or by using the internal "escape" character (defaults: caret, [^]) followed by a lower-case "e".

For example, the sequence shown above could be transmitted from a batch file with either of these commands (the first uses an ESC character directly, represented below by "<ESC>"; the second uses ^e):

echo <ESC>[7;12H

echo ^e[7;12H

You can also include ANSI X3.64 commands in your prompt, using $e to send the <ESC> character.

Commands

The internal TCC ANSI X3.64 interpreter supports the subset of X3.64 commands below. Variable parameters are shown in lower-case italics, e.g., row and attr, and must be replaced with the appropriate decimal numeric value when using the commands. The default value for row, rows, col, and cols is 1.

	<ESC>[rowsA

	Cursor up by rows

	<ESC>[rowsB

	Cursor down by rows

	<ESC>[colsC

	Cursor right by cols

	<ESC>[colsD

	Cursor left by cols

	<ESC>[row;colH

	Set cursor position (top left is row 1, column 1)

	<ESC>[2J

	Clear whole screen

	<ESC>[K

	Clear from cursor to end of line

	<ESC>[row;colf

	Set cursor position, same as "H" command

	<ESC>[attr1;attr2;...m

	Set display attributes; see table of attribute values below

	<ESC>[s

	Save cursor position (may not be nested)

	<ESC>[u

	Restore saved cursor position

Display Attributes

The attribute values used for the m command are:

	0	Restore all attributes to default

	1	Bright (high intensity) foreground color

	2	Normal intensity foreground color

	5	Bright (high intensity) background

	7	Reverse video

	30..37	Foreground color

	40..47	Background color

	Foreground Code

	Background Code

	Color

	30

	40

	Black

	31

	41

	Red

	32

	42

	Green

	33

	43

	Yellow

	34

	44

	Blue

	35

	45

	Magenta

	36

	46

	Cyan

	37

	47

	White

If you are setting multiple attributes, combine them into a single command (using the ; concatenation operator). The attribute settings are cumulative, and are independent of order (except code 0, reset to default).

Examples

Set bright red foreground without changing background:

 echo ^e[31;1m

Set the display to bright cyan on blue, and clear the screen:

 echo ^e[44;36;1m^e[2J

Set up a prompt which saves the cursor position, displays the date and time on the top line in bright white on magenta, and then restores the cursor position and sets the color to bright cyan on blue, and displays the standard prompt:

 prompt $e[s$e[1;1f$e[45;37;1m$e[K$d te[u$e[44;36;1mpg

Colors, Color Names and Codes

You can use color names in several configuration options and in some internal commands. The general form of a color specification is:

[BRIght] fg ON [BRIght] bg

where fg is the foreground or text color, and bg is the background color.

Color Names

Color names as well as the attribute name BRIght may be shortened to their first three letters. The available color names, shown below on approximations of the 8 basic background colors, are: BLAck, BLUe, GREen, CYAn, RED, MAGenta, YELlow, WHIte.

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

	BLAck

	BLUe

	GREen

	CYAn

	RED

	MAGenta

	YELlow

	WHIte

Note: The colors (if any) represented by your viewer in the above table do not necessarily match the actual rendition provided by your display hardware and drivers at a TCC prompt. BRIght backgrounds are generally always enabled under Windows.

Color Codes

You can also specify colors by numeric code (see table below) instead of by name. The numeric form is most useful in potentially long options such as ColorDIR, where using color names may take too much space. The codes are decimal numbers, with the codes for bright colors larger than those of the corresponding normal colors by 8.

The COLOR command also supports the CMD style color specification bf, where b and f are CMD.EXE's codes for background and foreground colors, respectively (shown in the CMD columns of the table below). The numeric values of these codes are the same as the TCC codes, but they are represented in hexadecimal.

ANSI X3.64 color codes are also shown in the table. Note that X3.64 support for the bright attribute is restricted to foreground. Note that the color codes are decimal, and the codes for background colors are larger than those of the corresponding foreground colors by 10.

	SCREEN COLOR

	TCC name

	TCC codes

(decimal)

	

	CMD codes*

(hexadecimal)

	ANSI X3.64 codes

(decimal)

	normal

	bright

	

	normal

	bright

	

	normal

	bright

	foreground

	background

	black

	gray

	BLAck

	0

	8

	

	0

	8

	30

	40

	blue

	blue

	BLUe

	1

	9

	

	1

	9

	34

	44

	green

	green

	GREen

	2

	10

	

	2

	A

	32

	42

	cyan

	cyan

	CYAn

	3

	11

	

	3

	B

	36

	46

	red

	pink

	RED

	4

	12

	

	4

	C

	31

	41

	magenta

	magenta

	MAGenta

	5

	13

	

	5

	D

	35

	45

	brown

	yellow

	YELlow

	6

	14

	

	6

	E

	33

	43

	white

	white

	WHIte

	7

	15

	

	7

	F

	37

	47

Note: The numeric values of the CMD and native color codes are identical, the difference is in representation only.

Use one number to substitute for the [BRIght] fg portion of the color name, and a second to substitute for the [BRIght] bg portion. For example, instead of bright white on red you could use 15 on 4 to save space in a ColorDir specification.

The @OPTION function returns the value of color configuration options by combining both foreground and background into a single number (0-255) using the following logic:

foreground value + (background value * 16) = code

For example, bright white on red (15 on 4) can be expressed as:

15 + (4 * 16) = 79

The following batch file translates a combined numeric color code:

@echo off

setlocal

function x=`%@if[%1 gt 8,bri ,]%@word[%@eval[%1 %% 8],bla blu gre cya red mag yel whi]`

:loop

input /c /d ^nColor code? %%c

if %c gt 255 .or. %c lt 0 quit

set f=%@eval[%c %% 16] & set b=%@eval[%c \ 16]

echos The color code %c is "%f on %b" ("%@x[%f] on %@x[%b]")

goto loop

Color Errors

A standard color specification allows sixteen foreground and sixteen background colors. However, many monitors do not provide true renditions of certain colors. For example, most users see normal "yellow" as brown, and bright yellow as yellow; many also see normal red as red, and "bright red" as pink. Color errors are often worse when running in windowed mode, because Windows may not map the text-mode colors the way you expect. These problems are inherent in the monitor and they cannot be corrected using the Take Command color specifications. You can, however, define a custom color palette to get the exact colors you want, via the "Tab Colors" button on the Configure Take Command / Tab dialog.

Copyright and Version

[image: logo2]

Take Command 15.0 for Microsoft Windows XP / 2003 / Vista / Server 2008 / Windows 7 / Windows 8 / Server 2012

Software: Copyright © 2013, Rex Conn and JP Software Inc.

All Rights Reserved.

Version 15.0 Help System

Help text: Copyright © 2013 JP Software Inc.

All Rights Reserved.

Language translations by Christian Albaret (French), Hans-Peter Grözinger (German), Stefano Piccardi (Italian), Dmitry Yerokhin (Russian), and Orlando Hevia (Spanish).

VIEW is a licensed version of the V file viewer, Copyright 1996-2013 by Charles Prineas http://www.fileviewer.com

TPIPE is a licensed version of the TextPipe Engine http://datamystic.com

The Scintilla edit control is Copyright 1998-2013 by Neil Hodgson http://www.scintilla.org

We gratefully acknowledge the contributions of Charles Dye, Vincent Fatica, Steve Fabian, and our other users.

This help material was last revised on Wednesday, October 30, 2013

Take Command ® is a registered trademark of JP Software Inc. JP Software, jpsoft.com, and all JP Software designs and logos are also trademarks of JP Software Inc. Other product and company names are trademarks of their respective owners.

OPF/onestep.gif

OPF/listofkeys.jpg
Keyboard shorteuts Uit ofKeys |

Key+ Command Dr | Fle | Gep | 7p | Other 4]
0 Find Next X

Shifts Find Previous X

cul+a SelectEntre Fie X

cuisa Select Al Fies % % %
AltiA Find Next (across fles) X

AltiA ASCII Chart X X
Alttshift+A ASCII Chart X x X
5 Goto Fie End x

cuiss Fie Attrbutes X X X X
AltsB Togole EBCDIC Mode: X

culsc Copy to Clpboard X

cuisc Control€ (Copy) X %

AltC Command Prompt X X X X
Colashiftsc Copy X X
ColsshiftiC Append selected Text x

Ctrl+D Delete x X x

OPF/blinenumbers.jpg

OPF/btail.jpg

OPF/bmd5.jpg
MDS

OPF/bleft.jpg

OPF/@getdir.png
Lookin: J} Windows - 0@ rE

> Name Date modified Type ~

S s 20091384 Fietel
RecentPlaces || pppcompat T TNPM Ficfol
e 12128TAM Fiefol
U assembly SRA2IA2M Ficfol
Deskiop)/ Boot TA4LBAM Fiefol
)i Branding TA4LBAM Fiefol
s 12572121024 AM Fiefol
Ubraies B Cursors LB Ficfol
U debug B8RP Ficfol
1A 1l diagnostics TM42009138AM Filefol
Computer i DigialLocker T TAM Fiefol
)} Downloaded Program Files 2284 Ficfol
@ s 47270TI3HAM Fiefol ©

Network
Folder Name: -

OPF/tcc_startup_zoom79.jpg
Lwaltsts
oca atses

(100,012 ey expansion (var)
Diesro

)V e sysen Redeectan
@show symbelcus

OPF/ftp.png
softcom - sftp/root@ftp psoft com:2200 - FiZilla =@ ;
Fie Edt_View Tronster Sewver_Bookmarks_Help

d-HEeRF 2Bk aaen

| Username: | | Password: | port: | | [Quickconnect |+

‘Retrieving directory lsting.. ~
d “Thomerconn/pubic_himi”

.
&
o e e
& J23/2011 r—
e,
e
[oeee |[opete |l —
[s dmmm |
5
= L] e
= T e

| Queued files | Faied transfers | Successfl transfers

A Qucempy 0@

OPF/clip0037.jpg
Find Files/Text

Dr\docs and settingsRex
Fies:
Disks: D Exclue:

Text:

Optons.
[C]Reguiar Expressions
[[IMatch Case.

[]Hex Search
[TIshow AlLines

[search Hidden Fies

Search
© i only
©Dir aBelon

© Entre Disk
Al Hard Disks

xport. print

OPF/bwraplen.jpg

OPF/dirhistory_zoom87.jpg
Files\Microsoft Visual Studio 11.0
Files
Files\openafs

i P Software
Files\JP Sof tware\Take Command x64 15.0

OPF/multitiled.jpg

OPF/@color2.png
Color

‘Addto Custom Colors

OPF/bplus.jpg

OPF/statusbar_zoom80.jpg

OPF/bclipboard.jpg

OPF/tcmd15.png
i Adobe

1L Application Ver

U ATt

L ATl Technologi

1! Borjour

1\ Common Files

Ui Conmu

Ui EPSON

Ul Epsonilet

Ui ForMansger

b

L IS bpress

U} Intemet Bplore

UL ipod

b Tunes

U s

1L 1P Software
)i Take Comn

b psoft

U} Just GreatSoft

Ul Microsoft

1! Microsoft Ansly

1\ Microsoft Devic

1\ Microsoft Gam

Ui MicrosoftHelp.

Ul Microsoft Offic

Ul Microsoft v

)} Microsoft SQL ¢

)} Microsoft SQL ¢

i Microsoft Sync

Ul Microsoft yncl

Ul Microsoft Visus

Ul Microsoft Visus

Ul Microsoft Visus

Ui Microsoft NET

U Mictosys

b MsB

Ui nsoftware

UL OpenFs

Ul Orscle

I

Attributes Type
[Borinamm.l 330 2060221640 _A Application extens.. =
3/ Englsh.dit 627,25 30220248 _A Application extens..

2 EnglishD.dil 08632 130220 2148 _A Application extens..

4] everything.dit 108088 20130220 2148 _A Application extens..

B EverythingIPC.exe M7 0130220 2148 _A Application

[French.dil 664632 0302202048 A Application extens..

2/20/2013
1/24/2000
2/20/2013
2/20/2013
1/69/2013
1/69/2013
1/69/2013
2/11/2013
2/20/2013
1/69/2013
1/68/2013
2/20/2013
2/20/2013
2/22/2013
1/10/2013
1/68/2013
1/68/2013
1/68/2013
1/68/2013
1/88/2013 795,280 VRUS.d11
2/20/2013 295,424 WiFiMan.dl1
48,219,194 bytes in 48 files and 2 dirs
6,510,710,784 bytes free

21:48

6:01
21:48
21:48
12:13
12:13

415,800
453,632
1,556,536
342,384
1,002
1,170
1,272
3,567,176
5,560,304
1,204
6,251,336
134,712
542,776
399
492,591
2,869,352
816,784
812,680
809,616

SpanishD.d1l
stdvcldo.dll
takecmd . d11
tcc.exe
tccbatch.btm
‘tcchere.btm
‘tcctabhere.btm
temd. chm

temd.exe
temdhere. btm
textpipeengine.dll
TPipe.exe
updater.exe
updater.ini

v.chm

v.exe

VESP.d11

VFRA.d11

VITA.d11

48,332,800 bytes allocated

[C:\Program Files\JP Software\Take Command x64 15.0]

5205 CPU 2% Losdk 3% CAP NUW SCRL_ 2252013 093136

=@

OPF/tc_windows_zoom81.jpg

OPF/filetoolbar.jpg
(6o @

aar

SEMD

*®- B8

OPF/tc_advanced_zoom84.jpg
update Envranment on System Change
UdateFolders view onDrectary Creton /Oeleton

e e W

OPF/clip0036.jpg
Customize . ™ -

Toobars | Commands | keyboard [Qptons|

Category:

Commands: Key assignments:

[assion]

= |

Press new shortaut key:

Desarpton

Fvsatﬁ anewtsb

OPF/bhex.jpg

OPF/tcc_cmdline_zoom79.jpg
ey
estvoce

owstke Ommt Omwowsie Ot
OvestieCursor (0 15

et (9: 100

ExtendedDrecory Serch
Sewhieve:

o0 01 0: @3
Path:

o] (ot) oy) e)

OPF/multivertical.jpg

OPF/btools.jpg

OPF/@getdate.png
B

May, 2012

Sun Mon Tue Wed Thu Fri

2

30

[7

e}

1

12 3
8 9 10
15 16 17

0 1 2 B »

7
3

=
4

EREE
5 6 1

4
1
18
F)
1
H

[Today: 5/6/2012

OPF/@getdatetime.png
5 /2012
20500 PM

OPF/logo2_zoom59.jpg
l)jpsoftwo re

OPF/@getfolder.png
Browse For Folder

B Desiop
Libraries

» 4@ Homegroup
o8 Rex

> 8 Computer

» @ Network

Eoder: Rex

ke odr]

J [conce

OPF/bgreenbar.jpg

OPF/tcmd15_zoom55.jpg
[7C130- 7CC Pampt. -

2raenons s Tis,000 sponisio.ant B
i/aaraoee ‘sie1 CRivclao.an
Py nend. 1

54 bytes in 45 Fi1os amd 3
8 bytes free

48,232,800 bytes allocated

(€:\Program Files\3p SoftuarelTaks Comnd 364 15.0] a|

OPF/bminus.jpg

OPF/searchbar.gif
3 Find: ¥ # 2 [Owighightal [case [Cword [JRegex [hex [Jcghumns

OPF/clip0025.jpg
Date Range (Start o End)

Time Range (Start to End)

O 7ot B et 5 0 sonmen [sznmew [
Size (Minimum to Maximum) Owner
T]
Excde Fes
Descrpton
Resit

o] fom] [Cme]

OPF/bwrapscreen.jpg

OPF/bfindnext.jpg

OPF/clip0024.jpg
Read Oriy
© Indude
Hidden

© Incude

System
@ Indude
Archive

© Inciude

Directory
© Inciude

Attrbutes.

Exclude.

Exclude.

Exclude

Exclude.

Exclude

o

or

o

o

o

NTFS Extended Atirbutes
symbolic Link o Junction
Orchde bxchie
aypted
Oucde bxchie
anpressed
Orchde bxchee
pare
Orchde bxchie
emporary
Orcde bxchde

or

R

R

or

o

OPF/bright.jpg

OPF/_bm7.gif
30
123456789 | 123456789 | 123456789 | 1234567}
0123456789 ABCDEFGHLIKLINOPQRSTUVUXYZ
3333333333244444444444444455 555555555
01234567830123456739ABCDEF 012345676894

OPF/bsend.jpg

OPF/bfind.jpg

OPF/ide_zoom68.jpg
1 Cecho off
2 rem TCHOHere.btm

3 rem This batch file adds the "TCHD prompt here” entry to Windows Explorer

.

s

Bl ety cmeine s a5y e, o iste yuimestiflest tart o T
7 acho session as an administrator {right click on the'TCC icon and select "Tum as
8 acho adninistrator”) and then run TCHDHere.btm in that session.

5 andifr

10

1 echo.

12 acho Do you vant to dd o "TCID prompt here” entry to the Windous Explorer

ol ctor context (righe clic) menus o divactonies and drives (Y/M] 1

18 snkey /k"ynlenter]” K5y

15

1646 "var ne "y" quit

Iy

18 ache Bregcrastel WKCR\Directory\Shel1\TCIO\comand) > mul

19 acho Haregcreate("HKCR\Drive\shel1\TCHD\comand"] > nul

20

2411 regset["WKCRiractory \SheLI\TUD\" REG_52,TCHD prompt hara] 1 then

22 acho Cannot update registry key!

2 it

frigpes

2

omen G o

LUSERSPROFLE-C Progan
mFies meuDarey
POATALE wsuswmmnm\n
stlog=Desti
RS PAT Cprogam Flls (a0 avapeSibe Qo 2
ir-exe red dibu bim greer

um Files\Common Files
anlesido)-C \me-mn (485 Common Files
mWG432- FiesiCommon Files

Row0 Col5 U 5% _Losti 0% CAP MUV IS SCRL 22903 55244

OPF/@getfile.png
Organize v Newfolder
— 4 Neme ’ Datemodiied Type =
M Desktop)i addins 7/14/20091:38 AM File folder -
1B Downloads B AppCompat 320091120 PV Filefolder
% Dropbox i AppPatch 125/2012833AM File folder
] Recent Places B asembly SprsRIM Fiefolder
0l Boot 42009138 AM Filefolder
3l Branding 42009138 AM Filefolder
@ csc 172520121026 AM Filefolder
B cursors 42009138 AM Filefolder
@ debug 2012821 PM Filefolder
@ disgnostics 42009138 AM Filefolder
1! DigitlLocker 4200943 AM Filefolder i
& Homegowp ([m v
File pame: * ~ [auFies

OPF/@color.png
Custom colors:
)) o o oo | 3
’,’,’,’,’,’,’,’,-wgwﬂ Bed: 0
Sat: 0 Green: 0
Define Custom Colors >> ColoriSolid 1,y g Bue: 0
ok J Comen] [ddoCutomCoon

OPF/clip0042.jpg
Commend Line: o)
s Concel

Directoy: =

Run As: Passord: —

© StatiatenTs

© Nomal

© Minimized

© Maximized

OPF/btext.jpg

OPF/_bm9.gif
wvAé_I

Fist | Previous| Enie
Churk | Chunk | File

Nest Last
Chunk Chunk

OPF/bfindprev.jpg

OPF/cmdhistory_zoom77.jpg
FEE R
dir
dir /p
cd openafs
dir
\jpsoftuare
9P sof tware”

cd "Take Command x64 15.0"

dir
Colordir /7
e colordire. exe:bri red

Pelp cotordi
st colordireexesbri red;d11:bri blu

eset colordir
dir

help ide
help bdebu

OPF/splitfileview.jpg
a2
B Gt o e Lo G T e
L0 DB R R EF L

Bl

OPF/custkeys.jpg
Ve i ||

Mok conret Shertets o Slcted Command
5 DIRECTORY = Delete
B re Coind
beat coren
5 ven s
5 Favertes
15 UserCommards
B The selected shoruts deied for
iy
- Other I Directory W Fle ™ Grer ™ zp
srs e
B Fie I Orectory P e [ep 2
Geat
red A shortatey
nd
o v
Frd ewt Glcted ext) Shortet urenty Used By
Find Previous (selected text) Goto.
Find Next (across files)
Find Files/GREP [~ When Adding/Deleting Shortcut
Goto @ Add to/Delete from ALL available views
ot sartof e
 onl lete from current view
Goto End of File e X
5 Bookmark
5 Sekctock
B3 Chunks =] Export | mport | Restore Defaltkeys
| =0 e
[== | = |

OPF/toolbarbutton.png
Tool Bar Button =]

Startanewwindon () Send tothe curenttab () Change Foders dirctory.
[tnsert a separator

Teon: &
Button Labels

Tab Tide:

=]
Drectry: =]

o Concel] [peete | [coy | [rep]

OPF/tc_tabs_zoom80.jpg
Deratker ST
Flletecsiver
Dlisesnaret

@ssitr ndows

=)

Tobl [Tab2 [Tabd [Tab4 [Tabs [Tab6 [Tab7 [Tab8 [Taby [Tab1o [Tabi1 [Tabrz [Tabi3 [<]:

OPF/tcmd15_zoom58.jpg
[€\Progran 71165\ Softuare\Take Consand x68 15.0] ol

ettt | 272072013 21:46

M 29,158 brtes 0 u Trer e 3 Gire 8,332,800 bytes allocated
s 6,516,716,784 bytes

peey

o -

Spanisro.a11 B

N N T =iy

OPF/finddialog.gif
Find

Search for:
[[IMatch case. [Whole Word Only.
[JReguiar Expression [CBinary Data (ex)
[Cunicode [Folumns:

Display Search Bar at bottom of the ie window

LN

OPF/bdirectory.jpg

OPF/tcc_advanced_zoom80.jpg
[

e | = v .|

OPF/clip0023_zoom89.jpg

OPF/@getfolder2.png
Browse For Folder

510 TakeCommand1d
o0l tmp
o Users
o) Windows
b s Development (D:)
> & DVD RW Drive €
> 2 share (WLINKSTATION) (V)

Eoder; VWindows.

[(Moke New Folder | [

J [conce

OPF/clip0043.jpg
@ Startanewwindon () Send to the curenttab () Change Folders directory

[insert a separator
Leon:

Button Label:

Tab Ti:

Command:

Directory:

=]

ov | [

OPF/tcc_internet_zoom81.jpg
B0 e

o (o) Ctom)

OPF/_bm4.gif
0 10 20 30 40
123456789 123456789 123456789 123456789 123456789

OPF/beol.jpg

OPF/brefresh.jpg

OPF/tcc_windows_zoom80.jpg
outFaregrond:

(o] (i) [o) (b

OPF/_bm5.gif
00 01 02 03 04 05 06 07 08 09 0A OB 0C 0D OE OF

OPF/bgoto.jpg

OPF/@getdir3.png
Organize = Newfolder

e Favortes
B Deskiop
© [Downloads
7 Dropbox
] Recent Places
braries
' [3 Documents
& Music
= Pictures
€ videos
3
N

Name

0 web
B winos
Wbt

explorerere

1 eupdate.cee
@ Heppancare

2 e

Fnotepadire

regeditore

@ Scrcen Calpers Uninsalerre
1 spiwowdt.cre

Date modified
7/14/200 1:38 AM
412/2012321 AM
1172020101024

2/25/2011 119 AM
7/13/2009 939 PM
7/13/2009 939 PM
7/13/2009 939 PM
7/13/2009 939 PM
7/13/2009 939 PM
2/23/2012814 AM
1172020101024

Type
File folder

File folder

Application
Application
Application
Application
Application
Application
Application
Application
Application

OPF/bwc.jpg

OPF/bdown.jpg

OPF/_bm6.gif
0001 02 03 04 05 06 07 06 09 0A 0B O 0O O OF

103456 780BLOEF

405 9000 03 00 00 0004 00 00 00 FF FF 00 00
88 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000 00 00 00 00 00 00 00 00 00 00 &0 00 00 00
OE 3F BA 0F 00 B4 09 0D 21 88 01 4C 00 21 54 68
6 7220 70 72 6F 7 72 61 60 20 3 61 6F GE
7420 62 65 20 72 75 GE 20 60 6F 20 44 4 53 20
0 6 64 65 2E 0D 0D OR 24 00 00 00 00 00 00 00

.

i progran canno
tbe run in 105
ode..

OPF/gridlines.gif
0 10 20 30 40 50 60 70
123456789 123456789 123456789 | 123456789 | 123456789 | 123456789 | 123456783 | 1234567
Surnane | First | Address [city

Hadison Pscar Ppartment 1102, 1049 Park Avenus e Yozk City
Nulder = partnent 42, 2630 Hegal Place Texandria
Seinfeld [erry [partment GA, 129 Vest gist Street e Tozk City
Ricardn Ricky [partent 4A, 623 East 68th Strest ew York City
Richards Mary partnent D, 119 North Veatherly dvenue Minneapolis
Surname | First | Address | city

